что такое кручение в технической механике
Тема 2.4. Кручение
Под кручением понимается такой вид деформации, когда в поперечных сечениях бруса действует только крутящий момент Mk, (другое обозначение T, Mz), а остальные силовые факторы (нормальная и поперечная силы и изгибающие моменты) отсутствуют.
Или другое определение кручением называют деформацию, возникающую при действии на стержень пары сил, расположенной в плоскости, перпендикулярной к его оси (рис.1).
Кручение возникает в валах, винтовых пружинах, в элементах пространственных конструкций и т.п.
Деформация кручения наблюдается если прямой брус нагружен внешними моментами (парами сил M), плоскости действия которых перпендикулярны к его продольной оси
В чистом виде деформация кручения встречается редко, обычно присутствуют и другие внутренние силовые факторы (изгибающие моменты, продольные силы).
Стержни круглого или кольцевого сечения, работающие на кручение, называют валами.
Внешние крутящие моменты передаются на вал в местах посадки на него шкивов, зубчатых колес, там, где поперечная нагрузка смещена относительно оси вала.
Мы будем рассматривать прямой брус только в состоянии покоя или равномерного вращения. В этом случае алгебраическая сумма всех внешних скручивающих моментов, приложенных к брусу, будет равна нулю.
При расчете брусьев, испытывающий деформацию кручения, на прочность и жесткость при статическом действии нагрузки, надо решить две основные задачи. Это определение напряжений (от Mk), возникающих в брусе, и нахождение угловых перемещений в зависимости от внешних скручивающих моментов.
При расчете валов обычно бывает известна мощность, передаваемая на вал, а величины внешних скручивающих моментов, подлежат определению. Внешние скручивающие моменты, как правило, передаются на вал в местах посадки на него шкивов, зубчатых колес и т.п.
§2. Построение эпюр крутящих моментов
Для определения напряжений и деформаций вала необходимо знать значения внутренних крутящих моментов Mk (Mz) в поперечных сечениях по длине вала. Диаграмму, показывающую распределение значений крутящих моментов по длине бруса, называют эпюрой крутящих моментов. Зная величины внешних скручивающих моментов и используя метод сечений, мы можем определить крутящие моменты, возникающие в поперечных сечениях вала.
В простейшем случае, когда вал нагружен только двумя внешними моментами (эти моменты из условия равновесия вала ΣMz=0 всегда равны друг другу по величине и направлены в противоположные стороны), как показано на рис. 1, крутящий момент Mz в любом поперечном сечении вала (на участке между внешними моментами) по величине равен внешнему моменту |M1|=|M2|.
iSopromat.ru
Кручением называется такой вид деформации бруса, при котором в его поперечных сечениях возникает только один внутренний силовой фактор – крутящий момент T.
Брусья, испытывающие кручение, принято называть валами.
Внутренний крутящий момент
Внутренние скручивающие моменты появляются под действием внешних крутящих моментов mi, расположенных в плоскостях, перпендикулярных к продольной оси бруса.
Скручивающие моменты передаются на вал в местах посадки зубчатых колес, шкивов ременных передач и т.п.
Величина крутящего момента в любом сечении вала определяется методом сечений:
т.е. крутящий момент численно равен алгебраической сумме скручивающих моментов mi, расположенных по одну сторону от рассматриваемого сечения.
Правило знаков внутренних скручивающих моментов:
Положительными принимаются внутренние моменты, стремящиеся повернуть рассматриваемую часть вала против хода часовой стрелки, при рассмотрении со стороны отброшенной части вала.
В технике наиболее широко используются валы круглого поперечного сечения.
Теория кручения круглых валов основана на следующих гипотезах:
Напряжения при кручении
В поперечных сечениях вала при кручении имеют место только касательные напряжения.
Касательные напряжения, направленные перпендикулярно к радиусам, для произвольной точки, отстоящей на расстоянии ρ от центра, вычисляются по формуле:
где Iρ — полярный момент инерции.
Эпюра касательных напряжений при кручении имеет следующий вид:
Касательные напряжения меняются по линейному закону и достигают максимального значения на контуре сечения при ρ= ρmax:
Здесь:
— полярный момент сопротивления.
Геометрические характеристики сечений:
а) для полого вала:
б) для вала сплошного сечения (c=0)
в) для тонкостенной трубы (t 0,9)
где
— радиус срединной поверхности трубы.
Деформации
Деформации валов при кручении заключаются в повороте одного сечения относительно другого.
Угол закручивания вала на длине Z определяется по формуле:
Если крутящий момент и величина GIρ, называемая жесткостью поперечного сечения при кручении, постоянны, для участка вала длиной l имеем:
Угол закручивания, приходящийся на единицу длины, называют относительным углом закручивания:
Расчет валов сводится к одновременному выполнению двух условий:
Для стальных валов принимается:
Используя условия прочности и жесткости, как и при растяжении – сжатии можно решать три типа задач:
Из двух найденных значений крутящего момента необходимо принять меньшее.
Потенциальная энергия упругой деформации определяется по формуле
или для участка вала при постоянном T и GIρ
Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах
6 Кручение (Техмех-2)
КРУЧЕНИЕ
Это вид деформации, при котором в любом поперечном сечении бруса возникает только крутящий момент.
Деформации кручения возникают, если к прямому брусу в плоскостях, перпендикулярных оси, приложить вращающий момент Т.
На кручение работают валы, имеющие круглое или кольцевое сечение, то рассмотрим кручение круглого цилиндра
Просмотр содержимого документа
«6 Кручение (Техмех-2)»
ГПОУ «Читинский техникум отраслевых технологий и бизнеса»
Лекция по технической механике
Разработчик: преподаватель Батуев Б. Н.
Это вид деформации, при котором в любом поперечном сечении бруса возникает только крутящий момент.
Деформации кручения возникают, если к прямому брусу в плоскостях, перпендикулярных оси, приложить вращающий момент Т.
На кручение работают валы, имеющие круглое или кольцевое сечение, то рассмотрим кручение круглого цилиндра (рис.).
T – вращающий момент
При кручении под действием Т:
ось = const прямолинейна;
3) образующие цилиндра изменяются по винтовой линии.
Т.е. происходит поворот поперечных сечений относительно друг друга вокруг оси кручения, углы поворота прямо пропорциональны расстояниям от закрепленного сечения.
φ – полный угол закручивания.
При кручении возникает деформация сдвига в результате вращательного движения одного поперечного сечения относительно другого.
Эпюры крутящих моментов дают возможность определить опасное сечение. Если брус имеет постоянное поперечное сечение, то опасными будут сечения на участке, где возникает Мк = max.
Мк 0, если при взгляде со стороны сечения M направлен против часовой стрелки, и наоборот.
В поперечном сечении, где приложен Mк, его значения меняются скачкообразно.
Решение. 1) Разбиваем вал на участки 1 – 5 и применяем метод сечений.
Из эпюры видно, что наибольший крутящий момент на втором участке:
Касательные напряжения максимальны в наибольшей удаленности от оси кручения:
Эпюра распределения напряжений вдоль радиуса сечения имеет вид треугольника (рис.).
Т.о. полный угол закручивания круглого цилиндра прямо пропорционален крутящему моменту, длине цилиндра и обратно пропорционален жесткости сечения при кручении.
где φi – угол закручивания каждого участка.
Момент сопротивления кручению:
Дано: Стальная круглая проволока длиной l=1 м, диаметром d=2 мм одним концом укреплена в зажиме, а на другом конце к ней приложен скручивающий момент. При каком угле закручивания напряжение кручения будет равно 60 МПа? Модуль упругости G = 8,2∙10 4 МПа.
Решение. Запишем формулы, необходимые для решения задачи: полный угол закручивания круглого цилиндра φ = Мкl/(GIр);
максимальное напряжение при кручении
Учитывая, что полярный момент инерции
и подставляя числовые значения, получим
Расчетная формула на прочность при кручении:
и читается так: касательное напряжение в опасном сечении, вычисленное по формуле τk = Мк/Wp не должно превышать допускаемое.
Допускаемое напряжение при кручении выбирают в зависимости от допускаемого напряжения при растяжении, а именно:
Кроме прочности к валам предъявляется требование
условия жесткости: заключающееся в том, что угол закручивания 1 м длины вала не должен превышать допустимой величины во избежание, например, пружинения валов или потери точности ходовых винтов токарно-винторезных станков.
Допускаемый угол закручивания 1 м длины вала задается в градусах и обозначается [φ0 ° ];
расчетная формула на жесткость при кручении:
Величины допускаемых углов закручивания зависят от назначения вала; их обычно принимают в следующих пределах:
С помощью этих формул выполняют три вида расчетов конструкций на прочность и жесткость при кручении — проектный, проверочный и определение допускаемой нагрузки.
Список использованных источников
Атаров Н.М. Сопротивление материалов в примерах и задачах. М.: Инфра-М, 2010.
Ксендзов В.А. Техническая механика. М.: КолосПресс, 2010.
Эрдеди А.А. и др. Теоретическая механика. Сопротивление материалов: /А.А.Эрдеди, Ю.А.Медведев, Н.А.Эрдеди. – М.: Высш. шк., 2001.
Деформация кручения
В различных механизмах детали подвергаются влиянию разных сил, приводящих к возникновению деформаций. Далее рассмотрена деформация кручения: факторы и закономерности ее проявления, формирующие ее силы, особенности деформации изделий различной формы.
Основные понятия
Под кручением понимают вид деформации, свойственный для условий приложения к телу силы в поперечной плоскости. В результате этого в поперечном разрезе формируется крутящий момент. Деформациям кручения подвергаются валы и пружины.
Валом называют функционирующую на кручение вращающуюся деталь в виде стержня.
Под торсионом понимают функционирующий на кручение стержень, применяемый в качестве упругого элемента.
Для круглых валов, наиболее обширно применяемых в технике, разработана теория кручения. Она основана на трех положениях:
Из приведенных положений следует, что кручение представлено деформацией сдвига материала между соседними поперечными сечениями, обусловленной проворотом последних вокруг оси.
Деформациями при кручении считают взаимный проворот сечений. Они формируются вследствие воздействия на стержень пар сил с перпендикулярными к его продольной оси плоскостями действия.
Величина деформаций описывается углом закручивания. Под полным понимают угол поворота свободного конца. Относительным считают значение для определенной длины вала. Данные параметры рассчитывают с учетом прочности и жесткости деталей.
Угол закручивания стержня цилиндрической конфигурации в границах упругих деформаций определяется уравнением закона Гука для кручения, представляющего отношение произведения момента и длины вала к произведению геометрического полярного инерционного момента и модуля сдвига.
Относительный угол закручивания вычисляют как частное угла закручивания и длины стержня.
Под вращающими либо скручивающими моментами понимают показатели пар сил, воздействующих на вал. Их подразделяют на внешние, называемые вращающими и скручивающими, и внутренние (крутящие). Под влиянием перпендикулярных продольной оси бруса внешних крутящих моментов формируются внутренние. Они передаются на деталь в точках установки шкивов ременных передач, зубчатых колес и т. д.
Крутящий момент представлен силовым фактором, обуславливающим круговое передвижение сечения относительно перпендикулярной ему оси или препятствующим ему. Его значение равно сумме скручивающих усилий по одну сторону от данной точки. Положительными считают внутренние моменты, направленные против часовой стрелки со стороны внешней нормали (отброшенной части). При этом соответствующий внешний момент имеет направление, совпадающее с ходом часовой стрелки.
Условия прочности и жесткости применяют для решения следующих задач:
Под эпюрой крутящих моментов понимают график, отображающий закон их изменения по длине либо сечению детали.
При разделении детали по длине на три участка в соответствии с методом сечений получится, что для первого (правого) фрагмента наблюдается линейная зависимость крутящего момента от координаты сечения ввиду влияния равномерно распределенной нагрузки, для второго и третьего участков данная зависимость отсутствует. При этом в точках приложения внешних сосредоточенных усилий наблюдаются скачки, соответствующие их величине.
В сечении наблюдается линейное изменение, определяемое законом касательных напряжений, в прямой зависимости от расстояния от центра.
Таким образом, в продольном разрезе наибольшие деформации кручения характерны для точки, наиболее удаленной от места закрепления детали. В поперечном разрезе максимальные деформации кручения наблюдаются на поверхности.
Полярный инерционный момент сечения представляет собой геометрическую характеристику жесткости при кручении для круглого вала. Полярный момент сопротивления сечения является аналогичным параметром для его прочности.
Следует отметить, что большинство приведенных выше понятий описывается с применением формул.
Напряжения кручения
Исходя из приведенного выше определения деформации кручения, при данном процессе в поперечном сечении наблюдаются лишь касательные напряжения, направленные перпендикулярно к радиусам. Их определяют для конкретной точки как произведение соотношения крутящего момента к геометрическому полярному инерционному моменту и расстояния данной точки от оси кручения.
Изменение касательных напряжения линейно, и максимальной величины они достигают на поверхности при наибольших значениях крутящего момента и расстояния от оси кручения, поэтому ее значение вычисляют как частное наибольшего крутящего и полярного моментов сопротивления.
С применением данного условия возможно вычислить прочие параметры: по силовым факторам, создающим крутящий момент – показатель сопротивления и далее размеры сечения в зависимости от формы, либо по размеру сечения – максимально допустимое для него значение крутящего момента и на основе последней допустимые значения внешних нагрузок.
Касательные напряжения, по закону парности, формируются при кручении как в поперечных, так и в продольном направлениях. Вследствие этого во всех точках вала наблюдается деформация в виде чистого сдвига. Главные напряжения направлены к образующей под углом 45°.
Помимо скручивающих усилий возможно воздействие на вал моментной нагрузки.
Из изложенных выше данных следует, что удаление материала в районе оси вала незначительно сказывается на прочности ввиду того, что данная часть мало нагружена. При равных площади сечения и массе деталей кольцевые варианты характеризуются большими полярными моментами сопротивления и инерции по сравнению со сплошными валами. То есть при равной массе полые варианты прочнее и жестче, а при одинаковых показателях прочности и жесткости легче. Названные параметры определяют устойчивость данных изделий к деформации.
Выше были рассмотрены особенности деформации кручения круглых в поперечном разрезе предметов. Для треугольных, прямоугольных, эллиптических и прочих вариантов не применима гипотеза плоских сечений. Это обусловлено тем, что поверхности данного типа при кручении искривляются. Данный процесс их коробления вследствие смещения отдельных точек при деформации вдоль оси называют депланацией. Вследствие этого методы сопротивления материалов для вычисления кручений и напряжений неприменимы. Вместо них используют методы теории упругости.
Для изделий произвольной поперечной формы касательные напряжения имеют направление по касательной к контуру, однако при наличии внешних углов они отсутствуют. Так, при разложении напряжения вблизи угла по нормалям к его сторонам надвое из закона парности следует формирование касательных напряжений на свободной поверхности. Однако в данном случае она свободна от нагрузки, поэтому у внешнего угла касательные напряжения обнуляются.
Для наиболее распространенных среди вариантов некруглого сечения прямоугольных валов наибольшие напряжения характерны для поверхностных участков в середине длинных сторон. Следовательно, там наблюдается наибольшая деформация кручения.
Прямоугольные детали в сравнении с круглым характеризуются значительно меньшими жесткостью и прочностью. Причем это отличие увеличивается с ростом отношения сторон. Следовательно, они более подвержены деформации.
Презентация по технической механике на тему «Кручение»
Ищем педагогов в команду «Инфоурок»
Описание презентации по отдельным слайдам:
Внутренние силовые факторы –результат действия внешних сил
на кручение работают валы и оси, на которых размещены шкивы или другие вращающиеся детали, пружины деформацию кручения испытывают болты, винты, отвертки
2. Деформации при кручении где Mкр – крутящий момент, Н·м l – длина участка вала, м J – полярный момент инерции, м4 G – модуль сдвига, Па
3. Напряжения при кручении В поперечном сечении возникают касательные напряжения τ, направленные перпендикулярно радиусу. Максимальные касательные напряжения τmax возникают в точках контура поперечного сечения: где Wρ – полярный момент сопротивления поперечного сечения
4. Построение эпюр крутящих моментов
Пример 1. Построить эпюру крутящих моментов М1= 20 кН·м М2 = 40 кН·м М3 = 30 кН·м Эпюра Мкр
5. Условие прочности при кручении где max – максимальное напряжение в опасном сечении вала, Па [кр] – допускаемое напряжение при кручении, Па Mкр – крутящий момент, Н∙м Wρ – полярный момент сопротивления поперечного сечения, м3
7. Расчеты на прочность и жесткость при кручении Проверочный расчет Проектный расчет Определение допускаемого момента
Курс повышения квалификации
Охрана труда
Курс профессиональной переподготовки
Библиотечно-библиографические и информационные знания в педагогическом процессе
Курс профессиональной переподготовки
Охрана труда
Данная презентация используется при изучении раздела технической механики «Сопротивление материалов». Знакомит обучающихся с одним из видов деформаций элементов конструкций – кручением, а также с методикой расчета конструкций на прочность и жесткость при кручении.
Содержит следующие вопросы: 1.Понятие о кручении; 2. Деформации при кручении;3. Напряжения при кручении; 4. Посторение эпюр крутящих моментов; 5.Условие прочности при кручении; 6. Условие жесткости при кручении; 7. Расчеты на прочность и жесткость при кручении.
Презентация может быть применена как сопровождение урока-лекции.
Номер материала: 427052
Международная дистанционная олимпиада Осень 2021
Не нашли то что искали?
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Безлимитный доступ к занятиям с онлайн-репетиторами
Выгоднее, чем оплачивать каждое занятие отдельно
Руководители управлений образования ДФО пройдут переобучение в Москве
Время чтения: 1 минута
Путин попросил привлекать родителей к капремонту школ на всех этапах
Время чтения: 1 минута
В Северной Осетии организовали бесплатные онлайн-курсы по подготовке к ЕГЭ
Время чтения: 1 минута
Минпросвещения будет стремиться к унификации школьных учебников в России
Время чтения: 1 минута
Шойгу предложил включить географию в число вступительных экзаменов в вузы
Время чтения: 1 минута
В Минпросвещения предложили организовать телемосты для школьников России и Узбекистана
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.