Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ пСрпСндикулярных прямых, ΠΈΡ… свойства, характСристика

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅:

Π’ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ сущСствуСт понятиС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΈ пСрпСндикулярных прямых. Ко Π²Ρ‚ΠΎΡ€Ρ‹ΠΌ относится особый Π²ΠΈΠ΄ пСрСсСчСния ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΡ… гСомСтричСских Ρ„ΠΈΠ³ΡƒΡ€. Рассмотрим, ΠΊΠ°ΠΊΠΈΠ΅ прямыС Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ пСрпСндикулярными. ПослС тСорСтичСской Π²Ρ‹ΠΊΠ»Π°Π΄ΠΊΠΈ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° Π½Π°ΡƒΡ‡ΠΈΠΌ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ Ρ‡Π΅Ρ€Ρ‚ΠΈΡ‚ΡŒ Ρ‚Π°ΠΊΠΈΠ΅ Ρ‡Π΅Ρ€Ρ‚Π΅ΠΆΠΈ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π’Π°ΠΊΠΆΠ΅ разбСрёмся, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикуляр ΠΊ прямой, Π΅Π³ΠΎ свойства, ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅.

ΠŸΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹Π΅ прямыС: ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅, свойства

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π²Ρ‹ ΠΏΠΎΠ½ΠΈΠΌΠ°Π΅Ρ‚Π΅, Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ пСрпСндикулярныС прямыС.
Π”Π°Π½Π° линия a (AB) ΠΈ Π½Π΅ лСТащая Π½Π° Π½Π΅ΠΉ Ρ‚ΠΎΡ‡ΠΊΠ° C. Π‘ΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΉ ΠΈΡ… ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ CD называСтся пСрпСндикулярным, Ссли ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ CD ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅Ρ‚ с AB прямыС ΡƒΠ³Π»Ρ‹. Π’ΠΎΡ‡ΠΊΠ° D – основаниС пСрпСндикуляра.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Бпособы построСния

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Π’Ρ‚ΠΎΡ€ΠΎΠΉ способ слоТнСС. Π”Π°Π½Π° линия m с Π»Π΅ΠΆΠ°Ρ‰Π΅ΠΉ Π½Π° Π½Π΅ΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ M: M ∈ m. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ PQ, проходящий Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ M ΠΈ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰ΠΈΠΉ m ΠΏΠΎΠ΄ прямым ΡƒΠ³Π»ΠΎΠΌ.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Π’Π΅ΠΏΠ΅Ρ€ΡŒ разбСрёмся, ΠΊΠ°ΠΊ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ (прямыС) пСрпСндикулярны. Для этого рассмотрим Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ APB ΠΈΠ»ΠΈ AQB (ΠΈΠ· условий Π·Π°Π΄Π°Ρ‡ΠΈ ΠΎΠ½ΠΈ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅).

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Π”Π²Π΅ стороны ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠ΅Π³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° построСны ΠΏΠΎ радиусам ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Ρ… ΠΊΡ€ΡƒΠ³ΠΎΠ², Π·Π½Π°Ρ‡ΠΈΡ‚, ΠΎΠ½ΠΈ Ρ€Π°Π²Π½Ρ‹ ΠΏΠΎ Π΄Π»ΠΈΠ½Π΅ – ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, Π³Π΄Π΅ AP = PB. Из условий Π·Π°Π΄Π°Ρ‡ΠΈ AM = BM, Π·Π½Π°Ρ‡ΠΈΡ‚ MP – ΠΌΠ΅Π΄ΠΈΠ°Π½Π° Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° (исходя ΠΈΠ· опрСдСлСния этого Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°). ΠžΡ‚Ρ€Π΅Π·ΠΎΠΊ PM – высота гСомСтричСской Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, ΠΎΠ½Π° пСрпСндикулярна основанию: PM βŸ‚ AB, Ρ‡Ρ‚ΠΎ Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π»ΠΎΡΡŒ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ.

ΠŸΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌ линию m ΠΈ Π½Π΅ Π»Π΅ΠΆΠ°Ρ‰ΡƒΡŽ Π½Π° Π½Π΅ΠΉ Ρ‚ΠΎΡ‡ΠΊΡƒ M. РисуСм ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ с Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ M, ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰ΡƒΡŽ m Π² ΠΏΠ°Ρ€Π΅ Ρ‚ΠΎΡ‡Π΅ΠΊ: A, B.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Π§Π΅Ρ€Ρ‚ΠΈΠΌ окруТности с Ρ†Π΅Π½Ρ‚Ρ€Π°ΠΌΠΈ Π² A ΠΈ B, ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰ΠΈΠ΅ M. Π‘ΠΈΠΌΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΡƒΡŽ Π΅ΠΉ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ прямой m Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ N. Π‘ΠΎΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΈΡ… ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠΌ MN.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Π”ΠΎΠΊΠ°ΠΆΠ΅ΠΌ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½ΠΎΡΡ‚ΡŒ MN Π»ΠΈΠ½ΠΈΠΈ m.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Π’ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°Ρ… ANM с BNM Ρ€Π°Π²Π½Ρ‹ стороны: AN = NB = AM = NB, AB – общая. Если Ρ‚Ρ€ΠΈ стороны Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² Ρ€Π°Π²Π½Ρ‹, Π·Π½Π°Ρ‡ΠΈΡ‚ гСомСтричСскиС Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅: ∠АМБ = βˆ Π’ΠœΠ‘. ΠžΡ‚Ρ€Π΅Π·ΠΊΠΈ MC ΠΈ CN – биссСктрисы Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ², Π³Π΄Π΅ AB – основаниС. Π”Π°Π»Π΅Π΅, исходя ΠΈΠ· свойств Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, MC ΠΈ CN – высоты гСомСтричСской Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, ΠΎΠ½ΠΈ пСрпСндикулярны основанию. ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅Ρ‚ΡΡ, AB βŸ‚ MN.

Π—Π°Π΄Π°Ρ‡Π°

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

ΠœΡ‹ Π΄ΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ CE βŸ‚ a.
ПослСдний шаг: ΠΏΠΎΠΊΠ°ΠΆΠ΅ΠΌ, Ρ‡Ρ‚ΠΎ ΠΈΠ· Ρ‚ΠΎΡ‡ΠΊΠΈ C ΠΊ прямой a нСльзя провСсти Π±ΠΎΠ»Π΅Π΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ пСрпСндикуляра.
ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ: ΠΈΠ· Ρ‚ΠΎΡ‡ΠΊΠΈ Π‘ Π½Π° ΠΏΡ€ΡΠΌΡƒΡŽ a Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡƒΡΡ‚ΠΈΡ‚ΡŒ Π²Ρ‚ΠΎΡ€ΠΎΠΉ пСрпСндикуляр CD1. Π’ΠΎΠ³Π΄Π° ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ β–³CDD1 ΡƒΠΆΠ΅ с ΠΏΠ°Ρ€ΠΎΠΉ прямых ΡƒΠ³Π»ΠΎΠ², Ρ‡Ρ‚ΠΎ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ – Ρƒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Π±ΠΎΠ»Π΅Π΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ прямого ΡƒΠ³Π»Π° Π±Ρ‹Ρ‚ΡŒ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚. Π—Π½Π°Ρ‡ΠΈΡ‚, ΠΈΠ· Ρ‚ΠΎΡ‡ΠΊΠΈ C нСльзя ΠΎΠΏΡƒΡΡ‚ΠΈΡ‚ΡŒ Π±ΠΎΠ»Π΅Π΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ пСрпСндикуляра.
Π˜ΡΡ…ΠΎΠ΄Ρ ΠΈΠ· рассмотрСнного ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°, слСдуСт Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅ свойство Π΄Π²ΡƒΡ… прямых a ΠΈ b, пСрпСндикулярных ΠΊ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ c: ΠΌΠ΅ΠΆΠ΄Ρƒ собой ΠΎΠ½ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹: a||b.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

ΠŸΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ – это ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ, ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰ΠΈΠ΅ΡΡ ΠΏΠΎΠ΄ ΡƒΠ³Π»ΠΎΠΌ 90Β°.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ГСомСтрия. 7 класс

ΠšΠΎΠ½ΡΠΏΠ΅ΠΊΡ‚ ΡƒΡ€ΠΎΠΊΠ°

ΠŸΠ΅Ρ€Π΅Ρ‡Π΅Π½ΡŒ рассматриваСмых вопросов:

Π”Π²Π΅ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰ΠΈΠ΅ΡΡ прямыС Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ пСрпСндикулярными (ΠΈΠ»ΠΈ Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярными), Ссли ΠΎΠ½ΠΈ ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ ΠΏΡ€ΠΈ пСрСсСчСнии Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ прямых ΡƒΠ³Π»Π°.

ВСорСтичСский ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» для ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ изучСния

Π Π°Π½Π΅Π΅ Π²Ρ‹ ΡƒΠΆΠ΅ познакомились с прямыми ΠΈ выяснили, Ρ‡Ρ‚ΠΎ ΠΎΠ½ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°Ρ‚ΡŒΡΡ ΠΈΠ»ΠΈ Π½Π΅ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°Ρ‚ΡŒΡΡ.

БСгодня ΠΌΡ‹ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΠΌ ΠΈΠ·ΡƒΡ‡Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰ΠΈΠ΅ΡΡ прямыС, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡΠ²Π»ΡΡŽΡ‚ΡΡ пСрпСндикулярными.

Π’Π²Π΅Π΄Ρ‘ΠΌ понятиС «пСрпСндикулярныС прямыС».

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Для этого рассмотрим Π΄Π²Π΅ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰ΠΈΠ΅ΡΡ прямыС Π° ΠΈ b. Они ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ Π½Π΅Ρ€Π°Π·Π²Ρ‘Ρ€Π½ΡƒΡ‚Ρ‹Ρ… ΡƒΠ³Π»Π°. Если ΠΎΠ΄ΠΈΠ½ ΠΈΠ· этих ΡƒΠ³Π»ΠΎΠ² Π±ΡƒΠ΄Π΅Ρ‚ прямой, Ρ‚ΠΎ ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Π΅ Ρ‚ΠΎΠΆΠ΅ Π±ΡƒΠ΄ΡƒΡ‚ прямыС, Ρ‚.ΠΊ.

∠1 ΠΈ ∠2 – смСТныС (ΠΏΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ смСТных ΡƒΠ³Π»ΠΎΠ²),

∠1 +∠2=180Β°(ΠΏΠΎ свойству смСТных ΡƒΠ³Π»ΠΎΠ²),

∠1 =∠ 3 = 90Β° – Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ (ΠΏΠΎ свойству Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΠ³Π»ΠΎΠ²),

∠2 =∠ 4 = 90Β° – Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ (ΠΏΠΎ свойству Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΠ³Π»ΠΎΠ²).

Π”Π²Π΅ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰ΠΈΠ΅ΡΡ прямыС Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ пСрпСндикулярными (ΠΈΠ»ΠΈ Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярными), Ссли ΠΎΠ½ΠΈ ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ ΠΏΡ€ΠΈ пСрСсСчСнии Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ прямых ΡƒΠ³Π»Π°.

ΠžΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ пСрпСндикулярных прямых:

ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΠΌ пСрпСндикулярныС прямыС.

Для этого Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡΡ Ρ‡Π΅Ρ€Ρ‚Ρ‘ΠΆΠ½Ρ‹ΠΌ ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠΌ ΠΈ Π»ΠΈΠ½Π΅ΠΉΠΊΠΎΠΉ, ΠΊΠ°ΠΊ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΎ Π½Π° рисункС.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Рассмотрим свойство пСрпСндикулярных прямых.

Π”Π²Π΅ прямыС, пСрпСндикулярныС ΠΊ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ, Π½Π΅ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Рассмотрим прямыС АА1 ΠΈ Π’Π’1, пСрпСндикулярныС ΠΊ прямой Π Q. ΠœΡ‹ΡΠ»Π΅Π½Π½ΠΎ ΠΏΠ΅Ρ€Π΅Π³Π½Π΅ΠΌ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ ΠΏΠΎ прямой Π QΡ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ вСрхняя Ρ‡Π°ΡΡ‚ΡŒ рисунка налоТилась Π½Π° ниТнюю. Π’Π°ΠΊ ΠΊΠ°ΠΊ прямыС ΡƒΠ³Π»Ρ‹ 1 ΠΈ 2 Ρ€Π°Π²Π½Ρ‹, Ρ‚ΠΎ Π»ΡƒΡ‡ РА налоТится Π½Π° Π»ΡƒΡ‡ РА1, Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎ, Π»ΡƒΡ‡ QB налоТится Π½Π° Π»ΡƒΡ‡ QB1.

ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, Ρ‡Ρ‚ΠΎ прямыС АА1 ΠΈ Π’Π’1ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ М.

ΠœΡ‹ΡΠ»Π΅Π½Π½ΠΎ ΠΏΠ΅Ρ€Π΅Π³Π½Π΅ΠΌ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ ΠΏΠΎ прямой Π Q, Ρ‚ΠΎΡ‡ΠΊΠ° М накладываСтся Π½Π° Ρ‚ΠΎΡ‡ΠΊΡƒ М1.

Π§Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ М ΠΈ М1 проходят Π΄Π²Π΅ прямыС АА1 ΠΈ Π’Π’1, Ρ‡Ρ‚ΠΎ Π½Π΅Π²Π΅Ρ€Π½ΠΎ. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ прямыС АА1 ΠΈ Π’Π’1 ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ М, Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ (ΠΏΠΎ аксиомС ΠΎ Π²Π·Π°ΠΈΠΌΠ½ΠΎΠΌ располоТСнии Ρ‚ΠΎΡ‡Π΅ΠΊ ΠΈ прямых), ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, прямыС АА1 ΠΈ Π’Π’1 ΠΎΠ΄ΠΈΠ½ Π½Π΅ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ. Π§Ρ‚ΠΎ ΠΈ Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π»ΠΎΡΡŒ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ.

