Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅

Как Π½Π°ΠΉΡ‚ΠΈ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅

Учимся Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Ρ€Π°Π·Π½Ρ‹ΠΌΠΈ способами, Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ‚Ρ€Π΅Π½ΠΈΡ€ΡƒΠ΅ΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ знания Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°Ρ… Π·Π°Π΄Π°Ρ‡.

ΠŸΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

ΠŸΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° β€” это сумма Π΄Π»ΠΈΠ½ всСх Π΅Π³ΠΎ сторон.

Π’Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ β€” это гСомСтричСская Ρ„ΠΈΠ³ΡƒΡ€Π°, которая состоит ΠΈΠ· Ρ‚Ρ€Π΅Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ (Π²Π΅Ρ€ΡˆΠΈΠ½), Π½Π΅ Π»Π΅ΠΆΠ°Ρ‰ΠΈΡ… Π½Π° ΠΎΠ΄Π½ΠΎΠΉ прямой. Π­Ρ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΏΠΎΠΏΠ°Ρ€Π½ΠΎ соСдинСны трСмя ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°ΠΌΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ сторонами (Ρ€Π΅Π±Ρ€Π°ΠΌΠΈ) ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°.

ΠžΡΡ‚ΠΎΡ€ΠΎΠΆΠ½ΠΎ! Если ΠΏΡ€Π΅ΠΏΠΎΠ΄Π°Π²Π°Ρ‚Π΅Π»ΡŒ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΡ‚ ΠΏΠ»Π°Π³ΠΈΠ°Ρ‚ Π² Ρ€Π°Π±ΠΎΡ‚Π΅, Π½Π΅ ΠΈΠ·Π±Π΅ΠΆΠ°Ρ‚ΡŒ ΠΊΡ€ΡƒΠΏΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ (Π²ΠΏΠ»ΠΎΡ‚ΡŒ Π΄ΠΎ отчислСния). Если Π½Π΅Ρ‚ возмоТности Π½Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ самому, Π·Π°ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‚ΡƒΡ‚.

Рассмотрим нСсколько способов нахоТдСния ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€Π° рассматриваСмой Ρ„ΠΈΠ³ΡƒΡ€Ρ‹. КаТдая ΠΈΠ· ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌΡƒΠ» опираСтся Π½Π° Ρ‚Π΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π°ΠΌ ΡƒΠΆΠ΅ извСстны.

Бпособы нахоТдСния

По Ρ‚Ρ€Π΅ΠΌ сторонам

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅

Если ΠΌΡ‹ ΡƒΠΆΠ΅ Π·Π½Π°Π΅ΠΌ Π΄Π»ΠΈΠ½Ρƒ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Ρ€Π΅Π±Ρ€Π° Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, расчСт ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€Π° Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ΡŒ Ρ‚Π°ΠΊ:

Π³Π΄Π΅ a, b ΠΈ с β€” это стороны Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°.

Π’ случаС, Ссли Π½Π°ΠΌ извСстны стороны Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° (Ρƒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π΄Π²Π° Ρ€Π΅Π±Ρ€Π° Ρ€Π°Π²Π½Ρ‹), Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° для расчСта ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€Π° выглядит ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Π³Π΄Π΅ a β€” основаниС Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, Π° b ΠΈ с β€” Ρ€Π°Π²Π½Ρ‹Π΅ Ρ€Π΅Π±Ρ€Π°.

Π’Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΌΠΎΠΆΠ΅Ρ‚ Ρ‚Π°ΠΊΠΆΠ΅ Π±Ρ‹Ρ‚ΡŒ равносторонним (ΠΊΠΎΠ³Π΄Π° всС стороны Ρ€Π°Π²Π½Ρ‹). Π’ΠΎΠ³Π΄Π° P Π±ΡƒΠ΄Π΅ΠΌ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ Π² соотвСтствии с расчСтами:

Π³Π΄Π΅ a β€” это любая сторона Ρ„ΠΈΠ³ΡƒΡ€Ρ‹.

По ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΈ радиусу вписанной окруТности

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅

Когда Π½Π°ΠΌ извСстна ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΈ радиус вписанной Π² Π½Π΅Π³ΠΎ окруТности, расчСт P выглядит Ρ‚Π°ΠΊ:

Π³Π΄Π΅ S β€” ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, r β€” радиус вписанной Π² Π½Π΅Π΅ окруТности.

По Π΄Π²ΡƒΠΌ сторонам ΠΈ ΡƒΠ³Π»Ρƒ ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅

Π’Π°ΠΊ ΠΊΠ°ΠΊ Π½Π°ΠΌ извСстСн ΡƒΠ³ΠΎΠ» ΠΈ Π΄Π²Π΅ стороны, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌΠΈ ΠΎΠ½ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½, ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ Π½Π°ΠΉΡ‚ΠΈ Ρ‚Ρ€Π΅Ρ‚ΡŒΡŽ сторону Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΏΠΎ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ косинусов. И ΠΏΠΎΡ‚ΠΎΠΌ ΡƒΠΆΠ΅ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ сумму Π΄Π»ΠΈΠ½ всСх Ρ€Π΅Π±Π΅Ρ€ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹.

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° косинусов выглядит Ρ‚Π°ΠΊ:

Π³Π΄Π΅ Ξ± β€” извСстный ΡƒΠ³ΠΎΠ».

Π’ΠΎΠ³Π΄Π° Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° для расчСта ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€Π° всСй Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ Π² этом случаС:

По Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ сторонС ΠΈ высотС (для Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ)

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅

Π’ΠΎΠ·Π²Ρ€Π°Ρ‰Π°ΡΡΡŒ ΠΊ свойствам Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, вспоминаСм, Ρ‡Ρ‚ΠΎ высота, провСдСнная ΠΊ основанию Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΈΠ· ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠΉ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹, являСтся ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ высотой, биссСктрисой ΠΈ ΠΌΠ΅Π΄ΠΈΠ°Π½ΠΎΠΉ. Π­Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚, Ρ‡Ρ‚ΠΎ ΠΎΠ±Π° ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠ½Π° ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅Ρ‚, Ρ€Π°Π²Π½Ρ‹ ΠΌΠ΅ΠΆΠ΄Ρƒ собой.

Π€ΠΎΡ€ΠΌΡƒΠ»Π° для поиска ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€Π° нашСго Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΠΈΡ€Π°Ρ‚ΡŒΡΡ Π½Π° Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡƒ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π°. ΠŸΡƒΡΡ‚ΡŒ 1/2 основания (с) = d. Π’ΠΎΠ³Π΄Π°:

Π³Π΄Π΅ a β€” сторона Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΈ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π° ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ, h β€” высота Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈ ΠΊΠ°Ρ‚Π΅Ρ‚ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ.

НС Π·Π°Π±Ρ‹Π²Π°Π΅ΠΌ, Ρ‡Ρ‚ΠΎ d β€” это лишь ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π° основания Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, поэтому для поиска ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€Π° Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ Π½ΡƒΠΆΠ½ΠΎ Π±ΡƒΠ΄Π΅Ρ‚ ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚ΡŒ Π½Π° 2.

По Π΄Π²ΡƒΠΌ ΠΊΠ°Ρ‚Π΅Ρ‚Π°ΠΌ (для ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ)

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅

Π•Ρ‰Π΅ Ρ€Π°Π· вспомним Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡƒ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π° для нахоТдСния Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Ρ‹ (ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ Π΅Π΅ Π±ΡƒΠΊΠ²ΠΎΠΉ с).

Π³Π΄Π΅ a ΠΈ b β€” ΠΊΠ°Ρ‚Π΅Ρ‚Ρ‹ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°.

ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΠ΅ΠΌ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ c Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ для нахоТдСния ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€Π° ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡

Для Ρ‚Ρ€Π΅Π½ΠΈΡ€ΠΎΠ²ΠΊΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π·Π½Π°Π½ΠΈΠΉ, рассмотрим нСсколько ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ² Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ Π½Π° поиск ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€Π° Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°.

