что такое мультиплексирование сигналов
Мультиплексирование
В информационных технологиях и связи, мультиплекси́рование (англ. multiplexing, muxing ) — уплотнение канала, т. е. передача нескольких потоков (каналов) данных с меньшей скоростью (пропускной способностью) по одному каналу.
В телекоммуникациях мультиплексирование подразумевает передачу данных по нескольким логическим каналам связи в одном физическом канале. Под физическим каналом подразумевается реальный канал со своей пропускной способностью — медный или оптический кабель, радиоканал.
В информационных технологиях мультиплексирование подразумевает объединение нескольких потоков данных (виртуальных каналов) в один. Примером может послужить видеофайл, в котором поток (канал) видео объединяется с одним или несколькими каналами аудио.
Устройство или программа, осуществляющая мультиплексирование, называется мультиплексором.
Содержание
Принципы мультиплексирования
Мультиплексирование с разделением по частоте (FDM)
Технология
Основные применения
Используется в сетях мобильной связи (см. FDMA) для разделения доступа, в волоконно-оптической связи аналогом является мультиплексирование с разделением по длине волны (WDM, Wavelength Division Multiplexing ) (где частота — это цвет излучения излучателя), в природе — все виды разделений по цвету (частота электромагниных колебаний) и тону (частота звуковых колебаний).
Мультиплексирование с разделением по времени (TDM)
Технология
На рисунке: А, В и С — мультиплексируемые каналы с пропускной способностью (шириной) N и длительностью кадра Δt; E — мультиплексированный канал с той же длительносью Δt но с шириной M*N, один кадр которого (суперкадр) несёт в себе все 3 кадра входных мультиплексируемых сигналов последовательно, каждому каналу отводится часть времени суперкадра — таймслот, длиной ΔtM=Δt/M
Таким образом, канал с пропускной способностью M * N может пропускать M каналов с пропускной способностью N, причём при соблюдении канальной скорости (кадров в секунду) результат демультиплексирования совпадает с исходным потоком канала (А, В или С на рисунке) и по фазе, и по скорости, т. е. протекает незаметно для конечного получателя.
Основные применения
Мультиплексирование с разделением по длине волны (WDM)
Технология
Основные применения
Примечания
CWDM мультиплексоры Схемы подключения CWDM мультиплексоров при различных топологиях сети
См. также
Полезное
Смотреть что такое «Мультиплексирование» в других словарях:
Мультиплексирование — технология разделения средств передачи данных между группой использующих их объектов. В результате мультиплексирования в одном физическом канале создается группа логических каналов. Различают временное и частотное мультиплексирования. По… … Финансовый словарь
МУЛЬТИПЛЕКСИРОВАНИЕ — [ Словарь иностранных слов русского языка
МУЛЬТИПЛЕКСИРОВАНИЕ — Технология разделения средств передачи данных между группой использующих их объектов. В результате мультиплексирования в одном физическом канале создается группа логических каналов. Различают временное и частотное мультиплексирования Словарь… … Словарь бизнес-терминов
мультиплексирование — 01.02.25 мультиплексирование [ multiplexing]: Обратимый процесс объединения сигналов от нескольких отдельных источников в один составной сигнал для передачи по общему каналу: этот процесс эквивалентен процессу разделения общего канала на… … Словарь-справочник терминов нормативно-технической документации
мультиплексирование — мультиплекс ирование, я … Русский орфографический словарь
мультиплексирование — мульти/плекс/ир/ова/ни/е [й/э] … Морфемно-орфографический словарь
Мультиплексирование с разделением по времени — Временное мультиплексирование (англ. Time Division Multiplexing, TDM) технология аналогового или цифрового мультиплексирования, в котором несколько сигналов или битовых потоков передаются одновременно как подканалы в одном… … Википедия
Мультиплексирование логических соединений — 39. Мультиплексирование логических соединений Мультиплексирование Multiplexing Функция, выполняемая логическим объектом отправителем уровня, использующая одно соединение смежного нижнего уровня для обеспечения нескольких соединений данного уровня … Словарь-справочник терминов нормативно-технической документации
Мультиплексирование логических соединений — 1. Функция, выполняемая логическим объектом отправителем уровня, использующая одно соединение смежного нижнего уровня для обеспечения нескольких соединений данного уровня Употребляется в документе: ГОСТ 24402 88 Телеобработка данных и… … Телекоммуникационный словарь
Инверсное мультиплексирование — Инверсное мультиплексирование технология в цифровой связи, основанная на разделении одного высокоскоростного потока данных на несколько низкоскоростных с целью последующей передачи по нескольким узкополосным линиям связи. Является операцией … Википедия
Мультиплексирование
В связи с тем, что вычислительные сети используются для передачи данных на большие расстояния, то стремятся минимизировать количество проводов в кабеле, в целях экономии. Поэтому разрабатывались технологии, которые позволяют передавать, по одному и тому же каналу связи, сразу несколько потоков данных.
