что такое множественная регрессия
Линейная регрессия и множественная регрессия: в чем разница?
Опубликовано 10.06.2021 · Обновлено 13.06.2021
Линейная регрессия против множественной регрессии: обзор
Регрессионный анализ – это распространенный статистический метод, используемый в инвестициях. Линейная регрессия – один из наиболее распространенных методов регрессионного анализа. Множественная регрессия – это более широкий класс регрессий, который включает линейные и нелинейные регрессии с несколькими независимыми переменными.
Регрессия как инструмент помогает объединить данные, чтобы помочь людям и компаниям принимать обоснованные решения. В регрессии участвуют различные переменные, в том числе зависимая переменная – основная переменная, которую вы пытаетесь понять, – и независимая переменная – факторы, которые могут влиять на зависимую переменную.
Чтобы регрессионный анализ работал, вы должны собрать все соответствующие данные. Его можно представить на графике с осью x и осью y.
Есть несколько основных причин, по которым люди используют регрессионный анализ:
Есть много различных видов регрессионного анализа. В этой статье мы рассмотрим два: линейную регрессию и множественную регрессию.
Линейная регрессия
Это также называется простой линейной регрессией. Он устанавливает связь между двумя переменными с помощью прямой линии. Линейная регрессия пытается провести линию, которая ближе всего подходит к данным, путем нахождения наклона и точки пересечения, которые определяют линию и минимизируют ошибки регрессии.
Если две или более независимых переменных имеют линейную связь с зависимой переменной, регрессия называется множественной линейной регрессией.
Многие отношения данных не имеют прямой линии, поэтому статистики вместо этого используют нелинейную регрессию. Они похожи в том, что оба графически отслеживают конкретный ответ от набора переменных. Но нелинейные модели сложнее линейных, потому что функция создается на основе ряда предположений, которые могут быть результатом проб и ошибок.
Множественная регрессия
Редко, когда зависимая переменная объясняется только одной переменной. В этом случае аналитик использует множественную регрессию, которая пытается объяснить зависимую переменную, используя более одной независимой переменной. Множественные регрессии могут быть линейными и нелинейными.
Множественные регрессии основаны на предположении, что существует линейная связь между зависимыми и независимыми переменными. Это также предполагает отсутствие значительной корреляции между независимыми переменными.
Как упоминалось выше, у использования регрессионного анализа есть несколько преимуществ. Эти модели могут использоваться предприятиями и экономистами для принятия практических решений.
Краткий обзор
Компания может не только использовать регрессионный анализ, чтобы понять определенные ситуации, например, почему уменьшается количество обращений в службу поддержки, но и делать перспективные прогнозы, такие как показатели продаж в будущем, и принимать важные решения, такие как специальные продажи и рекламные акции.
Линейная регрессия против множественной регрессии: пример
Рассмотрим аналитика, который хочет установить линейную зависимость между ежедневным изменением цен на акции компании и другими объясняющими переменными, такими как дневное изменение объема торгов и ежедневное изменение рыночной доходности. Если он запустит регрессию с ежедневным изменением цен на акции компании в качестве зависимой переменной и ежедневного изменения объема торгов в качестве независимой переменной, это будет примером простой линейной регрессии с одной независимой переменной.
Если аналитик добавит дневное изменение рыночной доходности к регрессии, это будет множественная линейная регрессия.
Множественная линейная регрессия (MLR)
Опубликовано 29.06.2021 · Обновлено 29.06.2021
Что такое Множественная линейная регрессия (MLR)?
Множественная линейная регрессия (MLR), также известная просто как множественная регрессия, – это статистический метод, который использует несколько независимых переменных для прогнозирования результата переменной ответа. Цель множественной линейной регрессии (MLR) – смоделировать линейную связь между независимыми (независимыми) переменными и ответной (зависимой) переменной.
По сути, множественная регрессия – это расширение обычной регрессии методом наименьших квадратов (МНК), которая включает более одной независимой переменной.
Формула и расчет множественной линейной регрессии
уязнак равноβ0+β1Икся1+β2Икся2+…+βпИксяп+ϵжчере, еог язнак равноп обсерватионы:уязнак равнодепендент вариаблеИксязнак равноexpanatory variablesβ0знак равноy-intercept (constant term)βпзнак равноslope coefficients for each explanatory variableϵ=the model’s error term (also known as the residuals)\begin
Key Takeaways
What Multiple Linear Regression (MLR) Can Tell You
Simple linear regression is a function that allows an analyst or statistician to make predictions about one variable based on the information that is known about another variable. Linear regression can only be used when one has two continuous variables—an independent variable and a dependent variable. The independent variable is the parameter that is used to calculate the dependent variable or outcome. A multiple regression model extends to several explanatory variables.
The multiple regression model is based on the following assumptions:
The coefficient of determination (R-squared) is a statistical metric that is used to measure how much of the variation in outcome can be explained by the variation in the independent variables. R2 always increases as more predictors are added to the MLR model even though the predictors may not be related to the outcome variable.
R2 by itself can’t thus be used to identify which predictors should be included in a model and which should be excluded. R2 can only be between 0 and 1, where 0 indicates that the outcome cannot be predicted by any of the independent variables and 1 indicates that the outcome can be predicted without error from the independent variables.1
When interpreting the results of multiple regression, beta coefficients are valid while holding all other variables constant (“all else equal”). The output from a multiple regression can be displayed horizontally as an equation, or vertically in table form.2
Example How to Use Multiple Linear Regression (MLR)
As an example, an analyst may want to know how the movement of the market affects the price of ExxonMobil (XOM). In this case, their linear equation will have the value of the S&P 500 index as the independent variable, or predictor, and the price of XOM as the dependent variable.
In reality, there are multiple factors that predict the outcome of an event. The price movement of ExxonMobil, for example, depends on more than just the performance of the overall market. Other predictors such as the price of oil, interest rates, and the price movement of oil futures can affect the price of XOM and stock prices of other oil companies. To understand a relationship in which more than two variables are present, multiple linear regression is used.
Multiple linear regression (MLR) is used to determine a mathematical relationship among a number of random variables. In other terms, MLR examines how multiple independent variables are related to one dependent variable. Once each of the independent factors has been determined to predict the dependent variable, the information on the multiple variables can be used to create an accurate prediction on the level of effect they have on the outcome variable. The model creates a relationship in the form of a straight line (linear) that best approximates all the individual data points.3
Referring to the MLR equation above, in our example:
The least-squares estimates, B0, B1, B2…Bp, are usually computed by statistical software. As many variables can be included in the regression model in which each independent variable is differentiated with a number—1,2, 3, 4…p. The multiple regression model allows an analyst to predict an outcome based on information provided on multiple explanatory variables.
Still, the model is not always perfectly accurate as each data point can differ slightly from the outcome predicted by the model. The residual value, E, which is the difference between the actual outcome and the predicted outcome, is included in the model to account for such slight variations.
Assuming we run our XOM price regression model through a statistics computation software, that returns this output:
An analyst would interpret this output to mean if other variables are held constant, the price of XOM will increase by 7.8% if the price of oil in the markets increases by 1%. The model also shows that the price of XOM will decrease by 1.5% following a 1% rise in interest rates. R2 indicates that 86.5% of the variations in the stock price of Exxon Mobil can be explained by changes in the interest rate, oil price, oil futures, and S&P 500 index.
The Difference Between Linear and Multiple Regression
Ordinary linear squares (OLS) regression compares the response of a dependent variable given a change in some explanatory variables. However, it is rare that a dependent variable is explained by only one variable. In this case, an analyst uses multiple regression, which attempts to explain a dependent variable using more than one independent variable. Multiple regressions can be linear and nonlinear.
Multiple regressions are based on the assumption that there is a linear relationship between both the dependent and independent variables. It also assumes no major correlation between the independent variables.
Что такое множественная регрессия
Как только эта так называемая линия регрессии определена, аналитик оказывается в состоянии построить график ожидаемой (предсказанной) оплаты труда и реальных обязательств компании по выплате жалования. Таким образом, аналитик может определить, какие позиции недооценены (лежат ниже линии регрессии), какие оплачиваются слишком высоко (лежат выше линии регрессии), а какие оплачены адекватно.
В общественных и естественных науках процедуры множественной регрессии чрезвычайно широко используются в исследованиях. В общем, множественная регрессия позволяет исследователю задать вопрос (и, вероятно, получить ответ) о том, «что является лучшим предиктором для. «. Например, исследователь в области образования мог бы пожелать узнать, какие факторы являются лучшими предикторами успешной учебы в средней школе. А психолога мог быть заинтересовать вопрос, какие индивидуальные качества позволяют лучше предсказать степень социальной адаптации индивида. Социологи, вероятно, хотели бы найти те социальные индикаторы, которые лучше других предсказывают результат адаптации новой иммигрантской группы и степень ее слияния с обществом. Заметим, что термин «множественная» указывает на наличие нескольких предикторов или регрессоров, которые используются в модели.
Общая вычислительная задача, которую требуется решать при анализе методом множественной регрессии, состоит в подгонке прямой линии к некоторому набору точек.
Например, анимационный ролик ниже показывает доверительные интервалы (90%, 95% и 99%), построенные для двумерного регрессионного уравнения.
В многомерном случае, когда имеется более одной независимой переменной, линия регрессии не может быть отображена в двумерном пространстве, однако она также может быть легко оценена. Например, если в дополнение к IQ вы имеете другие предикторы успеваемости (например, Мотивация, Самодисциплина), вы можете построить линейное уравнение, содержащее все эти переменные. Тогда, в общем случае, процедуры множественной регрессии будут оценивать параметры линейного уравнения вида:
Однозначный прогноз и частная корреляция. Регрессионные коэффициенты (или B-коэффициенты) представляют независимые вклады каждой независимой переменной в предсказание зависимой переменной. Другими словами, переменная X1, к примеру, коррелирует с переменной Y после учета влияния всех других независимых переменных. Этот тип корреляции упоминается также под названием частной корреляции (этот термин был впервые использован в работе Yule, 1907). Вероятно, следующий пример пояснит это понятие. Кто-то мог бы, вероятно, обнаружить значимую отрицательную корреляцию в популяции между длиной волос и ростом (невысокие люди обладают более длинными волосами). На первый взгляд это может показаться странным; однако, если добавить переменную Пол в уравнение множественной регрессии, эта корреляция, скорее всего, исчезнет. Это произойдет из-за того, что женщины, в среднем, имеют более длинные волосы, чем мужчины; при этом они также в среднем ниже мужчин. Таким образом, после удаления разницы по полу посредством ввода предиктора Пол в уравнение, связь между длиной волос и ростом исчезает, поскольку длина волос не дает какого-либо самостоятельного вклада в предсказание роста помимо того, который она разделяет с переменной Пол. Другими словами, после учета переменной Пол частная корреляция между длиной волос и ростом нулевая. Иными словами, если одна величина коррелирована с другой, то это может быть отражением того факта, что они обе коррелированы с третьей величиной или с совокупностью величин.
Предсказанные значения и остатки. Линия регрессии выражает наилучшее предсказание зависимой переменной (Y) по независимым переменным (X). Однако, природа редко (если вообще когда-нибудь) бывает полностью предсказуемой и обычно имеется существенный разброс наблюдаемых точек относительно подогнанной прямой (как это было показано ранее на диаграмме рассеяния). Отклонение отдельной точки от линии регрессии (от предсказанного значения) называется остатком.
Остаточная дисперсия и коэффициент детерминации R-квадрат. Чем меньше разброс значений остатков около линии регрессии по отношению к общему разбросу значений, тем, очевидно, лучше прогноз. Например, если связь между переменными X и Y отсутствует, то отношение остаточной изменчивости переменной Y к исходной дисперсии равно 1.0. Если X и Y жестко связаны, то остаточная изменчивость отсутствует, и отношение дисперсий будет равно 0.0. В большинстве случаев отношение будет лежать где-то между этими экстремальными значениями, т.е. между 0.0 и 1.0. 1.0 минус это отношение называется R-квадратом или коэффициентом детерминации. Это значение непосредственно интерпретируется следующим образом. Если имеется R-квадрат равный 0.4, то изменчивость значений переменной Y около линии регрессии составляет 1-0.4 от исходной дисперсии; другими словами, 40% от исходной изменчивости могут быть объяснены, а 60% остаточной изменчивости остаются необъясненными. В идеале желательно иметь объяснение если не для всей, то хотя бы для большей части исходной изменчивости. Значение R-квадрата является индикатором степени подгонки модели к данным (значение R-квадрата близкое к 1.0 показывает, что модель объясняет почти всю изменчивость соответствующих переменных).
Интерпретация коэффициента множественной корреляции R.
Обычно, степень зависимости двух или более предикторов (независимых переменных или переменных X) с зависимой переменной (Y) выражается с помощью коэффициента множественной корреляции R. По определению он равен корню квадратному из коэффициента детерминации. Это неотрицательная величина, принимающая значения между 0 и 1. Для интерпретации направления связи между переменными смотрят на знаки (плюс или минус) регрессионных коэффициентов или B-коэффициентов. Если B-коэффициент положителен, то связь этой переменной с зависимой переменной положительна (например, чем больше IQ, тем выше средний показатель успеваемости оценки); если B-коэффициент отрицателен, то и связь носит отрицательный характер (например, чем меньше число учащихся в классе, тем выше средние оценки по тестам). Конечно, если B-коэффициент равен 0, связь между переменными отсутствует.
Предположения, ограничения и обсуждение практических вопросов
Предположение линейности. Прежде всего, как это видно уже из названия множественной линейной регрессии, предполагается, что связь между переменными является линейной. На практике это предположение, в сущности, никогда не может быть подтверждено; к счастью, процедуры множественного регрессионного анализы в незначительной степени подвержены воздействию малых отклонений от этого предположения. Однако всегда имеет смысл посмотреть на двумерные диаграммы рассеяния переменных, представляющих интерес. Если нелинейность связи очевидна, то можно рассмотреть или преобразования переменных или явно допустить включение нелинейных членов.
Предположение нормальности. В множественной регрессии предполагается, что остатки (предсказанные значения минус наблюдаемые) распределены нормально (т.е. подчиняются закону нормального распределения). И снова, хотя большинство тестов (в особенности F-тест) довольно робастны (устойчивы) по отношению к отклонениям от этого предположения, всегда, прежде чем сделать окончательные выводы, стоит рассмотреть распределения представляющих интерес переменных. Вы можете построить гистограммы или нормальные вероятностные графики остатков для визуального анализа их распределения.
Ограничения. Основное концептуальное ограничение всех методов регрессионного анализа состоит в том, что они позволяют обнаружить только числовые зависимости, а не лежащие в их основе причинные (causal) связи. Например, можно обнаружить сильную положительную связь (корреляцию) между разрушениями, вызванными пожаром, и числом пожарных, участвующих в борьбе с огнем. Следует ли заключить, что пожарные вызывают разрушения? Конечно, наиболее вероятное объяснение этой корреляции состоит в том, что размер пожара (внешняя переменная, которую забыли включить в исследование) оказывает влияние, как на масштаб разрушений, так и на привлечение определенного числа пожарных (т.е. чем больше пожар, тем большее количество пожарных вызывается на его тушение). Хотя этот пример довольно прозрачен, в реальности при исследовании корреляций альтернативные причинные объяснения часто даже не рассматриваются.
Мультиколлинеарность и плохая обусловленность матрицы. Проблема мультиколлинеарности является общей для многих методов корреляционного анализа. Представим, что имеется два предиктора (переменные X) для роста субъекта: (1) вес в фунтах и (2) вес в унциях. Очевидно, что иметь оба предиктора совершенно излишне; вес является одной и той же переменной, измеряется он в фунтах или унциях. Попытка определить, какая из двух мер является лучшим предиктором, выглядит довольно глупо; однако, в точности это происходит при попытке выполнить множественный регрессионный анализ с ростом в качестве зависимой переменной (Y) и двумя мерами веса, как независимыми переменными (X). Если в анализ включено много переменных, то часто не сразу очевидно существование этой проблемы, и она может возникнуть только после того, как некоторые переменные будут уже включены в регрессионное уравнение. Тем не менее, если такая проблема возникает, это означает, что, по крайней мере, одна из зависимых переменных (предикторов) является совершенно лишней при наличии остальных предикторов. Существует довольно много статистических индикаторов избыточности (толерантность, получастное R и др.), а также немало средств для борьбы с избыточностью (например, метод Гребневая регрессия).
Подгонка центрированных полиномиальных моделей. Подгонка полиномов высших порядков от независимых переменных с ненулевым средним может создать большие трудности с мультиколлинеарностью. А именно, получаемые полиномы будут сильно коррелированы из-за этого среднего значения первичной независимой переменной. При использовании больших чисел (например, дат в Юлианском исчислении), Эта проблема становится очень серьезной, и если не принять соответствующих мер, то можно прийти к неверным результатам. Решением в данном случае является процедура центрирования независимой переменной, т.е. вначале вычесть из переменной среднее, а затем вычислять многочлены. Более подробное обсуждение этого вопроса (и анализа полиномиальных моделей в целом) смотрите, например, в классической работе Neter, Wasserman & Kutner (1985, глава 9).
Важность анализа остатков. Хотя большинство предположений множественной регрессии нельзя в точности проверить, исследователь может обнаружить отклонения от этих предположений. В частности, выбросы (т.е. экстремальные наблюдения) могут вызвать серьезное смещение оценок, «сдвигая» линию регрессии в определенном направлении и тем самым, вызывая смещение регрессионных коэффициентов. Часто исключение всего одного экстремального наблюдения приводит к совершенно другому результату.
Все права на материалы электронного учебника принадлежат компании StatSoft
Множественный регрессионый анализ
Мультиколлинеарность имеет место, если определитель матрицы межфакторной корреляции близок к нулю:
Определение факторов, ответственных за мультиколлинеарность, может быть основано на анализе матрицы межфакторной корреляции. При этом определяют пару признаков-факторов, которые сильнее всего связаны между собой (коэффициент линейной парной корреляции максимален по модулю). Из этой пары в наибольшей степени ответственным за мультиколлинеарность будет тот признак, который теснее связан с другими факторами модели (имеет более высокие по модулю значения коэффициентов парной линейной корреляции).
Еще один способ определения факторов, ответственных за мультиколлинеарность основан на вычислении коэффициентов множественной детерминации (R 2 xj(x1. xj-1,xj+1. xm)), показывающего зависимость фактора xj от других факторов модели x1. xj-1, xj+1. xm. Чем ближе значение коэффициента множественной детерминации к единице, тем больше ответственность за мультиколлинеарность фактора, выступающего в роли зависимой переменной. Сравнивая между собой коэффициенты множественной детерминации для различных факторов можно проранжировать переменные по степени ответственности за мультиколлинеарность.
При выборе формы уравнения множественной регрессии предпочтение отдается линейной функции:
yi =a+b1·x1i+ b2·x2i+. + bm·xmi+ui
в виду четкой интерпретации параметров.
Данное уравнение регрессии называют уравнением регрессии в естественном (натуральном) масштабе. Коэффициент регрессии bjпри факторе хjназывают условно-чистым коэффициентом регрессии. Он измеряет среднее по совокупности отклонение признака-результата от его средней величины при отклонении признака-фактора хj на единицу, при условии, что все прочие факторы модели не изменяются (зафиксированы на своих средних уровнях).
Если не делать предположения о значениях прочих факторов, входящих в модель, то это означало бы, что каждый из них при изменении хj также изменялся бы (так как факторы связаны между собой), и своими изменениями оказывали бы влияние на признак-результат.
R — значит регрессия
Статистика в последнее время получила мощную PR поддержку со стороны более новых и шумных дисциплин — Машинного Обучения и Больших Данных. Тем, кто стремится оседлать эту волну необходимо подружится с уравнениями регрессии. Желательно при этом не только усвоить 2-3 приемчика и сдать экзамен, а уметь решать проблемы из повседневной жизни: найти зависимость между переменными, а в идеале — уметь отличить сигнал от шума.
Для этой цели мы будем использовать язык программирования и среду разработки R, который как нельзя лучше приспособлен к таким задачам. Заодно, проверим от чего зависят рейтинг Хабрапоста на статистике собственных статей.
Введение в регрессионный анализ
Основу регрессионного анализа составляет метод наименьших квадратов (МНК), в соответствии с которым в качестве уравнения регресии берется функция такая, что сумма квадратов разностей
минимальна.
Карл Гаусс открыл, или точнее воссоздал, МНК в возрасте 18 лет, однако впервые результаты были опубликованы Лежандром в 1805 г. По непроверенным данным метод был известен еще в древнем Китае, откуда он перекочевал в Японию и только затем попал в Европу. Европейцы не стали делать из этого секрета и успешно запустили в производство, обнаружив с его помощью траекторию карликовой планеты Церес в 1801 г.
Вид функции , как правило, определен заранее, а с помощью МНК подбираются оптимальные значения неизвестных параметров. Метрикой рассеяния значений
вокруг регрессии
является дисперсия.
Линейная регрессия
Уравнения линейной регрессии можно записать в виде
В матричном виде это выгладит
Случайная величина может быть интерпретирована как сумма из двух слагаемых:
Ограничения линейной регрессии
Для того, чтобы использовать модель линейной регрессии необходимы некоторые допущения относительно распределения и свойств переменных.
Как обнаружить, что перечисленные выше условия не соблюдены? Ну, во первых довольно часто это видно невооруженным глазом на графике.
Неоднородность дисперсии
При возрастании дисперсии с ростом независимой переменной имеем график в форме воронки.
Нелинейную регрессии в некоторых случая также модно увидеть на графике довольно наглядно.
Тем не менее есть и вполне строгие формальные способы определить соблюдены ли условия линейной регрессии, или нарушены.
В этой формуле — коэффициент взаимной детерминации между
и остальными факторами. Если хотя бы один из VIF-ов > 10, вполне резонно предположить наличие мультиколлинеарности.
Почему нам так важно соблюдение всех выше перечисленных условий? Все дело в Теореме Гаусса-Маркова, согласно которой оценка МНК является точной и эффективной лишь при соблюдении этих ограничений.
Как преодолеть эти ограничения
Нарушения одной или нескольких ограничений еще не приговор.
К сожалению, не все нарушения условий и дефекты линейной регрессии можно устранить с помощью натурального логарифма. Если имеет место автокорреляция возмущений к примеру, то лучше отступить на шаг назад и построить новую и лучшую модель.
Линейная регрессия плюсов на Хабре
Итак, довольно теоретического багажа и можно строить саму модель.
Мне давно было любопытно от чего зависит та самая зелененькая цифра, что указывает на рейтинг поста на Хабре. Собрав всю доступную статистику собственных постов, я решил прогнать ее через модель линейно регрессии.
Загружает данные из tsv файла.
Вопреки моим ожиданиям наибольшая отдача не от количества просмотров статьи, а от комментариев и публикаций в социальных сетях. Я также полагал, что число просмотров и комментариев будет иметь более сильную корреляцию, однако зависимость вполне умеренная — нет надобности исключать ни одну из независимых переменных.
В первой строке мы задаем параметры линейной регрессии. Строка points
. определяет зависимую переменную points и все остальные переменные в качестве регрессоров. Можно определить одну единственную независимую переменную через points
Перейдем теперь к расшифровке полученных результатов.
Можно попытаться несколько улучшить модель, сглаживая нелинейные факторы: комментарии и посты в социальных сетях. Заменим значения переменных fb и comm их степенями.
Проверим значения параметров линейной регрессии.
Проверим, соблюдены ли условия применимости модели линейной регрессии? Тест Дарбина-Уотсона проверяет наличие автокорреляции возмущений.
И напоследок проверка неоднородности дисперсии с помощью теста Бройша-Пагана.
В заключение
Конечно наша модель линейной регрессии рейтинга Хабра-топиков получилось не самой удачной. Нам удалось объяснить не более, чем половину вариативности данных. Факторы надо чинить, чтобы избавляться от неоднородной дисперсии, с автокорреляцией тоже непонятно. Вообще данных маловато для сколь-нибудь серьезной оценки.
Но с другой стороны, это и хорошо. Иначе любой наспех написанный тролль-пост на Хабре автоматически набирал бы высокий рейтинг, а это к счастью не так.