Π—Π°Π΄Π°Ρ‡Π° β„–1

Какой P Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, Ссли Π΅Π³ΠΎ стороны Ρ€Π°Π²Π½Ρ‹ 6 см, 7 см ΠΈ 3 см.

РСшСниС:

ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΠ΅ΠΌ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ P = a+b+c извСстныС Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ: P = 6+7+3=16 см.

Π—Π°Π΄Π°Ρ‡Π° β„–2

Π˜Π·Π²Π΅ΡΡ‚Π½ΠΎ, Ρ‡Ρ‚ΠΎ основаниС Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Ρ€Π°Π²Π½ΠΎ 6 см, Π° Π΅Π³ΠΎ боковая сторона β€” 4 см. Найти P Ρ„ΠΈΠ³ΡƒΡ€Ρ‹.

РСшСниС:

Для Π΄Π°Π½Π½ΠΎΠ³ΠΎ случая ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΈΡ‚ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° P=a+2b, подствляСм значСния: \(P=6+4\times2 = 14\) см.

Π—Π°Π΄Π°Ρ‡Π° β„–3

РСшСниС:

Π—Π°Π΄Π°Ρ‡Π° β„–4

Π”Π°Π½ Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ. Нам извСстна Π΅Π³ΠΎ боковая сторона (4 см) ΠΈ высота, опущСнная ΠΊ основанию (2 см). НуТно Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹.

РСшСниС:

Π—Π°Π΄Π°Ρ‡Π° β„–5

Π”Π°Π½ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ с ΠΊΠ°Ρ‚Π΅Ρ‚Π°ΠΌΠΈ 5 см ΠΈ 7 см. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹.

РСшСниС:

Π’ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ \(P=\sqrt+a+b\) подставляСм извСстныС значСния: \(P=\sqrt<5^2+7^2>+5+7 = \sqrt<74>+12\) см.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠŸΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€Ρ‹ Ρ„ΠΈΠ³ΡƒΡ€. ΠŸΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°.

ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚Ρƒ ΠΆΠ΅ Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½, Ρ‡Ρ‚ΠΎ ΠΈ Π΄Π»ΠΈΠ½Π°.

Π±ΡƒΠΊΠ²Π°ΠΌΠΈ, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌΠΈ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹Ρ… Π²Π΅Ρ€ΡˆΠΈΠ½.

ΠŸΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Ρ€Π°Π²Π΅Π½ суммС Π΄Π»ΠΈΠ½ Π΅Π³ΠΎ сторон, общая Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°:

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅

Π€ΠΎΡ€ΠΌΡƒΠ»Π° ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€Π° Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° для Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° АВБ:

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅

ΠŸΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ равностороннСго Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°.

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ равностороннСго Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° (ΠΈΠ»ΠΈ Π½Π°ΠΉΡ‚ΠΈ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ

Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°), Π½ΡƒΠΆΠ½ΠΎ Π·Π½Π°Ρ‚ΡŒ Π΅Π³ΠΎ сторону.

Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС для нахоТдСния ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€Π° Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ:

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π² равностороннСм Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ всС Ρ‚Ρ€ΠΈ стороны Ρ€Π°Π²Π½Ρ‹, Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° упрощаСтся:

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ равностороннСго Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° находится ΠΏΠΎ Ρ‚Π°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅

Π³Π΄Π΅ Π° β€” Π΄Π»ΠΈΠ½Π° Π΅Π³ΠΎ стороны.

ΠŸΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°.

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, Π½ΡƒΠΆΠ½ΠΎ Π·Π½Π°Ρ‚ΡŒ всСго Π΄Π²Π΅ Π΅Π³ΠΎ стороны β€” основаниС

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Ρƒ Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Π΄Π²Π΅ стороны Ρ€Π°Π²Π½Ρ‹ (Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅), Π½Π°ΠΉΡ‚ΠΈ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€

Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎ Ρ‚Π°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅

Π’ΠΎ Π΅ΡΡ‚ΡŒ, ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Ρ€Π°Π²Π΅Π½ суммС Π΄Π»ΠΈΠ½ основания ΠΈ

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

НахоТдСниС ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€Π° Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°: Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΈ Π·Π°Π΄Π°Ρ‡ΠΈ

Π’ Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΌΡ‹ рассмотрим, ΠΊΠ°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΈ Ρ€Π°Π·Π±Π΅Ρ€Π΅ΠΌ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡.

Π€ΠΎΡ€ΠΌΡƒΠ»Π° вычислСния ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€Π°

ΠŸΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ (P) любого Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° равняСтся суммС Π΄Π»ΠΈΠ½ всСх Π΅Π³ΠΎ сторон.

P = a + b + c

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅

ΠŸΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

Π Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½Ρ‹ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π΄Π²Π΅ Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ стороны Ρ€Π°Π²Π½Ρ‹ (ΠΏΡ€ΠΈΠΌΠ΅ΠΌ ΠΈΡ… Π·Π° b). Π‘Ρ‚ΠΎΡ€ΠΎΠ½Π° a, ΠΈΠΌΠ΅ΡŽΡ‰Π°Ρ ΠΎΡ‚Π»ΠΈΡ‡Π½ΡƒΡŽ ΠΎΡ‚ Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… Π΄Π»ΠΈΠ½Ρƒ, являСтся основаниСм. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ ΠΌΠΎΠΆΠ½ΠΎ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ:

P = a + 2b

ΠŸΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ равностороннСго Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

Равносторонним ΠΈΠ»ΠΈ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΌ называСтся Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ всС стороны Ρ€Π°Π²Π½Ρ‹ (ΠΏΡ€ΠΈΠΌΠ΅ΠΌ Π΅Π΅ Π·Π° a). ΠŸΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Π°ΠΊΠΎΠΉ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ вычисляСтся Ρ‚Π°ΠΊ:

P = 3a

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Π·Π°Π΄Π°Ρ‡

Π—Π°Π΄Π°Π½ΠΈΠ΅ 1
НайдитС ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, Ссли Π΅Π³ΠΎ стороны Ρ€Π°Π²Π½Ρ‹: 3, 4 ΠΈ 5 см.

РСшСниС:
ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΠ΅ΠΌ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ извСстныС ΠΏΠΎ условиям Π·Π°Π΄Π°Ρ‡ΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ:
P = 3 см + 4 см + 5 см = 12 см.

Π—Π°Π΄Π°Π½ΠΈΠ΅ 2
НайдитС ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, Ссли Π΅Π³ΠΎ основаниС равняСтся 10 см, Π° боковая сторона- 8 см.

РСшСниС:
Как ΠΌΡ‹ Π·Π½Π°Π΅ΠΌ, Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ стороны Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Ρ€Π°Π²Π½Ρ‹, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ:
P = 10 см + 2 β‹… 8 см = 26 см.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ опрСдСлСния ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€Π°, ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΈ сторон Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

Π’Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ β€” это элСмСнтарная гСомСтричСская Ρ„ΠΈΠ³ΡƒΡ€Π°, содСрТащая минимально Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠ΅ количСство ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… β€” Ρ‚Ρ€ΠΈ.

Π’ΠΎΡ‡ΠΊΠΈ соприкосновСния сторон ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π²Π΅Ρ€ΡˆΠΈΠ½Π°ΠΌΠΈ Π΅Π³ΠΎ ΡƒΠ³Π»ΠΎΠ², ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ΡΡ Π·Π°Π³Π»Π°Π²Π½Ρ‹ΠΌΠΈ латинскими символами A; B ΠΈ C. ΠžΡ‚Ρ€Π΅Π·ΠΊΠΈ ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π΅Ρ€ΡˆΠΈΠ½Π°ΠΌΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ сторонами ΠΈΠ»ΠΈ гранями Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ΡΡ названиями этих Π²Π΅Ρ€ΡˆΠΈΠ½: AB; BC; CA ΠΈΠ»ΠΈ прописной Π±ΡƒΠΊΠ²ΠΎΠΉ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰Π΅Π³ΠΎ ΡƒΠ³Π»Π° (Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹): AB=c; BC=a; CA=b.

ΠŸΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ€Π°Π²Π΅Π½ Π΄Π»ΠΈΠ½Π΅ всСх сторон Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, Ρƒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠ½ Ρ€Π°Π²Π΅Π½ суммС Ρ‚Ρ€Π΅Ρ… сторон:

Высота Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° β€” это пСрпСндикуляр ΠΎΡ‚ прямой, Π½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π»Π΅ΠΆΠΈΡ‚ основаниС, Π΄ΠΎ ΠΎΠ΄Π½ΠΎΠΈΠΌΠ΅Π½Π½ΠΎΠΉ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹, обозначаСтся h.

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ составляСт Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ повСрхности, Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½Π½ΠΎΠΉ Π²Π½ΡƒΡ‚Ρ€ΠΈ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, обозначаСтся S. ΠŸΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ основания Π½Π° высоту Π΄Π°Π΅Ρ‚ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ. Π•Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΈ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ Π“Π΅Ρ€ΠΎΠ½Π°:

Из этого Π²ΠΈΠ΄Π΅ΠΎ Π²Ρ‹ ΡƒΠ·Π½Π°Π΅Ρ‚Π΅, ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°.

ΠšΠ»Π°ΡΡΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ²

Π’Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ состоит ΠΈΠ· сторон ΠΈ ΡƒΠ³Π»ΠΎΠ², сумма Π΅Π³ΠΎ ΡƒΠ³Π»ΠΎΠ² всСгда Ρ€Π°Π²Π½Π° 180 градусов: A+B+C=180Β°.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅

ОписаниС

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ любой Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, достаточно ΡƒΠΊΠ°Π·Π°Ρ‚ΡŒ:

Π”Π°Π½Π½Ρ‹Ρ… ΠΈΠ· любого ΠΏΡƒΠ½ΠΊΡ‚Π° достаточно для построСния Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ ΠΈ вычислСния всСх Π΅Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ², ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡƒ косинусов:

ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΡ извСстныС значСния, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅, Ρ€Π΅ΡˆΠΈΠ² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΡƒΠ·Π½Π°Π΅ΠΌ нСизвСстныС Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹.

Cos90Β°=0, поэтому для ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° c*c=a*a+b*b, Π³Π΄Π΅ a ΠΈ b β€” ΠΊΠ°Ρ‚Π΅Ρ‚Ρ‹, c β€” Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π°, сторона, лСТащая Π½Π°ΠΏΡ€ΠΎΡ‚ΠΈΠ² прямого ΡƒΠ³Π»Π°.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅

Если извСстно Ρ‚Ρ€ΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° любого Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° β€” Π΄Π²Π° ΡƒΠ³Π»Π° ΠΈ сторона ΠΈΠ»ΠΈ Π΄Π²Π΅ стороны ΠΈ ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ, Ρ‚ΠΎ Π½ΠΈΡ‡Π΅Π³ΠΎ особСнно слоТного Π² Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ нСизвСстных ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° β€” ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€Π°, ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΈΠ»ΠΈ высоты β€” Π½Π΅Ρ‚. НуТно Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π²Π½ΠΈΠΌΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ простыС вычислСния. Иногда ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΎΡΠ²ΠΈΡ‚ΡŒ ΠΈ смСкалку, Ρ€Π°Π·Π±ΠΈΠ² Ρ„ΠΈΠ³ΡƒΡ€Ρƒ Π½Π° нСсколько Π±ΠΎΠ»Π΅Π΅ простых Π² вычислСнии, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ². Π’ ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠΌ случаС всС зависит ΠΎΡ‚ исходных Π΄Π°Π½Π½Ρ‹Ρ…. ВсС Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΈ вычислСния, ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ Π²Ρ‹ΡˆΠ΅, Π²Π΅Ρ€Π½Ρ‹ для плоских Ρ„ΠΈΠ³ΡƒΡ€; для располоТСнных Π½Π° сфСричСской повСрхности Ρ…ΠΎΠ΄ вычислСний Π±ΡƒΠ΄Π΅Ρ‚ ΠΈΠ½Ρ‹ΠΌ.