Π”Π°Π½Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΎΡ‚ ΠΏΡ€ΠΎΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ. Π‘ΡƒΡ‚ΡŒ этого ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°ΡŽΡ‚ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠ΅ Ρ‚ΠΎΠΌΡƒ, Ρ‡Ρ‚ΠΎ трСбуСтся Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ. Π˜ΡΡ…ΠΎΠ΄Ρ ΠΈΠ· прСдполоТСния, ΠΏΡƒΡ‚Ρ‘ΠΌ рассуТдСний приходят ΠΊ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΡŽ.

Π­Ρ‚ΠΈΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ для Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ΠΎ СдинствСнности пСрпСндикуляра ΠΊ прямой.

Из Ρ‚ΠΎΡ‡ΠΊΠΈ, Π½Π΅ Π»Π΅ΠΆΠ°Ρ‰Π΅ΠΉ Π½Π° прямой, ΠΌΠΎΠΆΠ½ΠΎ провСсти Π½Π΅ Π±ΠΎΠ»Π΅Π΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ пСрпСндикуляра ΠΊ этой прямой.

Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ. ΠŸΡƒΡΡ‚ΡŒΡ‚ΠΎΡ‡ΠΊΠ° Π½Π΅ Π»Π΅ΠΆΠΈΡ‚ Π½Π° Π΄Π°Π½Π½ΠΎΠΉ прямой a. Π”ΠΎΠΊΠ°ΠΆΠ΅ΠΌ, Ρ‡Ρ‚ΠΎ ΠΈΠ· Ρ‚ΠΎΡ‡ΠΊΠΈ A нСльзя провСсти Π΄Π²Π° пСрпСндикуляра ΠΊ прямой a. ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, Ρ‡Ρ‚ΠΎ ΠΈΠ· Ρ‚ΠΎΡ‡ΠΊΠΈ A ΠΌΠΎΠΆΠ½ΠΎ провСсти Π΄Π²Π° пСрпСндикуляра AH ΠΈ AK ΠΊ прямой a. ΠœΡ‹ΡΠ»Π΅Π½Π½ΠΎ ΠΏΠ΅Ρ€Π΅Π³Π½Π΅ΠΌ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ ΠΏΠΎ прямойaΡ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ»ΡƒΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ с Π³Ρ€Π°Π½ΠΈΡ†Π΅ΠΉ a, содСрТащая Ρ‚ΠΎΡ‡ΠΊΡƒ A, налоТилась Π½Π° Π΄Ρ€ΡƒΠ³ΡƒΡŽ ΠΏΠΎΠ»ΡƒΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ. ΠŸΡ€ΠΈ этом Ρ‚ΠΎΡ‡ΠΊΠΈ H ΠΈ K ΠΎΡΡ‚Π°ΡŽΡ‚ΡΡ Π½Π° мСстС, Ρ‚ΠΎΡ‡ΠΊΠ° A накладываСтся Π½Π° Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ B. ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅Ρ‚ΡΡ, Ρ‡Ρ‚ΠΎ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ AH ΠΈ AK Π½Π°ΠΊΠ»Π°Π΄Ρ‹Π²Π°ΡŽΡ‚ΡΡ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ BH ΠΈ BK.

Π£Π³Π»Ρ‹ AHB ΠΈ AKB – Ρ€Π°Π·Π²Π΅Ρ€Π½ΡƒΡ‚Ρ‹Π΅, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΈΠ· Π½ΠΈΡ… Ρ€Π°Π²Π΅Π½ суммС Π΄Π²ΡƒΡ… прямых ΡƒΠ³Π»ΠΎΠ². ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Ρ‚ΠΎΡ‡ΠΊΠΈ A, H ΠΈ B Π»Π΅ΠΆΠ°Ρ‚ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ прямой, ΠΈ Ρ‚Π°ΠΊΠΆΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ A, K ΠΈ B Π»Π΅ΠΆΠ°Ρ‚ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ прямой.

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΌΡ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ, Ρ‡Ρ‚ΠΎ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ A ΠΈ B проходят Π΄Π²Π΅ прямыС AH ΠΈ AK. Но это Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ (ΠΏΠΎ аксиомС ΠΎ Π²Π·Π°ΠΈΠΌΠ½ΠΎΠΌ располоТСнии Ρ‚ΠΎΡ‡Π΅ΠΊ ΠΈ прямых). Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΈΠ· Ρ‚ΠΎΡ‡ΠΊΠΈ A ΠΌΠΎΠΆΠ½ΠΎ провСсти СдинствСнный пСрпСндикуляр ΠΊ прямой Π°.

Π˜Ρ‚Π°ΠΊ, сСгодня ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ прСдставлСниС ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС, рассмотрСли свойства пСрпСндикулярных прямых, Π½Π°ΡƒΡ‡ΠΈΠ»ΠΈΡΡŒ ΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Ρ‚ΡŒ пСрпСндикулярныС прямыС, ΡƒΠ·Π½Π°Π»ΠΈ ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° ΠΎΡ‚ ΠΏΡ€ΠΎΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ.

Рассмотрим Π±ΠΎΠ»Π΅Π΅ слоТный ΠΌΠ΅Ρ‚ΠΎΠ΄ построСния прямых ΡƒΠ³Π»ΠΎΠ² Π½Π° мСстности.

Для построСния прямых ΡƒΠ³Π»ΠΎΠ² Π½Π° мСстности ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΡ€ΠΈΠ±ΠΎΡ€Ρ‹, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Ρ‚Π΅ΠΎΠ΄ΠΎΠ»ΠΈΡ‚ (Π² Π³Π΅ΠΎΠ΄Π΅Π·ΠΈΠΈ).

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Но самый простой ΠΏΡ€ΠΈΠ±ΠΎΡ€ для построСния прямых ΡƒΠ³Π»ΠΎΠ² Π½Π° мСстности – это экСр. Он состоит ΠΈΠ· Π΄Π²ΡƒΡ… брусков располоТСнных ΠΏΠΎΠ΄ ΡƒΠ³Π»ΠΎΠΌ 90Β° ΠΈ ΡƒΠΊΡ€Π΅ΠΏΠ»Ρ‘Π½Π½Ρ‹Ρ… Π½Π° Ρ‚Ρ€Π΅Π½ΠΎΠΆΠ½ΠΈΠΊΠ΅. На ΠΊΠΎΠ½Ρ†Π°Ρ… брусков Π²Π±ΠΈΡ‚Ρ‹ Π³Π²ΠΎΠ·Π΄ΠΈΡ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎ прямыС, проходящиС Ρ‡Π΅Ρ€Π΅Π· Π½ΠΈΡ…, пСрпСндикулярны. Рассмотрим, ΠΊΠ°ΠΊ с Π΅Π³ΠΎ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ прямыС ΡƒΠ³Π»Ρ‹. На Π·Π°Π΄Π°Π½Π½ΠΎΠΌ Π»ΡƒΡ‡Π΅, Π² нашСм случаС ОА, ΡƒΡΡ‚Π°Π½Π°Π²Π»ΠΈΠ²Π°ΡŽΡ‚ экСр Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎ отвСс находится Ρ‚ΠΎΡ‡Π½ΠΎ Π½Π°Π΄ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉΠž, Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· брусков совпадаСт с Π»ΡƒΡ‡ΠΎΠΌ ОА, совмСщСниС ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ‚ ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²ΠΈΡ‚ΡŒ Π²Π΅Ρ…Π°, поставлСнная Π½Π° Π»ΡƒΡ‡Π΅ ОА. Π”Π°Π»Π΅Π΅ ΠΏΡ€ΠΎΠ²Π΅ΡˆΠΈΠ²Π°ΡŽΡ‚ ΠΏΡ€ΡΠΌΡƒΡŽ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ бруска, получаСтся βˆ ΠΠžΠ’ =90Β°.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

1. ΠŸΡ€ΡΠΌΡ‹Π΅ БА ΠΈ Π’D Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны ΠΈ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ О. Π›ΡƒΡ‡ ОК – ΠΏΡ€ΠΎΠ²Π΅Π΄Ρ‘Π½ ΠΈΠ· Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ прямого ΡƒΠ³Π»Π° ΠΠžΠ’, Ρ‚Π°ΠΊ Ρ‡Ρ‚ΠΎβˆ ΠšΠžΠ’ = 52Β°. НайдитС Π³Ρ€Π°Π΄ΡƒΡΠ½ΡƒΡŽ ΠΌΠ΅Ρ€Ρƒ ∠АОК.

РСшСниС: нарисуСм рисунок, исходя ΠΈΠ· условия Π·Π°Π΄Π°Ρ‡ΠΈ:

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

2. ΠŸΡ€ΡΠΌΡ‹Π΅ БО ΠΈ ОD Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны, Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ βˆ ΠœΠžΠ’, Ссли ∠МОА = ∠БОА = 25Β°, βˆ Π’ΠžD= βˆ ΠœΠžΠ’.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

РСшСниС. Π’.ΠΊ. прямыС БО ΠΈ ОD Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны, Ρ‚ΠΎ ∠БОD = 90Β°

По ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ Π·Π°Π΄Π°Ρ‡ΠΈ, ∠МОА = ∠БОА = 25Β°, βˆ Π’ΠžD = βˆ ΠœΠžΠ’.

∠ БОD = ∠МОА + ∠БОА + βˆ Π’ΠžD + βˆ ΠœΠžΠ’ = 25Β° + 25Β° +2Β·βˆ ΠœΠžΠ’ = 50Β° + 2 Β· βˆ ΠœΠžΠ’ = 90Β°

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠŸΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹Π΅ прямыС β€” основныС свойства, ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ ΠΈ ΠΏΡ€Π°Π²ΠΈΠ»Π° построСния

Π’ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ распространСно понятиС прямых. Они ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ΡΡ двумя большими латинскими Π±ΡƒΠΊΠ²Π°ΠΌΠΈ ΠΈΠ»ΠΈ ΠΎΠ΄Π½ΠΎΠΉ малСнькой. ΠŸΡ€ΠΈ построСнии Π»ΠΈΠ½ΠΈΠΈ ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°Ρ‚ΡŒΡΡ ΠΈ ΠΈΠΌΠ΅Ρ‚ΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄Π½Ρƒ ΠΎΠ±Ρ‰ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ. Π’Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныС прямыС находятся ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π΄Ρ€ΡƒΠ³ Π΄Ρ€ΡƒΠ³Π° ΠΏΠΎΠ΄ ΡƒΠ³Π»ΠΎΠΌ 90Β°. ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ проводится ΠΏΡ€ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… инструмСнтов.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ свойства

ΠŸΡ€ΠΈ рассмотрСнии Ρ‚ΠΎΠ³ΠΎ, ΠΊΠ°ΠΊΠΈΠ΅ прямыС Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ пСрпСндикулярными, Π½ΡƒΠΆΠ½ΠΎ ΡƒΠ΄Π΅Π»ΠΈΡ‚ΡŒ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ свойствам. Они выглядят ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Для обозначСния пСрпСндикуляра примСняСтся Π·Π½Π°ΠΊ Β«βŠ₯Β». Π’ ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠΌ случаС ΡƒΠ³ΠΎΠ» составляСт 90Β°. На Ρ‡Π΅Ρ€Ρ‚Π΅ΠΆΠ΅ пСрСсСчСниС обозначаСтся своСобразным ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠΌ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ рисуСтся ΠΎΡ‚ Π΄Π²ΡƒΡ… ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰ΠΈΡ…ΡΡ Π»ΠΈΠ½ΠΈΠΉ.

Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ³ΠΎ располоТСния

РассматриваСмый Ρ‚Π΅Ρ€ΠΌΠΈΠ½ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ» ΡˆΠΈΡ€ΠΎΠΊΠΎΠ΅ распространСниС, ΠΎΠ½ Ρ„ΠΈΠ³ΡƒΡ€ΠΈΡ€ΡƒΠ΅Ρ‚ практичСски Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ гСомСтричСской Π·Π°Π΄Π°Ρ‡Π΅. Π’ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… случаях ΠΎ Π²Π·Π°ΠΈΠΌΠ½ΠΎΠΌ располоТСнии извСстно, Π² Π΄Ρ€ΡƒΠ³ΠΈΡ… это Π½ΡƒΠΆΠ½ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ. Π—Π°Π΄Π°Ρ‡Π° Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ прямого ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ двумя прямыми ΠΈΠ»ΠΈ плоскостями. НСобходимоС ΠΈ достаточноС условиС пСрпСндикулярности Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅:

Для опрСдСлСния располоТСния плоскостСй ΠΈΠ»ΠΈ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ² ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π΄Ρ€ΡƒΠ³ Π΄Ρ€ΡƒΠ³Π° слСдуСт провСсти гСомСтричСскоС построСниС. ΠŸΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ Π΄ΠΎΠ»ΠΆΠ½Ρ‹ Π² ΠΎΠ΄Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ пСрпСндикулярности прямой ΠΈ плоскости

Рассматривая ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ пСрпСндикулярных прямых слСдуСт ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠ΅ свойство ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌΠΎ ΠΊ плоскости. Основной ΠΏΡ€ΠΈΠ·Π½Π°ΠΊ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² пСрпСндикулярности ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° ΠΊ Π»ΡŽΠ±ΠΎΠΌΡƒ Π΄Ρ€ΡƒΠ³ΠΎΠΌΡƒ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ находится Π² плоскости. ΠŸΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½ΠΎΡΡ‚ΡŒ прямых Π² пространствС указываСтся ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΌ Π·Π½Π°ΠΊΠΎΠΌ.

Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½ΠΎΡΡ‚ΡŒ ΠΌΠΎΠΆΠ½ΠΎ провСдя гСомСтричСскиС построСния. ΠŸΡ€ΠΈΠ·Π½Π°ΠΊΠΈ располоТСния плоскости ΠΈ прямой ΠΏΠΎΠ΄ ΡƒΠ³Π»ΠΎΠΌ 90Β° Π·Π°ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‚ΡΡ Π² ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΌ:

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

ΠžΡ‚Ρ€Π΅Π·ΠΊΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ. Π’ этом случаС Π½Π΅Ρ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π±ΡƒΠ΄ΡƒΡ‚ ΠΎΠ½ΠΈ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°Ρ‚ΡŒΡΡ.

ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ пСрпСндикуляра

Π’Ρ‹Π΄Π΅Ρ€ΠΆΠ°Ρ‚ΡŒ ΡƒΠ³Π»ΠΎΠ²ΠΎΠΉ коэффициСнт ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ. Π’ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π΅ случаСв для этого Π½ΡƒΠΆΠ½ΠΎ ΠΈΠΌΠ΅Ρ‚ΡŒ ΠΏΡ€ΠΈ сСбС Ρ†ΠΈΡ€ΠΊΡƒΠ»ΡŒ. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ пСрпСндикуляр ΠΌΠΎΠΆΠ½ΠΎ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

БущСствСнно ΡƒΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ Π·Π°Π΄Π°Ρ‡Ρƒ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡƒΡ‚Π΅ΠΌ примСнСния ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‡Π΅Ρ€Ρ‚Π΅ΠΆΠ½ΠΎΠ³ΠΎ инструмСнта, ΠΊ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρƒ, любого ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Он ΠΌΠΎΠΆΠ΅Ρ‚ Π½Π°Π·Ρ‹Π²Π°Ρ‚ΡŒΡΡ ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠΌ, основной Π΅Π³ΠΎ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² Π½Π°Π»ΠΈΡ‡ΠΈΠΈ Π΄Π²ΡƒΡ… пСрпСндикулярных плоскостСй. ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ проводится ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Π’ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ Ρ‡Π°Ρ‰Π΅ всСго примСняСтся ΠΈΠΌΠ΅Π½Π½ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΉ способ. Однако ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ ΡƒΡ€ΠΎΠΊ позволяСт Π½Π°Ρ‡Π΅Ρ€Ρ‚ΠΈΡ‚ΡŒ Π΄Π²Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярных ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° с высокой Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ. НСдостаток примСнСния циркуля Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² Π½Π°Π»ΠΈΡ‡ΠΈΠΈ Π²ΡΠΏΠΎΠΌΠΎΠ³Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π»ΠΈΠ½ΠΈΠΉ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡΡ‚Π΅Ρ€Π΅Ρ‚ΡŒ слоТно. ΠΠ°ΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎ Π²Π·Π°ΠΈΠΌΠ½ΠΎΠΌ располоТСнии Π»ΠΈΠ½ΠΈΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π² ΠΎΠΏΠΈΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ запискС.

Π’Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠ΅ пространство

Π’ Π½Π°Ρ‡Π΅Ρ€Ρ‚Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ Π»ΠΈΠ½ΠΈΠΈ всСгда находятся Π² Π΄Π²ΡƒΡ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС. Π’ ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°Ρ… ΠΌΠΎΠΆΠ½ΠΎ Π½Π°Ρ‡Π΅Ρ€Ρ‚ΠΈΡ‚ΡŒ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ Π² Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС. ПодобноС Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ΅ располоТСниС ΠΌΠΎΠΆΠ΅Ρ‚ Π²Ρ‹Π³Π»ΡΠ΄Π΅Ρ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Π’ ΠΆΠΈΠ·Π½ΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠ΅ располоТСниС прямых встрСчаСтся ΠΊΡ€Π°ΠΉΠ½Π΅ часто. ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ ΡƒΠ³ΠΎΠ» ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… инструмСнтов.

ЧСтырСхмСрная систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΈ Π»Π΅ΠΌΠΌΠ°

НСкоторыС ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹ Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‚ с Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½Ρ‹ΠΌ пространством. Π’Π·Π°ΠΈΠΌΠ½ΠΎΠ΅ располоТСниС плоскостСй ΠΏΠΎΠ΄ прямым ΡƒΠ³Π»ΠΎΠΌ Π² этом случаС ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π²Π° смысла: ΠΎΠ½ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ пСрпСндикулярны Π² Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ смыслС ΠΏΡ€ΠΈ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΈ Π΄Π²ΡƒΠ³Ρ€Π°Π½Π½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π° 90Β°.

Π Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒΡΡ Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ΅ располоТСниС плоскостСй ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈ Π² 4-ΠΌΠ΅Ρ€Π½ΠΎΠΌ смыслС. Условия выглядят ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Условия Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ пространства ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ Ρ‡Π΅Ρ€Π΅Π· ΠΎΠ΄Π½Ρƒ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΎΠΆΠ½ΠΎ провСсти 6 Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярных плоскостСй. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΡΡ‚ΡŒ ΠΈΡ… Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ΅ располоТСниС ΠΌΠΎΠΆΠ½ΠΎ нСсколькими Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ способами.

Π›Π΅ΠΌΠΌΠ°, ΠΊΠ°ΡΠ°ΡŽΡ‰Π°ΡΡΡ пСрпСндикулярности, связана с ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ. Если ΠΎΠ΄Π½Π° ΠΈΠ· ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… Π»ΠΈΠ½ΠΈΠΉ располоТСна ΠΏΠΎΠ΄ прямым ΡƒΠ³Π»ΠΎΠΌ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ плоскости ΠΈΠ»ΠΈ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°, Ρ‚ΠΎ вторая Ρ‚Π°ΠΊΠΆΠ΅ пСрпСндикулярна. ΠžΡ‚Π²Π΅Ρ‚ Π½Π° ΠΌΠ½ΠΎΠ³ΠΈΠ΅ Π·Π°Π΄Π°Ρ‡ΠΈ связан с Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎΠΌ Π»Π΅ΠΌΠΌΡ‹:

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

ΠŸΡ€ΠΈ соблюдСнии условий ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ ΡƒΠ³ΠΎΠ» Π±ΡƒΠ΄Π΅Ρ‚ ΡΠ²Π»ΡΡ‚ΡŒΡΡ прямым. Π‘ ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… построСний ΠΌΠΎΠΆΠ½ΠΎ ΡΡ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ пСрпСндикулярности ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ².

ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Как Ρ€Π°Π½Π΅Π΅ Π±Ρ‹Π»ΠΎ ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½ΠΎ, встрСчаСтся большоС количСство ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ² примСнСния рассматриваСмого Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°. На основС Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ ΠΈ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° Π±Ρ‹Π»ΠΈ созданы Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΡ‚ΡΠΆΠ΅Π½Π½ΠΎΡΡ‚ΡŒ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· сторон гСомСтричСской Ρ„ΠΈΠ³ΡƒΡ€Ρ‹.

Π’ срСдних ΠΈ ΡΡ‚Π°Ρ€ΡˆΠΈΡ… классах встрСчаСтся большоС количСство Π·Π°Π΄Π°Ρ‡, связанных с ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ ΡƒΠ³Π»Π° ΠΈ протяТСнности сторон построСнной Ρ„ΠΈΠ³ΡƒΡ€Ρ‹. Π’ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… случаях проводится построСниС Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ, которая Π΄Π΅Π»ΠΈΡ‚ 90Β° Π½Π° Π΄Π²Π΅ Ρ€Π°Π²Π½Ρ‹Π΅ части.

Π’ ΠΆΠΈΠ·Π½ΠΈ Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ΅ пСрпСндикулярноС располоТСниС плоскостСй встрСчаСтся ΠΊΡ€Π°ΠΉΠ½Π΅ часто. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ слуТат нСсущиС элСмСнты Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… сооруТСний. ПодобноС располоТСниС позволяСт ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ Ρ€Π°ΡΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅ΠΌΡƒΡŽ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΡƒ. ΠŸΡ€Π°Π²ΠΈΡ‚ΡŒ Π½Π°ΠΊΠ»ΠΎΠ½ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡƒΡ‚Π΅ΠΌ примСнСния ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… инструмСнтов.

МногиС гСомСтричСскиС Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ построСны Π½Π° основС пСрпСндикулярного располоТСния ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ². НаиболСС распространСн ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌ ΠΈΠ»ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚, Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ. Π—Π° счСт выдСрТивания ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π° обСспСчиваСтся Ρ‚Π°ΠΊΠΆΠ΅ Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠ΅ располоТСниС сторон.

ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Π°Ρ Π²Ρ‹ΡˆΠ΅ информация ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡƒΠ³Π»Π°, ΠΏΠΎΠ΄ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ располоТСны плоскости, проводится Π² самых Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… сфСрах. Π˜Π½ΠΆΠ΅Π½Π΅Ρ€Ρ‹ ΠΈ строитСли Π΄ΠΎΠ»ΠΆΠ½Ρ‹ с высокой Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ этот ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ свойства

ΠŸΡ€ΠΈ рассмотрСнии Ρ‚ΠΎΠ³ΠΎ, ΠΊΠ°ΠΊΠΈΠ΅ прямыС Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ пСрпСндикулярными, Π½ΡƒΠΆΠ½ΠΎ ΡƒΠ΄Π΅Π»ΠΈΡ‚ΡŒ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ свойствам. Они выглядят ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Для обозначСния пСрпСндикуляра примСняСтся Π·Π½Π°ΠΊ Β«βŠ₯». Π’ ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠΌ случаС ΡƒΠ³ΠΎΠ» составляСт 90Β°. На Ρ‡Π΅Ρ€Ρ‚Π΅ΠΆΠ΅ пСрСсСчСниС обозначаСтся своСобразным ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠΌ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ рисуСтся ΠΎΡ‚ Π΄Π²ΡƒΡ… ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰ΠΈΡ…ΡΡ Π»ΠΈΠ½ΠΈΠΉ.

Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ³ΠΎ располоТСния

РассматриваСмый Ρ‚Π΅Ρ€ΠΌΠΈΠ½ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ» ΡˆΠΈΡ€ΠΎΠΊΠΎΠ΅ распространСниС, ΠΎΠ½ Ρ„ΠΈΠ³ΡƒΡ€ΠΈΡ€ΡƒΠ΅Ρ‚ практичСски Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ гСомСтричСской Π·Π°Π΄Π°Ρ‡Π΅. Π’ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… случаях ΠΎ Π²Π·Π°ΠΈΠΌΠ½ΠΎΠΌ располоТСнии извСстно, Π² Π΄Ρ€ΡƒΠ³ΠΈΡ… это Π½ΡƒΠΆΠ½ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ. Π—Π°Π΄Π°Ρ‡Π° Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ прямого ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ двумя прямыми ΠΈΠ»ΠΈ плоскостями. НСобходимоС ΠΈ достаточноС условиС пСрпСндикулярности Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅:

Для опрСдСлСния располоТСния плоскостСй ΠΈΠ»ΠΈ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ² ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π΄Ρ€ΡƒΠ³ Π΄Ρ€ΡƒΠ³Π° слСдуСт провСсти гСомСтричСскоС построСниС. ΠŸΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ Π΄ΠΎΠ»ΠΆΠ½Ρ‹ Π² ΠΎΠ΄Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ пСрпСндикулярности прямой ΠΈ плоскости

Рассматривая ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ пСрпСндикулярных прямых слСдуСт ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠ΅ свойство ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌΠΎ ΠΊ плоскости. Основной ΠΏΡ€ΠΈΠ·Π½Π°ΠΊ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² пСрпСндикулярности ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° ΠΊ Π»ΡŽΠ±ΠΎΠΌΡƒ Π΄Ρ€ΡƒΠ³ΠΎΠΌΡƒ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ находится Π² плоскости. ΠŸΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½ΠΎΡΡ‚ΡŒ прямых Π² пространствС указываСтся ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΌ Π·Π½Π°ΠΊΠΎΠΌ.

Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½ΠΎΡΡ‚ΡŒ ΠΌΠΎΠΆΠ½ΠΎ провСдя гСомСтричСскиС построСния. ΠŸΡ€ΠΈΠ·Π½Π°ΠΊΠΈ располоТСния плоскости ΠΈ прямой ΠΏΠΎΠ΄ ΡƒΠ³Π»ΠΎΠΌ 90Β° Π·Π°ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‚ΡΡ Π² ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΌ:

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

ΠžΡ‚Ρ€Π΅Π·ΠΊΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ. Π’ этом случаС Π½Π΅Ρ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π±ΡƒΠ΄ΡƒΡ‚ ΠΎΠ½ΠΈ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°Ρ‚ΡŒΡΡ.

ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ пСрпСндикуляра

Π’Ρ‹Π΄Π΅Ρ€ΠΆΠ°Ρ‚ΡŒ ΡƒΠ³Π»ΠΎΠ²ΠΎΠΉ коэффициСнт ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ. Π’ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π΅ случаСв для этого Π½ΡƒΠΆΠ½ΠΎ ΠΈΠΌΠ΅Ρ‚ΡŒ ΠΏΡ€ΠΈ сСбС Ρ†ΠΈΡ€ΠΊΡƒΠ»ΡŒ. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ пСрпСндикуляр ΠΌΠΎΠΆΠ½ΠΎ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

БущСствСнно ΡƒΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ Π·Π°Π΄Π°Ρ‡Ρƒ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡƒΡ‚Π΅ΠΌ примСнСния ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‡Π΅Ρ€Ρ‚Π΅ΠΆΠ½ΠΎΠ³ΠΎ инструмСнта, ΠΊ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρƒ, любого ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Он ΠΌΠΎΠΆΠ΅Ρ‚ Π½Π°Π·Ρ‹Π²Π°Ρ‚ΡŒΡΡ ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠΌ, основной Π΅Π³ΠΎ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² Π½Π°Π»ΠΈΡ‡ΠΈΠΈ Π΄Π²ΡƒΡ… пСрпСндикулярных плоскостСй. ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ проводится ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Π’ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ Ρ‡Π°Ρ‰Π΅ всСго примСняСтся ΠΈΠΌΠ΅Π½Π½ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΉ способ. Однако ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ ΡƒΡ€ΠΎΠΊ позволяСт Π½Π°Ρ‡Π΅Ρ€Ρ‚ΠΈΡ‚ΡŒ Π΄Π²Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярных ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° с высокой Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ. НСдостаток примСнСния циркуля Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² Π½Π°Π»ΠΈΡ‡ΠΈΠΈ Π²ΡΠΏΠΎΠΌΠΎΠ³Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π»ΠΈΠ½ΠΈΠΉ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡΡ‚Π΅Ρ€Π΅Ρ‚ΡŒ слоТно. ΠΠ°ΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎ Π²Π·Π°ΠΈΠΌΠ½ΠΎΠΌ располоТСнии Π»ΠΈΠ½ΠΈΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π² ΠΎΠΏΠΈΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ запискС.

Π’Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠ΅ пространство

Π’ Π½Π°Ρ‡Π΅Ρ€Ρ‚Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ Π»ΠΈΠ½ΠΈΠΈ всСгда находятся Π² Π΄Π²ΡƒΡ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС. Π’ ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°Ρ… ΠΌΠΎΠΆΠ½ΠΎ Π½Π°Ρ‡Π΅Ρ€Ρ‚ΠΈΡ‚ΡŒ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ Π² Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС. ПодобноС Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ΅ располоТСниС ΠΌΠΎΠΆΠ΅Ρ‚ Π²Ρ‹Π³Π»ΡΠ΄Π΅Ρ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Π’ ΠΆΠΈΠ·Π½ΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠ΅ располоТСниС прямых встрСчаСтся ΠΊΡ€Π°ΠΉΠ½Π΅ часто. ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ ΡƒΠ³ΠΎΠ» ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… инструмСнтов.

ЧСтырСхмСрная систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΈ Π»Π΅ΠΌΠΌΠ°

НСкоторыС ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹ Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‚ с Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½Ρ‹ΠΌ пространством. Π’Π·Π°ΠΈΠΌΠ½ΠΎΠ΅ располоТСниС плоскостСй ΠΏΠΎΠ΄ прямым ΡƒΠ³Π»ΠΎΠΌ Π² этом случаС ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π²Π° смысла: ΠΎΠ½ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ пСрпСндикулярны Π² Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ смыслС ΠΏΡ€ΠΈ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΈ Π΄Π²ΡƒΠ³Ρ€Π°Π½Π½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π° 90Β°.

Π Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒΡΡ Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ΅ располоТСниС плоскостСй ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈ Π² 4-ΠΌΠ΅Ρ€Π½ΠΎΠΌ смыслС. Условия выглядят ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Условия Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ пространства ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ Ρ‡Π΅Ρ€Π΅Π· ΠΎΠ΄Π½Ρƒ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΎΠΆΠ½ΠΎ провСсти 6 Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярных плоскостСй. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΡΡ‚ΡŒ ΠΈΡ… Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ΅ располоТСниС ΠΌΠΎΠΆΠ½ΠΎ нСсколькими Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ способами.

Π›Π΅ΠΌΠΌΠ°, ΠΊΠ°ΡΠ°ΡŽΡ‰Π°ΡΡΡ пСрпСндикулярности, связана с ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ. Если ΠΎΠ΄Π½Π° ΠΈΠ· ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… Π»ΠΈΠ½ΠΈΠΉ располоТСна ΠΏΠΎΠ΄ прямым ΡƒΠ³Π»ΠΎΠΌ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ плоскости ΠΈΠ»ΠΈ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°, Ρ‚ΠΎ вторая Ρ‚Π°ΠΊΠΆΠ΅ пСрпСндикулярна. ΠžΡ‚Π²Π΅Ρ‚ Π½Π° ΠΌΠ½ΠΎΠ³ΠΈΠ΅ Π·Π°Π΄Π°Ρ‡ΠΈ связан с Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎΠΌ Π»Π΅ΠΌΠΌΡ‹:

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

ΠŸΡ€ΠΈ соблюдСнии условий ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ ΡƒΠ³ΠΎΠ» Π±ΡƒΠ΄Π΅Ρ‚ ΡΠ²Π»ΡΡ‚ΡŒΡΡ прямым. Π‘ ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… построСний ΠΌΠΎΠΆΠ½ΠΎ ΡΡ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ пСрпСндикулярности ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ².

ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Как Ρ€Π°Π½Π΅Π΅ Π±Ρ‹Π»ΠΎ ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½ΠΎ, встрСчаСтся большоС количСство ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ² примСнСния рассматриваСмого Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°. На основС Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ ΠΈ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° Π±Ρ‹Π»ΠΈ созданы Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΡ‚ΡΠΆΠ΅Π½Π½ΠΎΡΡ‚ΡŒ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· сторон гСомСтричСской Ρ„ΠΈΠ³ΡƒΡ€Ρ‹.

Π’ срСдних ΠΈ ΡΡ‚Π°Ρ€ΡˆΠΈΡ… классах встрСчаСтся большоС количСство Π·Π°Π΄Π°Ρ‡, связанных с ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ ΡƒΠ³Π»Π° ΠΈ протяТСнности сторон построСнной Ρ„ΠΈΠ³ΡƒΡ€Ρ‹. Π’ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… случаях проводится построСниС Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ, которая Π΄Π΅Π»ΠΈΡ‚ 90Β° Π½Π° Π΄Π²Π΅ Ρ€Π°Π²Π½Ρ‹Π΅ части.

Π’ ΠΆΠΈΠ·Π½ΠΈ Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ΅ пСрпСндикулярноС располоТСниС плоскостСй встрСчаСтся ΠΊΡ€Π°ΠΉΠ½Π΅ часто. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ слуТат нСсущиС элСмСнты Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… сооруТСний. ПодобноС располоТСниС позволяСт ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ Ρ€Π°ΡΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅ΠΌΡƒΡŽ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΡƒ. ΠŸΡ€Π°Π²ΠΈΡ‚ΡŒ Π½Π°ΠΊΠ»ΠΎΠ½ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡƒΡ‚Π΅ΠΌ примСнСния ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… инструмСнтов.

МногиС гСомСтричСскиС Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ построСны Π½Π° основС пСрпСндикулярного располоТСния ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ². НаиболСС распространСн ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌ ΠΈΠ»ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚, Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ. Π—Π° счСт выдСрТивания ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π° обСспСчиваСтся Ρ‚Π°ΠΊΠΆΠ΅ Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠ΅ располоТСниС сторон.

ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Π°Ρ Π²Ρ‹ΡˆΠ΅ информация ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡƒΠ³Π»Π°, ΠΏΠΎΠ΄ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ располоТСны плоскости, проводится Π² самых Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… сфСрах. Π˜Π½ΠΆΠ΅Π½Π΅Ρ€Ρ‹ ΠΈ строитСли Π΄ΠΎΠ»ΠΆΠ½Ρ‹ с высокой Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ этот ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ГСомСтрия. 7 класс

ΠšΠΎΠ½ΡΠΏΠ΅ΠΊΡ‚ ΡƒΡ€ΠΎΠΊΠ°

ΠŸΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΈ пСрпСндикулярныС прямыС

ΠŸΠ΅Ρ€Π΅Ρ‡Π΅Π½ΡŒ рассматриваСмых вопросов:

ΠŸΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ прямыС – Π΄Π²Π΅ прямыС Π½Π° плоскости Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ, Ссли ΠΎΠ½ΠΈ Π½Π΅ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ.

ΠŸΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹Π΅ прямыС – Π΄Π²Π΅ прямыС Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ пСрпСндикулярными, Ссли ΠΏΡ€ΠΈ пСрСсСчСнии ΠΎΠ½ΠΈ ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ прямых ΡƒΠ³Π»Π°.

ВСорСтичСский ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» для ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ изучСния.

Π’Π·Π°ΠΈΠΌΠ½ΠΎΠ΅ располоТСниС Π΄Π²ΡƒΡ… прямых Π½Π° плоскости.

ВспомнитС, ΠΊΠ°ΠΊ ΠΌΠΎΠ³ΡƒΡ‚ Ρ€Π°ΡΠΏΠΎΠ»Π°Π³Π°Ρ‚ΡŒΡΡ Π½Π° плоскости Π΄Π²Π΅ прямыС.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Π”Π²Π΅ прямыС Π½Π° плоскости Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ, Ссли ΠΎΠ½ΠΈ Π½Π΅ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ.

Аксиома ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… прямых: Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ, Π½Π΅ Π»Π΅ΠΆΠ°Ρ‰ΡƒΡŽ Π½Π° Π΄Π°Π½Π½ΠΎΠΉ прямой, ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄Π½Π° прямая, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π°Ρ Π΄Π°Π½Π½ΠΎΠΉ.

Π£Π³Π»Ρ‹, ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Π΅ Π½Π° рисункС:

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

НакрСст Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅: 3 ΠΈ 5; 4 ΠΈ 6.

БоотвСтствСнныС: 1 ΠΈ 5; 2 ΠΈ 6; 3 ΠΈ 8; 4 ΠΈ 7.

ΠžΠ΄Π½ΠΎΡΡ‚ΠΎΡ€ΠΎΠ½Π½ΠΈΠ΅: 3 ΠΈ 6; 4 ΠΈ 5.

ΠŸΡ€ΠΈΠ·Π½Π°ΠΊΠΈ ΠΈ свойства ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… прямых.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Если ΠΏΡ€ΠΈ пСрСсСчСнии Π΄Π²ΡƒΡ… прямых сСкущСй накрСст Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ ΡƒΠ³Π»Ρ‹ Ρ€Π°Π²Π½Ρ‹, Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Если ΠΏΡ€ΠΈ пСрСсСчСнии Π΄Π²ΡƒΡ… прямых сСкущСй соотвСтствСнныС ΡƒΠ³Π»Ρ‹ Ρ€Π°Π²Π½Ρ‹, Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Если ΠΏΡ€ΠΈ пСрСсСчСнии Π΄Π²ΡƒΡ… прямых сСкущСй сумма односторонних ΡƒΠ³Π»ΠΎΠ² Ρ€Π°Π²Π½Π° 180Β°, Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹.

Π­Ρ‚ΠΎ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ прямых. ΠžΠ±Ρ€Π°Ρ‚Π½Ρ‹Π΅ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ Π²Π΅Ρ€Π½Ρ‹ ΠΈ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ свойства ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… прямых.

Бпособ построСния ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… прямых:

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Аксиома ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… прямых.

Π§Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ, Π½Π΅ Π»Π΅ΠΆΠ°Ρ‰ΡƒΡŽ Π½Π° Π΄Π°Π½Π½ΠΎΠΉ прямой, ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄Π½Π° прямая, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π°Ρ Π΄Π°Π½Π½ΠΎΠΉ.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈΡ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Если прямая пСрСсСкаСт ΠΎΠ΄Π½Ρƒ ΠΈΠ· Π΄Π²ΡƒΡ… ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… прямых, Ρ‚ΠΎ ΠΎΠ½Π° пСрСсСкаСт ΠΈ Π΄Ρ€ΡƒΠ³ΡƒΡŽ.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Если Π΄Π²Π΅ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ, Ρ‚ΠΎ ΠΎΠ½ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹.

Если Π΄Π²Π΅ прямыС, ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡΡΡŒ, ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ прямых ΡƒΠ³Π»Π°, ΠΎΠ½ΠΈ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ пСрпСндикулярными.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

ΠŸΡ€ΡΠΌΡ‹Π΅ Π° ΠΈ b Π½Π° рисункС пСрпСндикулярны: Π° ⏊ b.

Π§Π΅Ρ€Π΅Π· ΠΊΠ°ΠΆΠ΄ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΎΠΆΠ½ΠΎ провСсти ΠΏΡ€ΡΠΌΡƒΡŽ, ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½ΡƒΡŽ Π΄Π°Π½Π½ΠΎΠΉ ΠΈ ΠΏΡ€ΠΈΡ‚ΠΎΠΌ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄Π½Ρƒ.

Π­Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ, ΠΏΠΎΠ»ΡŒΠ·ΡƒΡΡΡŒ ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠΌ ΠΈΠ»ΠΈ транспортиром.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

ΠŸΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½ΠΎΡΡ‚ΡŒ ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ прямых.

Π”Π²Π΅ прямыС, пСрпСндикулярныС ΠΊ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ Π½Π΅ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ Ρ‚. Π΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ ΠΌΠ΅ΠΆΠ΄Ρƒ собой.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

ΠžΡ‚Ρ€Π΅Π·ΠΎΠΊ АВ, пСрпСндикулярный ΠΊ прямой Π°, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ пСрпСндикуляром. Π’ΠΎΡ‡ΠΊΠ° Π’ – основаниС пСрпСндикуляра.

Из любой Ρ‚ΠΎΡ‡ΠΊΠΈ, Π½Π΅ Π»Π΅ΠΆΠ°Ρ‰Π΅ΠΉ Π½Π° Π΄Π°Π½Π½ΠΎΠΉ прямой, ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡƒΡΡ‚ΠΈΡ‚ΡŒ пСрпСндикуляр Π½Π° эту ΠΏΡ€ΡΠΌΡƒΡŽ ΠΈ ΠΏΡ€ΠΈΡ‚ΠΎΠΌ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄ΠΈΠ½.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Π”Π»ΠΈΠ½Ρƒ пСрпСндикуляра АВ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ расстояниСм ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ А Π΄ΠΎ прямой Π°.

РасстояниСм ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ прямыми Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ расстояниС АВ ΠΎΡ‚ любой Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΎΠ΄Π½ΠΎΠΉ прямой Π΄ΠΎ Π΄Ρ€ΡƒΠ³ΠΎΠΉ прямой.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрпСндикулярныС прямыС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Π Π°Π·Π±ΠΎΡ€ Π·Π°Π΄Π°Π½ΠΈΠΉ Ρ‚Ρ€Π΅Π½ΠΈΡ€ΠΎΠ²ΠΎΡ‡Π½ΠΎΠ³ΠΎ модуля.

β„– 2. Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ биссСктрисы смСТных ΡƒΠ³Π»ΠΎΠ² пСрпСндикулярны.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *