что такое икс в уравнении
Решение простых линейных уравнений
Понятие уравнения
Понятие уравнения обычно проходят в самом начале школьного курса алгебры. Его определяют, как равенство с неизвестным числом, которое нужно найти.
В школьной программе за 7 класс впервые появляется понятие переменных. Их принято обозначать латинскими буквами, которые принимают разные значения. Исходя из этого можно дать более полное определение уравнению.
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.
Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.
Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Решить уравнение значит найти все возможные корни или убедиться, что их нет.
Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.
Какие бывают виды уравнений
Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.
Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.
Линейное уравнение выглядит так | ах + b = 0, где a и b — действительные числа. Что поможет в решении: Система уравнений — это несколько уравнений, для которых нужно найти значения неизвестных. Она имеет вид ax + by + c = 0 и называется линейным уравнением с двумя переменными x и y, где a, b, c — числа. Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому выражению и является верным числовым равенством. Числовой коэффициент — число, которое стоит при неизвестной переменной. Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз: Как решать простые уравненияЧтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила. 1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный. Для примера рассмотрим простейшее уравнение: x+3=5 Начнем с того, что в каждом уравнении есть левая и правая часть. Перенесем 3 из левой части в правую и меняем знак на противоположный. Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2. Решим еще один пример: 6x = 5x + 10. 2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок. Применим правило при решении примера: 4x=8. При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение. Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица. Разделим каждую часть на 4. Как это выглядит: Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения: Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12 Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах. Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные. Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки. Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте схему-подсказку — храните ее в телефоне, учебники или на рабочем столе. А вот и видео «Простейшие линейные уравнения» для тех, кто учиться в 5, 6 и 7 классе. Примеры линейных уравненийТеперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе! Пример 1. Как правильно решить уравнение: 6х + 1 = 19. Пример 2. Как решить уравнение: 5(х — 3) + 2 = 3 (х — 4) + 2х — 1. 5х — 15 + 2 = 3х — 2 + 2х — 1 Ответ: х — любое число. Пример 3. Решить: 4х = 1/8. Пример 4. Решить: 4(х + 2) = 6 — 7х. Пример 5. Решить: Пример 6. Как решить линейное уравнение: х + 7 = х + 4. 5х — 15 + 2 = 3х — 2 + 2х — 1 Пример 7. Решить: 2(х + 3) = 5 — 7х.. Что такое уравнение и корни уравнения? Как решить уравнение?Уравнения бывают разные. Вы изучите их многие виды в курсе математике, но все они решаются по одним правилам, эти правила мы сейчас рассмотрим подробно. Что такое уравнение? Смысл и понятия.Узнаем сначала все понятия, связанные с уравнением. Определение: Переменные (аргументы уравнения) или неизвестные уравнения – их обозначают в основном латинскими буквами (x, y, z, f и т.д.). При подстановки числового значения переменной в уравнение получаем верное равенство – это корень уравнения. Решить уравнение – это значит найти все корни уравнения или доказать, что у данного уравнения нет корней. Корни уравнения – это значение переменной при котором уравнение превращается в верное равенство. Рассмотрим теперь, все термины на простом примере: В данном случае x – переменная или неизвестное значение уравнения. Можно устно решить данное уравнение. Какое надо число прибавить к 1, чтобы получить 3? Конечно, число 2. То есть наша переменная x =2. Корень уравнения равен 2. Проверим правильно ли мы решили уравнение? Чтобы проверить уравнение, нужно вместо переменной подставить полученный корень уравнения. Получили верное равенство. Значит, правильно нашли корни уравнения. Но бывают более сложные уравнения, которые устно не решить. Нужно прибегать к правилам решения уравнений. Рассмотрим правила решения уравнений ниже, которые объяснят нам как решать уравнения. Правила уменьшения или увеличения уравнения на определенное число.Чтобы понять правило рассмотрим подробно простой пример: Решение: Как проверить правильно ли вы нашли корень уравнения? Ведь не все уравнения будут простыми как данное. Чтобы проверить корень уравнения его значение нужно поставить в само уравнение. Проверка: x+2=7 Разберем следующий пример: Решение: Теперь выполним проверку, вместо переменной x подставим в уравнение полученное число 16. Очень важно понять правила переноса частей уравнения через знак равно. Не всегда нужно переносить числа, иногда нужно перенести переменные или даже целые выражения. Рассмотрим пример: Теперь, когда все неизвестные в левой стороне, а все известные в правой стороне посчитаем их. Получилось верное равенство, уравнение решено верно. Правила уменьшения или увеличения уравнения в несколько раз.Данное правило подходит тогда, когда вы уже посчитали все неизвестные и известные, но какой-то коэффициент остался перед переменной. Чтобы избавится от не нужного коэффициента мы применяем правило уменьшения или увеличения в несколько раз коэффициент уравнения. Рассмотрим пример: Решение: 5x=20 Делаем проверку уравнения. Вместо переменной x подставляем 4. Решение: Сделаем проверку уравнения. Подставим вместо переменной x полученный корень уравнения 21. 7=7 получено верное равенство. Ответ: корень уравнения равен x=21. Следующий пример: Далее делим все уравнение на 3. Сделаем проверку. Подставим в уравнение найденный корень. Как решать уравнения? Алгоритм действий.Подведем итог разобранной теме уравнений, рассмотрим общие правила решения уравнений: Эти правила действуют на любой вид уравнения (линейный, квадратный, логарифмический, тригонометрический, рациональные, иррациональные, показательные и другие виды). Поэтому важно понять эти простые правила и научиться ими пользоваться. Как объяснить уравнения с х (икс) школьнику в 4 классе?Автор: Творческая Анна Недавно звонит мама школьника, с которым я занимаюсь и просит объяснить математику ребёнку, т.к он не понимает, а она не него кричит и разговор с сыном не выходит. У меня не математический склад ума, творческим людям это не свойственно, но я сказала, что посмотрю что они проходят и попробую. И вот что получилось. Я взяла лист бумаги формата А4, обычный белый, фломастеры, карандаш в руки и начала выделять, то что стоит понять, запомнить, обратить внимание. И чтобы было видно, куда эта цифра переходит и как меняется. Объяснение примеров с левой стороны, на правую сторону. Пример № 1Пример уравнения для 4 класса со знаком плюс. Самым первым действием смотрим, что мы можем сделать в этом уравнении? Тут мы можем выполнить умножение. Умножаем 80*7 получаем 560. Переписываем ещё раз. Х + 320 = 560 (выделила цифры зеленым маркером). Теперь мы видим, что у нас есть х (неизвестное) и числа, только не рядом, а разделяет их знак равно. Х в одну сторону, цифры в другую. Х = 560 – 320. Минус ставим потому что при переносе числа, знак что перед ним меняется на противоположный. Выполняем вычитание. Х = 240 Обязательно делаем проверку. Проверка покажет правильно ли мы решили уравнение. Вместо х вставляем число, которое получили. Проверка:240 + 320 = 80*7 Складываем числа, с другой стороны умножаем. Всё верно! Значит мы решили уравнение правильно! Пример № 2Пример уравнения для 4 класса со знаком минус. Первым действием смотрим, что мы можем сделать в этом уравнении? В данном примере мы можем разделить. Производим деление 240 разделить на 3 получаем 80. Переписываем уравнение ещё раз. Х – 180 = 80 (выделила цифры зеленым маркером). Теперь мы видим, что у нас есть х (неизвестное) и числа, только не рядом, а разделяет их знак равно. Х в одну сторону, цифры в другую. Х = 80 + 180 Знак плюс ставим потому что при переносе числа, знак что был перед цифрой меняется на противоположный. Считаем. Х = 260 Выполняем проверочную работу. Проверка покажет правильно ли мы решили уравнение. Вместо х вставляем число, которое получили. Проверка:Пример № 3Пример уравнения для 4 класса со знаком минус, где х в середине, другими словами пример уравнения, где х отрицательный в середине. 400 – х = 275 + 25 Складываем числа. 400 – х = 300 Числа разделены знаком равенства, х является отрицательным. Чтобы сделать его положительным, нам нужно перенести его через знак равно, собираем числа в одной стороне, х в другой. Т.к не принято так писать, а первым в уравнении должен быть х, просто меняем их местами. Проверка:400 – 100 = 275 + 25 Считаем. Пример № 4Пример уравнения для 4 класса со знаком минус, где х в середине, другими словами пример уравнения, где х отрицательный в середине. 72 – х = 18 * 3 Выполняем умножение. Переписываем пример. 72 – х = 54 Выстраиваем числа в одну сторону, х в другую. Цифра 54 меняет знак на противоположный, т.к перепрыгивает через знак равно. 18 = х Меняем местами, для удобства. Проверка:Пример № 5Пример уравнения с х с вычитанием и сложением для 4 класса. Х – 290 = 470 + 230 Складываем. Х – 290 = 700 Выставляем числа с одной стороны. Х = 700 + 290 Считаем. Проверка:990 – 290 = 470 + 230 Выполняем сложение. Пример № 6Пример уравнения с х на умножение и деление для 4 класса. 15 * х = 630/70 Выполняем деление. Переписываем уравнение. 15 * х = 90 Это тоже самое, что 15х = 90 Оставляем х с одной стороны, числа с другой. Данное уравнение принимает следующий вид. Х = 90/15 при переносе цифры 15 знак умножения меняется на деление. Считаем. Проверка:15*6 = 630 / 7 Выполняем умножение и вычитание. Теперь озвучиваем основные правила:Выполняем то, что можно сделать, уравнение станет немного короче. Неизвестную переменную в одну сторону (не всегда это х, может быть и другая буква), числа в другую. Если было число положительным, то при переносе перед цифрой ставим знак минус. И наоборот, если число или х было со знаком минус, то при переносе через равно ставим знак плюс. При выполнении домашнего задания, классной работы, тестов, всегда можно взять лист и написать вначале на нём и сделать проверку. Дополнительно находим подобные примеры в интернете, дополнительных книгах, методичках. Проще не менять цифры, а брать уже готовые примеры. Чем больше ребёнок будет решать сам, заниматься самостоятельно, тем быстрее усвоит материал. Если ребенок не понимает примеры с уравнением, стоит объяснить пример и сказать, чтобы остальные делал по образцу. Данное подробное описание, как объяснить уравнения с х школьнику для: Детям нужно все делать в цвете, разными мелками на доске, но увы не все так делают. Из своей практикиМальчик писал так, как хотел, вопреки существующим правилам по математике. При проверке уравнения были разные цифры и одно число (с левой стороны) не равнялось другому (то что с правой стороны), он тратил время на поиски ошибки. При вопросе, почему он так делает? Был ответ, что он пытается угадать и думает, а вдруг сделает правильно. В данном случае нужно каждый день (через день) решать подобные примеры. Довести действия до автоматизма и конечно все дети разные, дойти может не с первого занятия. Если у родителей нет времени, а часто это так, потому что родители зарабатывают денежные средства, то лучше найти репетитора в своём городе, который сможет объяснить пройденный материал ребёнку. Сейчас век ЕГЭ, тестов, контрольных работ, есть дополнительные сборники и методички. Делая за ребёнка домашние задания, родители должны помнить, что на экзамене в школе их не будет. Лучше объяснить доходчиво ребёнку 1 раз, чтобы ребёнок смог самостоятельно решать примеры. Математика. 4 классКонспект урокаМатематика, 4 класс Урок 21. Решение уравнений Перечень вопросов, рассматриваемых в теме: Уравнение – это равенство с неизвестным числом. Неизвестное число обозначают латинской буквой. Решить уравнение – это значит найти значение неизвестного, при котором равенство будет верным. Корень уравнения – это значение неизвестного, обозначенного латинской буквой в уравнении. Чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность. Обязательная и дополнительная литература по теме урока: 1. Моро М. И. Учебник для 4 класса четырехлетней начальной школы. М. «Просвещение» — 2017.С. 62,63 2. Волкова Е. В. математика Всероссийская проверочная работа за курс начальной школы. Издательство «Экзамен» 2018.С.27 3. Петерсон Л. Г. математика 3 класс. Часть 2. Ювента, 2015.-96с.: ил. С.77-78 Теоретический материал для самостоятельного изучения: Являются ли эти записи уравнениями? Это не уравнения, так как в уравнении должен быть знак «=». Это выражения. Уравнение – это равенство с неизвестным числом. Неизвестное число обозначают латинской буквой. Рассмотрите другие записи: Это уравнения, так как это равенства, содержащие переменную. Попробуем их решить. Что значит решить уравнение? Решить уравнение – это значит найти значение неизвестного, при котором равенство будет верным. Вспомните алгоритм решения уравнений. Используя алгоритм, решите первое уравнение Значение неизвестного х = 25. Это корень уравнения. Корень уравнения – это значение неизвестного, обозначенного латинской буквой в уравнении. В данном случае – это х. Можно ли решить второе уравнение, используя этот же алгоритм? Такие уравнения не рассматривались. Какова же цель нашего урока? Цель урока: научиться решать уравнения, в которых в ответе не число, а числовое выражение. Такие уравнения мы будем называть составные. Поэтому тема урока: «Решение составных уравнений» Чтобы решить это уравнение, нужно упростить правую часть. Ответ: корень уравнения 25 Составим алгоритм решения составных уравнений. Алгоритм решения составных уравнений 1. Найти значение числового выражения. 2. Вспомнить компоненты действия данного уравнения. 3. Определить неизвестный компонент. 4. Вспомнить правило нахождения неизвестного компонента. 5. Применить правило и найти неизвестный компонент. 7. Сделать проверку. Решим еще одно уравнение: Применяем алгоритм решения составных уравнений: 3. Определить неизвестный компонент. 4. Вспомнить правило нахождения неизвестного компонента. 5. Применить правило и найти неизвестный компонент. 7. Сделать проверку. Ответ: корень уравнения 12 Вывод: чтобы решить составное уравнение, в которых в ответе не число, а числовое выражение, необходимо упростить правую часть ( т.е решить выражение), после чего получаем уравнение известного вам вида и решаем его, используя алгоритм решения уравнений. Решим задачу, составив уравнение: Сумма неизвестного числа и числа 390 равна произведению чисел 70 и 6. Найди это число. 1. Сумма неизвестного числа и числа 390 – обозначим неизвестное число переменной х, тогда получим х + 390 2. Произведение чисел 70 и 6: 70 ∙ 6 3. Получаем уравнение: х + 390 = 70 ∙ 6 Применяя алгоритм решения составных уравнений, решим его: Что такое уравнение? Как решать уравнения?Уравнение — одно из краеугольных понятий всей математики. Как школьной, так и высшей. Имеет смысл разобраться, правда? Тем более, что это очень простое понятие. Ниже сами убедитесь. 🙂 Так что же такое уравнение? То, что это слово однокоренное со словами «равный», «равенство», возражений, думаю, ни у кого не вызывает. Уравнение — это два математических выражения, соединённых между собой знаком «=» (равно). Но… не каких попало. А таких, в которых (хотя бы в одном) содержится неизвестная величина. Или, по-другому, переменная величина. Или, сокращённо, просто «переменная». Которая обычно обозначается буквой «х». Переменных может быть одна, может быть несколько. В школьной математике чаще всего рассматриваются уравнения с одной переменной. И мы тоже пока что будем рассматривать уравнения с одной переменной. С двумя переменными или более — в специальных уроках. Что значит решить уравнение? Переменная, входящая в уравнение, может принимать любые допустимые математикой значения. На то она и переменная. 🙂 При каких-то значениях переменной получается верное числовое равенство, а при каких-то — нет. Решить уравнение означает найти ВСЕ такие значения переменной, при подстановке которых в исходное уравнение получается верное равенство. Или, более научно, верное тождество. Или доказать, что таких значений переменной не существует. Корень может быть один, может быть несколько. А может быть и бесконечно много корней — целый интервал или даже вообще вся числовая прямая от –∞ до +∞. Да, такое тоже бывает! Всё от конкретного уравнения зависит.) А бывает и такое, что нельзя найти такие иксы, которые давали бы нам верное равенство. Принципиально нельзя. По определённым причинам. Нету таких иксов… В таких случаях обычно говорят, что уравнение не имеет корней. Для чего нужны уравнения? Вопрос смешной. Для жизни! В школе, как правило, уравнения нужны для решения текстовых задач. Это, напоминаю, задачи на движение, на работу, на проценты и многие другие. А во взрослой жизни без уравнений невозможны было бы ответить даже на самые обычные, но жизненно важные вопросы повседневности: какая будет погода завтра, выдержит ли заданную нагрузку здание. Или лифт. Или самолёт. Куда попадёт ракета… И не было бы сейчас среди нас ни синоптиков, ни инженеров, ни бухгалтеров, ни экономистов, ни программистов… За ненадобностью. Внушает?) Почему это так? А потому, что уравнениями описываются почти все известные человеку природные явления и процессы. Изменение давления и температуры воздуха с высотой, закон всемирного тяготения, размножение бактерий, радиоактивный распад, химические реакции, электричество, спрос и предложение — в основе всего этого лежат математические уравнения! Простые, сложные — всякие. Какое явление или ситуация, такое и уравнение.) Уравнения — очень мощный и универсальный инструмент для решения самых разных прикладных задач. А какие бывают уравнения? Уравнений в математике несметное количество. Самых разных видов. Но всё многообразие уравнений можно условно разделить всего на 4 категории: 3. Дробные (или дробно-рациональные), Разные категории уравнений требуют и разного подхода к их решению: линейные уравнения решаются одним способом, квадратные — другим, дробные — третьим, тригонометрические, логарифмические, показательные и прочие — тоже решаются своими методами. Прочих уравнений, разумеется, больше всего, да…) Это и иррациональные, и тригонометрические, и показательные, и логарифмические, и многие другие уравнения. И даже дифференциальные уравнения (для студентов), где роль неизвестного играет не число, а функция. Или даже семейство функций. 🙂 В соответствующих уроках мы подробно разберём все эти типы уравнений. А здесь у нас — базовые приёмы и правила. Называются эти правила — тождественные (или — равносильные) преобразования уравнений. Их всего два. И нигде их не обойти. Так что знакомимся! Как решать уравнения? Тождественные (равносильные) преобразования уравнений. Решение любого уравнения заключается в поэтапном преобразовании входящих в него выражений. Но преобразований не абы каких, а таких, чтобы от шага к шагу суть всего уравнения не менялась. Несмотря на то, что после каждого преобразования уравнение будет видоизменяться и, в конечном счёте, станет совсем не похоже на исходное. Такие преобразования в математике называются равносильными или тождественными. Их довольно много, но среди всего многообразия тождественных преобразований уравнений выделяется два базовых. О них и пойдёт речь в этом уроке. Да-да, всего два! Но — крайне важных! И каждое из них заслуживает отдельного внимания. Применение этих двух тождественных преобразований в том или ином порядке гарантирует успех в решении 99% уравнений математики. Заманчиво, правда? Первое тождественное преобразование: К обеим частям уравнения можно прибавить (или отнять) любое (но одинаковое!) число или выражение (в том числе и с переменной). Суть уравнения от этого не изменится. Это преобразование вы применяете всюду, наивно думая, что переносите какие-то члены из одной части уравнения в другую, меняя знаки. 🙂 Например, такое крутое уравнение: Тут и думать нечего, перебрасываем тройку вправо, меняя минус на плюс: А что же происходит в действительности? А на самом деле вы… прибавляете к обеим частям уравнения тройку! Вот что у вас происходит: И результат получается тем же самым: Вот и всё. Слева остаётся чистый икс (чего мы, собственно, и добиваемся), а справа — что уж получится. Но самое главное то, что от прибавления тройки к обеим частям суть всего уравнения не изменилась! Дело в том, что привычный нам перенос слагаемых из одной части в другую со сменой знака — это просто сокращённый вариант первого тождественного преобразования. И зачем нам так глубоко копать? В уравнениях — незачем. Переносите себе спокойно и не парьтесь. Только знаки менять не забывайте.) А вот в неравенствах привычка к переносу может и слегка обескуражить, да… Это было первое тождественное преобразование. Переходим ко второму. Второе тождественное преобразование: Обе части уравнения можно умножить (разделить) на одно и то же отличное от нуля число или выражение. Это тождественное преобразование мы вы постоянно применяете, когда решаете что-нибудь совсем уж жуткое типа: Тут каждому ясно, что х=3. А вот как вы получили этот ответ? Подобрали? Угадали? Чтобы не подбирать и не гадать (мы с вами математики, а не гадалки), нужно понять, что вы просто поделили обе части уравнения на четвёрку. Которая нам и мешает. Эта палка с делением означает, что на четвёрку делятся обе части нашего уравнения. Через дроби эта процедура выглядит так: Слева четвёрки благополучно сокращаются, остаётся икс в гордом одиночестве. А справа при делении 12 на 4 получается, понятное дело, тройка. 🙂 Звучит невероятно, но эти два (всего два!) простых преобразования лежат в основе решения всех уравнений математики! Да-да, именно всех, я нисколько не преувеличиваю! От линейных и квадратных в школе до дифференциальных в ВУЗе.) Ну что, посмотрим на тождественные преобразования уравнений в действии? Применение тождественных преобразований к решению уравнений. Начнём с первого тождественного преобразования. Переноса вправо-влево. Пример для новичков: Дело нехитрое. Это линейное уравнение. Работаем прямо по заклинанию: «С иксами влево, без иксов — вправо». Эта мантра — универсальная инструкция по применению первого тождественного преобразования. Вот и смотрим на уравнение. Какое слагаемое с иксом у нас справа? Что? 2х? Не-а!) Справа у нас -2х (минус два икс)! Поэтому при переносе в левую часть минус поменяется на плюс: 1 — х +2х = 3 Полдела сделано, иксы собрали слева. Осталось все числа собрать справа. Слева в уравнении стоит единичка. Опять вопрос — с каким знаком? Ответ «с никаким» не катит.) Слева перед единицей и вправду ничего не написано. А это значит, что перед ней стоит знак «плюс». Так уж в математике повелось: ничего не написано — значит, плюс.) И поэтому вправо единичка перенесётся уже с минусом: -х + 2х = 3 — 1 Вот почти и всё. Слева приводим подобные, а справа — считаем. И получаем: Это было совсем примитивное уравнение. Теперь пример покруче, для старшеклассников: Уравнение логарифмическое. Ну и что? Какая разница? Всё равно первым шагом делаем базовое тождественное преобразование («С иксами влево ….»). Для этого слагаемое с иксом (то есть, —log3x) переносим влево. Со сменой знака: А числовое выражение (log34) переносим вправо. Также со сменой знака, разумеется: Вот и всё. Справа получилась чистая формула. Кто дружит с логарифмами, тот в уме дорешает уравнение и получит: Что? Хотите синусы? Пожалуйста, вот вам синусы: Получили простейшее тригонометрическое уравнение с синусом, решить которое (для знающих) также не составляет никакого труда. Видите, насколько универсально первое равносильное преобразование! Встречается везде и всюду и не обойти его никак… Именно поэтому так важно уметь его делать на автомате и без ошибок. Собственно, ошибиться здесь можно лишь в одном — забыть сменить знак при переносе. Что и происходит сплошь и рядом. Внимательность никто не отменял, да…) Ну что, продолжаем наши игры? Развлекаемся теперь со вторым преобразованием!) Крутяк, прямо скажем.) Ладно, это эмоции… Смотрим и соображаем: что нам мешает в этом уравнении? Что-что… Да семёрка мешает! Хорошо бы от неё избавиться. Да так, чтобы исходное уравнение не испортить.) Но как? Перенести вправо? Ээээ… Стоп! Нельзя.) Семёрка с иксом умножением связана. Коэффициент, видите ли.) Нельзя её оторвать от икса и вправо перенести. Вот всё выражение 7х целиком — пожалуйста (вопрос — зачем?). А семёрку отдельно — никак нет. Самое время про умножение/деление вспомнить! Нам ведь в ответе чистый икс нужен, не так ли? А семёрка — мешает. Вот и делим левую часть на семь. «Очищаем» икс от коэффициента. Так нам надо. Но тогда и правую часть тоже надо поделить на семь: этого уже математика требует. Что уж там получится, то и получится. Но пример хороший. Я старался.) 28 на 7 замечательно делится. Получится 4. Или такое уравнение: Что здесь нам мешает? Дробь 1/6, не так ли? Вот давайте и избавимся от неё. Безопасно для уравнения.) Как? Ну, можно поступить аналогично — поделить обе части на эту самую 1/6. Но в уме это не очень удобно. Кое-кто и запутается… Но мы же не только делить, мы ещё и умножать умеем!) Вспоминаем из младших классов, после какого действия у нас пропадает дробь? Правильно! Дробь у нас пропадает при умножении на число, равное (или кратное) её знаменателю. Вот и умножим обе части нашего уравнения на 6. Слева всё равно чистый икс получится, а умножение правой части на 6 — не самая трудная работа.) Вот и всё.) Умножение обеих частей уравнения на нужное число позволяет сразу избавляться от дробей, минуя промежуточные выкладки, в которых, между прочим, запросто можно и ошибок наляпать. Короче дорога — меньше ошибок! Теперь снова на машину времени и — в старшие классы: Чтобы добраться до икса и тем самым решить это крутое тригонометрическое уравнение, нам надо сначала получить слева чистый косинус, безо всяких коэффициентов. А двойка мешает. 🙂 Вот и делим на 2 всю левую часть: Но тогда и правую часть тоже придётся разделить на двойку: это уже МАТЕМАТИКЕ надо. Делим: Получили справа табличное значение косинуса. И теперь уравнение решается за милую душу.) Вот и вся премудрость. Как видите, тождественные преобразования уравнений — штука полезная. И при этом не самая сложная. Перенос да умножение/деление. Однако далеко не у всех они получаются с первого раза и без ошибок, ох не у всех… Основные проблемы здесь две. Проблема первая (для малоопытных): Иногда ученик думает, что упрощение уравнений делается по одному, раз и навсегда установленному правилу. И никак не может уловить и понять это правило: в каких-то примерах начинают с домножения (или деления), в каких-то — с переноса. Где-то три раза переносят и ни разу не домножают… Например, такое линейное уравнение: С чего начинать? Можно начать с переноса: А можно сначала поделить обе части на пятёрку, а затем уж переносить. Тогда сразу числа попроще станут: Как видим, и так и сяк решать можно. И это — в примитивном примере! Вот и возникает у неопытных учеников вопрос: «Как правильно?» По-всякому правильно! Кому как удобнее. 🙂 Универсального рецепта здесь нет и быть не может. Математика предлагает вам на выбор два вида преобразований уравнений. А порядок этих самых преобразований зависит исключительно от исходного уравнения, а также от личных предпочтений и привычек решающего. Проблема вторая (для всех…ну… почти): Ошибки в вычислениях. В преобразованиях постоянно приходится перемножать скобки. Заключать выражения в скобки и раскрывать скобки. Умножать и делить дроби. Работать со степенями… Короче, в наличии весь набор элементарных действий математики. Со всеми вытекающими…
|
---|