Π’ΠΈΠ΄Π΅ΠΎ

Π­Ρ‚ΠΎ Π²ΠΈΠ΄Π΅ΠΎ ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ‚ Π²Π°ΠΌ Π·Π°ΠΊΡ€Π΅ΠΏΠΈΡ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ знания.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ГСомСтрия. 7 класс

ΠšΠΎΠ½ΡΠΏΠ΅ΠΊΡ‚ ΡƒΡ€ΠΎΠΊΠ°

ΠŸΠ΅Ρ€Π΅Ρ‡Π΅Π½ΡŒ рассматриваСмых вопросов:

Π’Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ – гСомСтричСская Ρ„ΠΈΠ³ΡƒΡ€Π°, образованная трСмя Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ, Π½Π΅ Π»Π΅ΠΆΠ°Ρ‰ΠΈΠΌΠΈ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ прямой, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ соСдинСны ΠΌΠ΅ΠΆΠ΄Ρƒ собой ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°ΠΌΠΈ.

ΠŸΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° – это сумма Π΄Π»ΠΈΠ½ всСх Π΅Π³ΠΎ сторон.

Π‘Ρ‚ΠΎΡ€ΠΎΠ½Ρ‹ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°β€“ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°.

Π Π°Π²Π½Ρ‹Π΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ β€“Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΡΠΎΠ²ΠΌΠ΅ΡΡ‚ΠΈΡ‚ΡŒ Π½Π°Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ.

1. Атанасян Π›. Π‘. ГСомСтрия: 7–9 класс. // Атанасян Π›. Π‘., Π‘ΡƒΡ‚ΡƒΠ·ΠΎΠ² Π’. Π€., ΠšΠ°Π΄ΠΎΠΌΡ†Π΅Π² Π‘. Π‘. – М.: ΠŸΡ€ΠΎΡΠ²Π΅Ρ‰Π΅Π½ΠΈΠ΅, 2017. – 384 с.

ВСорСтичСский ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» для ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ изучСния.

Π’Ρ‹ ΡƒΠΆΠ΅ познакомились с основными гСомСтричСскими Ρ„ΠΈΠ³ΡƒΡ€Π°ΠΌΠΈ:

Рассмотрим Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Ρ„ΠΈΠ³ΡƒΡ€Ρƒ, которая Ρ‚Π°ΠΊΠΆΠ΅ являСтся ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· ΠΎΡΠ½ΠΎΠ²ΠΎΠΏΠΎΠ»Π°Π³Π°ΡŽΡ‰ΠΈΡ…β€“ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ.

Π’Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ – гСомСтричСская Ρ„ΠΈΠ³ΡƒΡ€Π°, образованная трСмя Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ, Π½Π΅ Π»Π΅ΠΆΠ°Ρ‰ΠΈΠΌΠΈ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ прямой, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ соСдинСны ΠΌΠ΅ΠΆΠ΄Ρƒ собой ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°ΠΌΠΈ.

Π’ΠΎΡ‡ΠΊΠΈ, с ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π½Π°Ρ‡ΠΈΠ½Π°Π»ΠΎΡΡŒ построСниС, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ Π²Π΅Ρ€ΡˆΠΈΠ½Π°ΠΌΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°.

ΠžΡ‚Ρ€Π΅Π·ΠΊΠΈ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ сторонами Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅

А, Π’, Π‘ – Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° АВБ.

АВ, Π’Π‘, БА – стороны Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° АВБ.

∠А,βˆ Π’,∠Б – ΡƒΠ³Π»Ρ‹ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° АВБ.

ΠŸΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° – это сумма Π΄Π»ΠΈΠ½ всСх Π΅Π³ΠΎ сторон.

Рассмотрим Π²ΠΈΠ΄Ρ‹ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ².

Π˜Ρ… ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠΎ Π²ΠΈΠ΄Ρƒ ΠΈ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΡƒΠ³Π»ΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ сторон.

По ΡƒΠ³Π»Π°ΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ:

– ΠΎΡΡ‚Ρ€ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ, Ссли всС Π΅Π³ΠΎ ΡƒΠ³Π»Ρ‹ ΡΠ²Π»ΡΡŽΡ‚ΡΡ острыми, (Ρ‚.Π΅. мСньшС 90Β°).

– Ρ‚ΡƒΠΏΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ, Ссли ΠΎΠ΄ΠΈΠ½ ΠΈΠ· Π΅Π³ΠΎ ΡƒΠ³Π»ΠΎΠ² Ρ‚ΡƒΠΏΠΎΠΉ(Ρ‚.Π΅. большС 90Β°).

– ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ, Ссли ΠΎΠ΄ΠΈΠ½ ΡƒΠ³ΠΎΠ» 90Β° (Ρ‚.Π΅. прямой).

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅

По сторонам Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ Π±Ρ‹Π²Π°Π΅Ρ‚:

– разносторонний, Ссли всС Π΅Π³ΠΎ стороны ΠΈΠΌΠ΅ΡŽΡ‚ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΡƒΡŽ Π΄Π»ΠΈΠ½Ρƒ;

– Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½Ρ‹ΠΉ, Ссли Π΄Π²Π΅ Π΅Π³ΠΎ стороны Ρ€Π°Π²Π½Ρ‹ ΠΌΠ΅ΠΆΠ΄Ρƒ собой;

– равносторонний,Ссли Ρƒ Π½Π΅Π³ΠΎ всС Ρ‚Ρ€ΠΈ стороны Ρ€Π°Π²Π½Ρ‹ ΠΌΠ΅ΠΆΠ΄Ρƒ собой.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅

Напомним, Ρ‡Ρ‚ΠΎ Π΄Π²Π΅ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, Π² Ρ‚ΠΎΠΌ числС ΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, ΠΌΠΎΠΆΠ½ΠΎ ΡΡ€Π°Π²Π½ΠΈΡ‚ΡŒ. βˆ† АВБ = βˆ† А1Π’1Π‘1

Π”Π²Π° Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ Ρ€Π°Π²Π½Ρ‹ΠΌΠΈ, Ссли ΠΈΡ… ΠΌΠΎΠΆΠ½ΠΎ ΡΠΎΠ²ΠΌΠ΅ΡΡ‚ΠΈΡ‚ΡŒ Π½Π°Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ. ΠŸΡ€ΠΈ этом ΠΏΠΎΠΏΠ°Ρ€Π½ΠΎ ΡΠΎΠ²ΠΌΠ΅Ρ‰Π°ΡŽΡ‚ΡΡ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹, ΡƒΠ³Π»Ρ‹ ΠΈ стороны Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ².

Π‘Π»Π΅Π΄ΡƒΠ΅Ρ‚ ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ Ссли Π΄Π²Π° Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Ρ€Π°Π²Π½Ρ‹, Ρ‚ΠΎ элСмСнты (стороны ΠΈ ΡƒΠ³Π»Ρ‹) ΠΎΠ΄Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° соотвСтствСнно Ρ€Π°Π²Π½Ρ‹ элСмСнтам (сторонам ΠΈ ΡƒΠ³Π»Π°ΠΌ) Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°.

Бвойство Ρ€Π°Π²Π½Ρ‹Ρ… Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ².

Π’ Ρ€Π°Π²Π½Ρ‹Ρ… Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°Ρ… ΠΏΡ€ΠΎΡ‚ΠΈΠ² соотвСтствСнно Ρ€Π°Π²Π½Ρ‹Ρ… сторон Π»Π΅ΠΆΠ°Ρ‚ Ρ€Π°Π²Π½Ρ‹Π΅ ΡƒΠ³Π»Ρ‹. ΠžΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅ Ρ‚ΠΎΠΆΠ΅ Π²Π΅Ρ€Π½ΠΎ: ΠΏΡ€ΠΎΡ‚ΠΈΠ² соотвСтствСнно Ρ€Π°Π²Π½Ρ‹Ρ… ΡƒΠ³Π»ΠΎΠ² Π»Π΅ΠΆΠ°Ρ‚ Ρ€Π°Π²Π½Ρ‹Π΅ стороны.