Мультиплексирование (англ. multiplexing, muxing)— это процесс уплотнение канала связи, другими словами, передача нескольких потоков (каналов) данных с меньшей скоростью (пропускной способностью) по одному каналу связи, с использованием специального устройства, называемого мультиплексором.
Мультиплексор (MUX) — комбинационное устройство, обеспечивающее передачу в желаемом порядке цифровой информации, поступающей по нескольким входам на один выход. Может быть реализован как аппаратно так и программно.
Демультиплексор (DMX) выполняет обратную функцию мультиплексора.
В настоящее время, для уплотнения канала связи, в основном используют:
Временное мультиплексирование
Первой стали применять технологию TDM, которая широко используется в обычных системах электросвязи. Эта технология предусматривает объединение нескольких входных низкоскоростных каналов в один составной высокоскоростной канал.
В каждом цикле мультиплексор выполняет следующие действия:
Порядок байт в обойме соответствует номеру входного канала, от которого этот байт получен. Количество обслуживаемых мультиплексором абонентских каналов зависит от его быстродействия. Например, мультиплексор Т1, представляющий собой первый промышленный мультиплексор, работавший по технологии TDM, поддерживает 24 входных абонентских канала, создавая на выходе обоймы стандарта Т1, передаваемые с битовой скоростью 1,544 Мбит/с.
В рамках TDM различают:
Частотное мультиплексирование
Техника частотного мультиплексирования разрабатывалась для телефонных сетей. Основная идея состоит в выделении каждому соединению собственного диапазона частот в общей полосе пропускания линии связи. Мультиплексирование выполняется с помощь смесителя частот, а демультиплексирование – с помощью узкополосного фильтра, ширина которого равна ширине диапазона канала.
Волновое или спектральное мультиплексирование
В методе волнового мультиплексирования используется тот же принцип частотного разделения канала, но только в другой области электромагнитного спектра. Информационным сигналом является не электрический ток, а свет. Для организации WDM-каналов в волоконно-оптическом кабеле задействуют волны инфракрасного диапазона длиной от 850 до 1565 нм, что соответствует частотам от 196 до 350 ТГц.
Сети WDM работают по принципу коммутации каналов, при этом каждая световая волна представляет собой отдельный спектральный канал и несет собственную информацию.
Современные WDM системы на основе стандартного частотного плана (ITU-T Rec. G.692) можно подразделить на три группы:
Введение в мультиплексирование: основы телекоммуникаций
Мультиплексирование было разработано в начале 1870-х годов, но в конце 20-го века оно стало гораздо более применимо к цифровой связи. Сегодня мультиплексирование с частотным разделением (FDM, frequency division multiplexing), мультиплексирование с временным разделением (TDM, time division multiplexing) и мультиплексирование с разделением по длине волны (WDM, wavelength division multiplexing) стало чрезвычайно важным активом для телекоммуникационных процессов и значительно улучшило способ передачи и приема независимых сигналов по AM и FM радиоканалам, по телефонным линиям и по оптоволокну.
Понятие мультиплексирования
Системы телекоммуникаций, такие как радиосвязь, телефон и телевидение, для передачи и приема информации все используют метод, называемый мультиплексированием. Мультиплексирование было разработано для передачи множества аналоговых сигналов или цифровых потоков через одну общую линию передачи. Мультиплексоры, или сокращенно MUX, объединяют сигналы от нескольких устройств, которые затем передаются по этой линии передачи.
Мультиплексор (MUX) считывает и анализирует каждый подаваемый на него отдельный сигнал или поток цифровых данных, а затем назначает каждому из них временной интервал фиксированной длины. После этого назначения MUX теперь имеет так называемый единый составной сигнал и передает часть данных из каждого слота в течение его временного интервала фиксированной длины по высокоскоростной линии передачи. На другом конце высокоскоростной линии передачи этот составной сигнал повторно анализируется и разделяется демультиплексором, или DEMUX. На рисунке ниже показан поток, в котором цифровые данные в системах FDM, TDM и WDM передаются и принимаются от одного устройства к другому с использованием одного мультиплексора и одного демультиплексора.
Рисунок 1 – Система передачи данных, использующая мультиплексирование и демультиплексирование
Мультиплексирование с частотным разделением (FDM)
FDM имеет дело в первую очередь с сигналами аналоговых сообщений, а не с потоками цифровых данных. Это система, в которой вся полоса пропускания, доступная источнику данных, делится между подканалами, каждый из которых имеет свою частоту. Каждый подканал затем передает отдельные сигналы через линию передачи или составной канал. Сигналы в этих подканалах могут передаваться по линии передачи независимо друг от друга и могут передаваться одновременно друг с другом.
Мультиплексирование в радиовещании, будь то амплитудная модуляция или частотная модуляция (AM и FM), формирует сигнал радиостанции, на который вы можете настроиться. Мы можем выбрать прослушивание только одной станции, потому что каждый передаваемый поток данных принадлежит отдельной радиостанции. Если бы это было не так, сигналы радиостанций накладывались бы друг на друга, что вызывало бы нежелательный постоянный шум. В отличие от TDM, если необходимо передать цифровой сигнал, то его необходимо сначала преобразовать в аналоговую форму, прежде чем его можно будет передать по линии передачи.
Мультиплексирование в кабельном телевидении аналогично радиовещанию, все каналы передаются одновременно, в то время как телевизор, принимающий их, «настраивается» на определенный канал потока данных. Между каналами нет взаимного влияния, потому что сигналы расположены достаточно далеко друг от друга по частоте, чтобы отдельные каналы не перекрывались. Эта структура данных обычно передается через коаксиальный кабель, оптоволокно или с помощью радиопередатчика.
Что такое мультиплексирование с временным разделением (TDM)?
Метод объединения нескольких независимых потоков данных в один сигнал данных и передачи этого единого сигнала данных через мультиплексор на демультиплексор известен как мультиплексирование с временным разделением. TDM отличается от FDM и WDM своим чередованием передачи через единственный сигнал данных. Каждый отдельный сигнал, который передается через мультиплексор, периодически выдается на выход в течение короткого промежутка времени.
Когда мультиплексирование с временным разделением впервые было реализовано в конце 1800-х годов, оно использовалось в телеграфии. TDM в первую очередь использовалось для создания более простого способа передачи множества телеграмм, отправляемых телеграфными машинами Hughes одновременно. Концепция, лежащая в основе использования мультиплексирования с временным разделением, заключалась в том, чтобы принимать несколько телеграфных передач и синхронно передавать их в одно и то же время, используя линию передачи, общую с другими телеграфными машинами Hughes. Это было началом передачи информации на большие расстояния по одной линии связи.
В то время как TDM манипулирует цифровыми данными, телефонные цепи выдают аналоговые сигналы данных. Для правильной работы мультиплексирования необходимы устройства кодера и декодера для обработки аналоговых данных. Кодер преобразует аналоговый формат в квантованный, дискретный по времени формат. После того как кодер преобразовал аналоговые данные в цифровые, эти данные затем мультиплексируются вместе с другими, используя TDM. После того, как данные проходят через единую линию передачи, их принимает демультиплексор, демультиплексирует этот единый сигнал данных и отправляет выделенные сигналы другим устройствам.
TDM, работающее с пропускной способностью сети
Та же концепция мультиплексирования, которая была разработана для связи на большом расстоянии между многочисленными телеграфами Huges, теперь широко используется в сетях с закрытой коммутацией, таких как коммутируемая телефонная сеть общего пользования (PSTN, public switched telephone network). Мультиплексирование с временным разделением получило дальнейшее развитие с момента его создания, и теперь оно может разделить пропускную способность сети на более мелкие части. Основное внимание в этой новой операции уделяется минимизации полосы пропускания, используемой рядом устройств в сети системы. Хотя это тот же термин, что используется и в телеграфах, правила отправки данных были пересмотрены и изменены, поэтому с устройства на устройство могут передаваться данные более высокого качества. Этот метод связи был разработан, чтобы предоставить компаниям упрощенный и экономичный способ построения быстрых сетей, которые связывают устройства друг с другом на обширных географических территориях.
Стандартные системы TDM передают сегменты другим устройствам, предоставляя им уникальный фиксированный временной интервал в сети. Если X, Y и Z представляют устройства для передачи данных, данные из X отправляются в MUX, затем данные из Y отправляются в MUX, и, наконец, данные из Z отправляются в MUX. Эта последовательность повторяется до тех пор, пока не перестанут отправляться данные с каждого устройства. Хотя данные просто пересылаются из «точки A в точку B», всё же существует несколько различных способов планирования систем TDM для более эффективной работы в зависимости от задачи.
Основные системы TDM используют одну из двух традиционных схем мультиплексирования: с чередованием битов или с чередованием байтов. Фиксированному временному интервалу структуры присваивается бит (1 для true или 0 для false) или байт длиной до 8 бит для представления целого числа или символа.
Рисунок 2 – Мультиплексирование с временным разделением (TDM)
Передача посредством мультиплексирования с разделением по длине волны (WDM)
Этот метод мультиплексирования оказался более полезным для телекоммуникационных компаний в конце 20-го века из-за емкости потоков данных, которые можно передавать по оптоволоконным линиям. Передача с помощью WDM стала возможна, потому что этот метод объединяет в одной линии передачи многочисленные сигналы данных на лазерных лучах с разными длинами волн инфракрасного излучения. Для передачи большого количества потоков данных WDM использует оптоволоконные кабели, что предпочтительнее обычного использования систем FDM и TDM. Эта система похожа на FDM, но этот метод работает на инфракрасном (IR) конце электромагнитного спектра. На приведенном ниже рисунке показан каждый канал потока данных, объединенный в белый свет, который передается по одному оптоволоконному кабелю.
Рисунок 3 – Мультиплексирования с разделением по длине волны (WDM)
В начале системы каждый сигнал данных управляет своим лазером, далее свет от этих лазеров смешивается призмой в оптическом мультиплексоре и передается по общему оптоволокну. А на приемной стороне полученный световой сигнал подается на оптический демультиплексор, где он разделяется другой призмой по длинам волн, и откуда выделенные сигналы подаются чувствительные к инфракрасному излучению фотоприемники.
Надеюсь, эта статья предоставила вам достаточно информации для понимания основных применений, концепций и схем использования мультиплексирования в телекоммуникационных процессах. Если у вас есть вопросы или отзывы, обязательно оставляйте комментарии!
Ещё о технологиях передачи данных по оптике. Волновое мультиплексирование сигналов
Начало. Свойства стандартного одномодового волокна G.652
Самое распространенное одномодовое оптическое волокно — это SMF G.652 разных модификаций. Практически наверняка, если у Вас есть волоконно-оптическая линия, она сделана из волокна G.652. У него есть ряд важных характеристик, которые надо иметь в виду.
Удельное (его ещё называют километрическим) затухание — то есть затухание одного километра волокна — зависит от длины волны излучения.
Википедия подсказывает нам следующее распределение:
.
В реальной жизни сейчас картина получше, в частности удельное затухание в окне 1310нм обычно укладывается в 0.35дБ/км, в окне 1550нм оно порядка 0.22-0.25дБ/км, а так называемый «водяной пик» в районе 1400-1450нм у современных волокон не так сильно выражен, либо вообще отсутствует.
Тем не менее, надо иметь в виду эту картину и само наличие этой зависимости.
Исторически диапазон длин волн, который пропускается оптическим волокном, делится на следующие диапазоны:
O — 1260…1360
E — 1360…1460
S — 1460…1530
C — 1530…1565
L — 1565…1625
U — 1625…1675
(цитирую по той же статье на Википедии).
С приемлемым приближением свойства волокна внутри каждого диапазона можно считать примерно одинаковыми. Водяной пик приходится, как правило, на длинноволновый конец E-диапазона. Ещё будем иметь в виду, что удельное (километрическое) затухание в O-диапазоне примерно в полтора раза выше, чем в S- и в С-диапазоне, удельная хроматическая дисперсия — наоборот, имеет нулевой минимум на длине волны в 1310нм и ненулевая в C-диапазоне.
Простейшие системы уплотнения — двунаправленная передача по одному волокну
Первоначально дуплексная волоконно-оптическая линия связи требовала для работы два волокна: по одному волокну шла передача информации в одну сторону, по другому волокну — в другую. Это удобно своей очевидностью, но довольно расточительно по отношению к использованию ресурса проложенного кабеля.
Поэтому, как только стала позволять технология, стали появляться решения для передачи информации в обе стороны по одному волокну. Названия подобных решений — «одноволоконные трансиверы», «WDM», «bi-directional».
В самых распространенных вариантах используются длины волн 1310 и 1550нм, соответственно из O- и C-диапазона. «В дикой природе» трансиверы на эти длины волн встречаются для линий до 60км. Более «дальнобойные» варианты делаются на другие комбинации — 1490/1550, 1510/1570 и тому подобные варианты с использованием окон прозрачности с мЕньшим удельным затуханием, чем в O-диапазоне.
Кроме вышеперечисленных пар длин волн, возможно встретить комбинацию 1310/1490нм — она используется, если одновременно с данными по этому же волокну передается сигнал кабельного телевидения на длине волны 1550нм; или 1270/1330нм — она используется для передачи 10Гбит/с потоков.
Мультиплексирование данных и кабельного телевидения
Раз уж я затронул тему КТВ, расскажу о нем ещё немного.
Для доставки сигнала кабельного телевидения от головной станции до многоквартирного дома сейчас тоже используется оптика. Для него используется либо длина волны 1310нм — здесь минимальная хроматическая дисперсия, то есть искажение сигнала; либо длина волны 1550нм — здесь минимальное удельное затухание и возможно применение чисто-оптического усиления с использованием EDFA. Если есть необходимость доставки на один дом одновременно и потока данных (интернет) и синала КТВ, нужно либо использовать два отдельных волокна, либо несложное пассивное устройство — фильтр FWDM.
Это обратимое устройство (то есть одно и то же устройсто используется как для мультиплексирования, так и для демультиплексирования потоков) с тремя выводами: под КТВ, одноволоконный трансивер и общий выход (см. схему). Таким образом можно строить сеть PON или Ethernet, используя для передачи данных длины волн 1310/1490, а для КТВ — 1550нм.
CWDM и DWDM
Об уплотнении CWDM уже вкратце рассказал theslim. От себя дополню лишь, что указанные в статье каналы на прием и передачу данных — это чистая условность, мультиплекору абсолютно всё равно, в какую сторону идет сигнал в каждом канале; а оптические приемники — широкополосные, они реагируют на излучение любой длины волны. Из важных моментов, которые надо иметь в виду при проектировании линии CWDM — это различие удельного затухания в волокне на разных каналах (см. первый раздел настоящей статьи), а также различие вносимого самим мультиплексором затухания. Мультиплексор сделан из последовательно соединенных фильтров, и если для первого в цепочке канала затухание может быть меньше одного децибела, то для последнего оно будет ближе к четырем (эти значения приведены для мультиплексора 1х16, на 16 длин волн). Также полезно помнить, что никто не запрещает строить двухволоконные CWDM-линии, просто объединив две пары мультиплексоров в один функциональный блок.
Кроме этого замечу, что вполне возможно часть частотного ресурса выделить под КТВ, передавая по одному волокну до семи дуплексных потоков данных одновременно с аналоговым телевидением.
Система DWDM принципиально ничем не отличается от CWDM, но — как говорится — «дьявол кроется в деталях». Если шаг каналов в CWDM — 20нм, то для DWDM он гораздо уже и измеряется в гигагерцах (самый распространенный сейчас вариант — 100ГГц, или около 0.8нм; также возможен устаревающий вариант с полосой 200ГГЦ и постепенно распространяются более современные — 50 и 25ГГц). Частотный диапазон DWDM лежит в C- и L-диапазоне, по 40 каналов в 100ГГц в каждом. Из этого следует несколько важных свойств DWDM-систем.
Во-первых, они значительно дороже CWDM. Для их использования требуются лазеры со строгим допуском по длине волны и мультиплексоры очень высокой избирательности.
Во-вторых, используемые диапазоны лежат в рабочих зонах оптических усилителей EDFA. Это позволяет строить длинные линии с чисто-оптическим усилением без необходимости оптоэлектронного преобразования сигнала. Именно это свойство привело к тому, что многие при слове «DWDM» сразу представляют себе именно сложные системы монстров телеком-рынка, хотя подобное оборудование можно использовать и в более простых системах.
И в-третих, затухание в C- и L-диапазонах минимально из всего окна прозрачности оптического волокна, что позволяет даже без усилителей строить линии бОльшей длины, чем при использовании CWDM.
Мультиплексоры DWDM — это так же пассивные устройства, как и мультиплексоры CWDM. Для числа каналов до 16 они также устроены из отдельных фильтров, и это довольно простые устройства. Однако мультиплексоры для бОльшего числа каналов делаются по технологии Arrayed Wavelength Grating, крайне чувствительной к изменениям температуры. Поэтому такие мультиплексоры выпускаются либо с электронной схемой термостабилизации (Thermal AWG), либо с применением специальных способов автокомпенсации, не требующих энергии (Athermal AWG). Это делает такие мультиплексоры более дорогими и нежными в эксплуатации.
Практические ограничения в волоконно-оптической связи
В заключение я немного расскажу об ограничениях, с которыми приходится иметь дело при организации связи по оптике.
Как совершенно справедливо отметил товарищ saul, первое ограничение — это оптический бюджет.
Дополню его некоторыми уточнениями.
Если мы говорим о двухволоконных линиях связи, расчет оптического бюджета достаточно сделать для одной длины волны — той, на которой будет вестись передача.
Как только у нас появляется волновое уплотнение (особенно в случае одноволоконных трансиверов или систем CWDM) — сразу надо вспомнить про неравномерность удельного затухания волокна на разных длинах волн и про затухание, вносимое мультиплексорами.
Если мы строим систему с промежуточными ответвлениями на OADM — не забываем посчитать затухание на OADM. Кстати, оно отличается для сквозного канала и выводимых длин волн.
Не забываем оставить несколько децибел эксплуатационного запаса.
Второе, с чем приходится иметь дело — это хроматическая дисперсия. Актуальной она по-настоящему становится для 10Гбит/с линий, и вообще говоря, о ней в первую очередь думает производитель оборудования. Кстати, именно дисперсия придает физический смысл упоминанию километров в маркетинговых названиях трансиверов. Специалисту эксплуатации просто полезно понимать, что есть такое свойство волокна и что кроме затухания сигнала в волокне картину портит ещё и дисперсия.
Для простых систем без усилителей расчет линии в основном сводится к расчету оптического бюджета, а тема расчета линии с усилителями вполне достойна отдельной статьи.
Вот, вкратце, инженерные основы технологий уплотнения в оптических линиях. Надеюсь, эта информация будет полезна читателям; на возникшие вопросы я с радостью отвечу.