РавСнство Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ, Π½Π΅ производя налоТСния Ρ„ΠΈΠ³ΡƒΡ€ Π΄Ρ€ΡƒΠ³ Π½Π° Π΄Ρ€ΡƒΠ³Π°, Π° сравнивая лишь Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ элСмСнты этих Ρ„ΠΈΠ³ΡƒΡ€. Π­Ρ‚ΠΎ станСт Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΌ ΠΏΡ€ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² равСнства Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ².

Π’Π½Π΅ΡˆΠ½ΠΈΠΉ ΡƒΠ³ΠΎΠ» Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°.

Π’Π²Π΅Π΄Ρ‘ΠΌ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ внСшнСго ΡƒΠ³Π»Π° Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°.

Π’Π½Π΅ΡˆΠ½ΠΈΠΌ ΡƒΠ³Π»ΠΎΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΏΡ€ΠΈ Π΄Π°Π½Π½ΠΎΠΉ Π²Π΅Ρ€ΡˆΠΈΠ½Π΅ называСтся ΡƒΠ³ΠΎΠ», смСТный с ΡƒΠ³Π»ΠΎΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΏΡ€ΠΈ этой Π²Π΅Ρ€ΡˆΠΈΠ½Π΅.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅

Π£ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΡƒΠ³Π»Π° Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Π΅ΡΡ‚ΡŒ Π΄Π²Π° ΡƒΠ³Π»Π°, смСТных с Π½ΠΈΠΌ, Ρ‚.Π΅. Ρƒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΡˆΠ΅ΡΡ‚ΡŒ Π²Π½Π΅ΡˆΠ½ΠΈΡ… ΡƒΠ³Π»ΠΎΠ².

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅

ΠžΡ‚ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ ΠΎΠ΄Π½ΠΎΠΉ Π²Π΅Ρ€ΡˆΠΈΠ½Π΅ внСшниС ΡƒΠ³Π»Ρ‹ Ρ€Π°Π²Π½Ρ‹, ΠΊΠ°ΠΊ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅.

Π Π°Π·Π±ΠΎΡ€ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Π½ΠΈΠΉ Ρ‚Ρ€Π΅Π½ΠΈΡ€ΠΎΠ²ΠΎΡ‡Π½ΠΎΠ³ΠΎ модуля.

НайдитС Π³Ρ€Π°Π΄ΡƒΡΠ½ΡƒΡŽ ΠΌΠ΅Ρ€Ρƒ внСшнСго βˆ Π’, Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° АВБ, Ссли βˆ ΠΠ’Π‘ = 60Β°.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅

По рисунку Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΡƒΠ³ΠΎΠ» Π’ внСшний ΡƒΠ³ΠΎΠ» Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΈ ΠΎΠ½ являСтся смСТным ΠΊ ΡƒΠ³Π»Ρƒ АВБ, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΈΡ… сумма Ρ€Π°Π²Π½Π° 180Β°.

βˆ Π’ = 180Β° – βˆ ΠΠ’Π‘ = 180Β° – 60Β° = 120Β°

ΠŸΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ βˆ†ΠΠ’Π‘ Ρ€Π°Π²Π΅Π½ 58 см, сторона АВ = 20 см, сторона Π’Π‘ >АБ Π½Π° 5 см. НайдитС стороны Π’Π‘ ΠΈ АБ.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅

РСшСниС: Для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ΠΈ Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡΡ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€Π° Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Π βˆ†ΠΠ’Π‘ = АВ + Π’Π‘ + АБ. ΠžΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ сторону АБ Π·Π° Ρ…, Ρ‚ΠΎΠ³Π΄Π° сторона Π’Π‘ Ρ€Π°Π²Π½Π° Ρ… + 5, составим ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅.

5. Ρ… = 16,5 см – сторона АБ.

6. 16,5 + 5 = 21,5 см – сторона Π’Π‘.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *