что такое буферность в биологии

Буферные системы организма животных и человека (физиологическая роль, первичные и вторичные буферные системы)

что такое буферность в биологии. Смотреть фото что такое буферность в биологии. Смотреть картинку что такое буферность в биологии. Картинка про что такое буферность в биологии. Фото что такое буферность в биологии

Следует добавить, что мощной буферной системой организма человека является гемоглобиногенная система буфера крови, доля которой составляет около 75% всей буферной емкости крови. Гемоглобиногенная кислотно-основная система состоит из неионизированного гемоглобина ННb (донор протонов, слабая органическая кислота) и калиевая соль гемоглобина КНb (основная соль, акцептор протонов). Важно то, что гемоглобиногенные основные буферные системы организма человека и животных могут взаимодействовать с гидрокарбонатной системой, которая является главным щелочным резервом крови. В капиллярах тканей взаимодействие гемоглобина с кислотой способствует сохранению гидрокарбонатов, то есть щелочных резервов (КНb + Н2СО3 → КНСО3 + ННb). В легких гемоглобин вытесняет из гидрокарбонатов Н2СО3, что сопровождается уменьшением щелочных резервов 2ННb + К2СО3 → Н2СО3 + 2КНb.

Именно так обеспечивается сохранение рН крови в пределах физиологически допустимых величин – от 7,2 до 7,4 условных единиц. Плазменная гидрокарбонатная буферная система живых организмов (H2CO3 / HCO3-) эффективно функционирует при рН приблизительно равному 7,4. При рН крови 7,4 соотношение концентрации H2CO3 и HCO3- приблизительно равно 20:1. При поступлении в кровь кислых продуктов метаболизма ионы Н+ взаимодействуют с гидрокарбонатом, образуется избыток угольной кислоты, которая распадается. Углекислота переходит в газовую форму в легких и выводится из организма. Это приводит возвращения соотношение H2CO3 / HCO3 к норме, а следовательно, и к восстановлению рН 7,4. Когда рН плазмы крови повышается, ионы ОН взаимодействуют с угольной кислотой, которая переходит в гидрокарбонат-ион HCO3-. Это вызывает растворения в плазме или сыворотке крови дополнительного количества углекислоты, которая содержится в газовом пространстве легких. Концентрация H2CO3 в плазме возрастает до нормального соотношения.

Фосфатная буферная система организма живых существ состоит из сопряженной кислотно-основной пары H2PO4- и HPO2-4. Эта пара имеет рН 6,86, поэтому фосфатная буферная система живых организмов служит буфером в пределах рН 6,1-7,7. Важную роль фосфатные буферные системы организма животных и человека играют в поддержании постоянства рН внутриклеточной жидкости, находящейся в пределах рН от 6,9 до 7,4 условных единиц. Буферные системы живых организмов составляют первую линию защиты организма от изменения рН. Дополнительные потенции обеспечивает деятельность почек и легких, которые выводят из организма СО2, щелочные и кислые продукты метаболизма. Так, при снижении рН дыхание стимулируется, что приводит к выведению из организма избытка СО2, и, наоборот, при повышении рН частота дыхания снижается для уменьшения выведения СО2 легкими.

В клинической практике определяют показатели кислотно-щелочного равновесия:

Литература

Полезно знать

© VetConsult+, 2015. Все права защищены. Использование любых материалов, размещённых на сайте, разрешается при условии ссылки на ресурс. При копировании либо частичном использовании материалов со страниц сайта обязательно размещать прямую открытую для поисковых систем гиперссылку, расположенную в подзаголовке или в первом абзаце статьи.

Источник

Что такое буферность в биологии

Организм можно определить как физико-химическую систему, существующую в окружающей среде в стационарном состоянии. Для обеспечения стационарного состояния у всех организмов выработались разнообразные анатомические, физиологические и поведенческие приспособления, служащие одной цели – сохранению постоянства внутренней среды. Это относительное динамическое постоянство внутренней среды (крови, лимфы, тканевой жидкости) и устойчивость основных физиологических функций организма человека и животных называется гомеостазом.

Этот процесс осуществляется преимущественно деятельностью лёгких и почек за счёт дыхательной и выделительной функции. В основе гомеостаза лежит сохранение кислотно-основного баланса. Для нормальной жизнедеятельности большинства клеток необходимы достаточно узкие пределы рН (6,9 – 7,8), и организм вынужден постоянно осуществлять нейтрализацию образующихся кислот. Этот процесс выполняют буферные системы, которые связывают избыток ионов водорода и контролируют их дальнейшие перемещения в организме. Буферные системы играют очень важную роль, т.к. в результате различных метаболических процессов в организме постоянно образуются различные кислоты, которые сразу же нейтрализуются буферными системами: гидрокарбонатной, фосфатной, белковой и гемоглобиновой.

Главной буферной системой организма является гидрокарбонатный буфер, состоящий из Н2СО3 и NaHCО3. При рН около 7,4 в организме преобладает гидрокарбонат-ион, и его концентрация может в 20 раз превышать концентрацию угольной кислоты. По своей природе угольная кислота очень нестойкая и сразу же после образования расщепляется на углекислый газ и воду. Реакции образования и последующего быстрого расщепления угольной кислоты в организме настолько совершенны, что им часто не придают особого значения. Эти реакции катализируется ферментом карбоангидразой, который находится в эритроцитах и в почках. Особенность гидрокарбонатной буферной системы состоит в том, что она открыта. Избыток ионов водорода связывается с гидрокарбонат-ионом, образующийся при этом углекислый газ стимулирует дыхательный центр, вентиляция лёгких повышается, а излишки углекислого газа удаляются при дыхании. Так в организме поддерживается баланс рН. Чем больше в клетках образуется ионов водорода, тем больше расход буфера. На этом этапе метаболизма подключаются почки, которые выводят избыток ионов водорода, и количество гидрокарбоната в организме восстанавливается.

Фосфатный буфер может действовать как в составе органических молекул, так и в качестве свободных ионов. Одна его молекула способна связывать до трёх катионов водорода. Белки могут присоединять к своей полипептидной цепочке как кислотные, так и основные группы.

Буферная ёмкость белковой буферной системы может охватывать широкий диапазон рН. В зависимости от имеющейся величины рН она может связывать как гидроксильные группы, так и ионы водорода. Третья часть буферной ёмкости крови приходится на гемоглобин. Каждая молекула гемоглобина может нейтрализовать несколько ионов водорода. Когда кислород переходит из гемоглобина в ткани, способность гемоглобина связывать ионы водорода возрастает и наоборот: когда в лёгких происходит оксигенация гемоглобина, он теряет присоединённые ионы водорода. Освободившиеся ионы водорода реагируют с гидрокарбонатом, и в результате образуется углекислый газ и вода. Образовавшийся углекислый газ удаляется из лёгких при дыхании.

Буферные свойства гемоглобина обусловлены соотношением восстановленного гемоглобина (ННb) и его калиевой соли (КНb). В слабощелочных растворах, каким является кровь, гемоглобин и оксигемоглобин имеют свойства кислот и являются донорами Н+ или К+. Эта система может функционировать самостоятельно, но в организме она тесно связана с гидрокарбонатной. Когда кровь находится в тканевых капиллярах, откуда поступают кислые продукты, гемоглобин выполняет функции основания: КНb + Н2СО3 ↔ ННb + КНСО3. В легких гемоглобин, напротив, ведет себя, как кислота, предотвращая защелачивание крови после выделения углекислоты.

Таким образом, механизм регуляции кислотно-основного равновесия крови в целостном организме заключается в совместном действии внешнего дыхания, кровообращения, выделения и буферных систем.

Источник

Буферность и кислотность

1. Буферность — свойство клетки поддерживать определенный уровень концентрации ионов водорода (pH).

2. В клетке сохраняется слабощелочная реакция — 7,2.

3. Буферным называют такой раствор, в котором содержится смесь какой-либо слабой кислоты и ее растворимой соли.

4. Механизм поддержания кислотности таков — когда в клетке увеличивается кислотность, анионы, источником которых служит соль, соединяются с ионами водорода и устраняют их из раствора. Если же кислотность снижается, ионы водорода высвобождаются.

Кислотность в клетке

1. В процессе жизнедеятельности в клетке возникают разнообразные соединения, в том числе кислоты и щелочи. Значения pH ниже 7 указывают на кислый раствор, значения выше делают раствор щелочным.

2. Шкала кислотности включает значения от 0 до 14. Эта шкала логарифмическая — изменения pH на одну единицу соответствует изменению концентрации ионов водорода в 10 раз.

3. Важно запомнить, что буферные свойства цитоплазмы зависят от концентрации анионов слабых кислот. При большом количестве анионов они легко могут удалить протоны водорода и понизить кислотность в клетке.

Фосфатная буферная система

2. Главная роль фосфатной буферной системы состоит в том, что она поддерживает кислотно-щелочной баланс в просвете канальцев почки, а также внутриклеточной жидкости.

3. Фосфатов вообще больше внутри клетки, чем вне ее. Эта буферная система имеет мало отношения к внеклеточной жидкости.

Бикарбонатная буферная система

Содержание химических соединений в клетке

1. На первом месте по массе в процентах на сырую массу стоит вода — 75–85 процентов.

2. Далее идут белки — 10–20 процентов, жиры — 1–5 процентов, углеводы — 0,2–2 процента.

3. При потере части воды организмы могут утрачивать признаки жизни — такое состояние называется анабиозом. При улучшении условий они могут снова стать активными. Гибель организмов происходит при потере значительной части воды.

Источник

Биология. 10 класс

Конспект урока

Урок 2. «Неорганические соединения клетки. Углеводы и липиды. Регулярные и нерегулярные биополимеры»

3. Перечень вопросов, рассматриваемых в теме;

Урок позволит выявить особенности химического состава организмов, роль неорганических (воды, солей) и органических (углеводов, липидов) веществ в жизни клетки и организма.

Обучающиеся узнают, какие химические элементы входят в состав живых организмов, рассмотрят самое важное минеральное вещество на Земле, структуру молекулы воды и её биологическую роль, выяснят физические и химические свойства воды, благодаря которым возможно существование жизни на Земле.

Также обучающиеся увидят особенности строения органических веществ, узнают, на какие классы делятся углеводы и липиды, их значение для жизнедеятельности клетки и организма в целом.

4. Глоссарий по теме (перечень терминов и понятий, введенных на данном уроке);

Биологически значимые элементы, органогены, неорганические вещества, вода, водородная связь, гидрофильные вещества, гидрофобные вещества; органические вещества, регулярные и нерегулярные биополимеры; углеводы, липиды

Биологически значимые элементы – химические элементы, необходимые живым организмам для обеспечения нормальной жизнедеятельности.

Органогены — химические элементы, входящие в состав всех органических соединений, составляют около 98% массы клетки (углерод, водород, кислород, азот).

Неорганические вещества (неорганические соединения) клетки — простые вещества и соединения, не являющиеся органическими, не имеют характерного для органических веществ углеродного скелета.

Органические вещества – это сложные соединения, основой строения которых являются атомы углерода, составляют отличительный признак живого. Органические соединения многообразны, но четыре группы из них имеют всеобщее биологическое значение: белки, нуклеиновые кислоты, углеводы и липиды.

Водородная связь – вид взаимодействия между молекулами вещества. Молекулы воды удерживаются за счет водородных связей, которые возникли между частично положительным атомом водорода одной молекулы и частично отрицательным атомом кислорода другой молекулы. Водородные связи заметно слабее по сравнению с ковалентными. Однако они намного крепче, чем стандартное молекулярное притяжение частиц, свойственное твёрдым и жидким телам.

Гидрофильные вещества – хорошо растворимые в воде вещества, молекулы которых полярны и легко соединяются с молекулами воды. К ним относятся ионные соединения (содержат заряженные частицы): соли, кислоты, основания и полярные соединения (в молекулах присутствуют заряженные группы): сахара, простые спирты, аминокислоты.

Гидрофобные вещества– нерастворимые в воде вещества, энергия притяжения молекул которых к молекулам воды меньше энергии водородных связей молекул воды. К числу гидрофобных веществ относятся жиры, полисахариды, нуклеиновые кислоты, большинство белков.

Буферность – способность клетки поддерживать слабощелочную реакцию своего содержимого на постоянном уровне.

Полимер (от греч. «поли» — много) — многозвеньевая цепь, в которой звеном является какое-либо относительно простое вещество — мономер.

Регулярные полимеры – полимеры, в молекуле которых группа мономеров периодически повторяется (полисахариды).

Нерегулярные полимеры – полимеры, в которых нет определенной закономерности в последовательности мономеров (белки, нуклеиновые кислоты, некоторые полисахариды).

Углеводы – органические соединения, состоящие из атомов углерода, кислорода и водорода. В большинстве углеводов водород и кислород находятся, как правило, в тех же соотношениях, что и в воде (отсюда их название — углеводы).

Полисахариды – высокомолекулярные углеводы, молекулы которых представляют собой длинные линейные или разветвлённые цепочки моносахаридных остатков, соединённых гликозидной связью. При гидролизе образуют моносахариды или олигосахариды.

Липиды — обширная группа органических соединений, включающая жиры и жироподобные вещества. Молекулы простых липидов состоят из спирта и жирных кислот, сложных — из спирта, высокомолекулярных жирных кислот и других компонентов

5. Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц);

6. Открытые электронные ресурсы по теме урока (при наличии);

1.Российский общеобразовательный Портал www.school.edu.ru

2 Единая коллекция цифровых образовательных ресурсов www.school-collection.edu.ru

3.Каталог образовательных ресурсов по биологии http://www.mec.tgl.ru/index.php?module=subjects&func=viewpage&pageid=133

7. Теоретический материал для самостоятельного изучения;

В состав живой клетки входят те же химические элементы, которые входят в состав неживой природы. Из 104 элементов периодической системы Д. И. Менделеева в клетках обнаружено 60.

Их делят на три группы:

Молекулярный состав клетки сложный и разнородный. Отдельные соединения — вода и минеральные соли — встречаются также в неживой природе; другие — органические соединения: углеводы, жиры, белки, нуклеиновые кислоты и др.— характерны только для живых организмов.

Вода составляет около 80 % массы клетки; в молодых быстрорастущих клетках — до 95 %, в старых — 60 %.

Роль воды в клетке велика.

Она является основной средой и растворителем, участвует в большинстве химических реакций, перемещении веществ, терморегуляции, образовании клеточных структур, определяет объем и упругость клетки. Большинство веществ поступает в организм и выводится из него в водном растворе. Биологическая роль воды определяется специфичностью строения: полярностью ее молекул и способностью образовывать водородные связи, за счет которых возникают комплексы из нескольких молекул воды. Если энергия притяжения между молекулами воды меньше, чем между молекулами воды и вещества, оно растворяется в воде. Такие вещества называют гидрофильными (от греч. «гидро» — вода, «филее» — люблю). Это многие минеральные соли, белки, углеводы и др. Если энергия притяжения между молекулами воды больше, чем энергия притяжения между молекулами воды и вещества, такие вещества нерастворимы (или слаборастворимы), их называют гидрофобными (от греч. «фобос» — страх) — жиры, липиды и др.

Органические вещества в комплексе образуют около 20—30% состава клетки.

Углеводы — органические соединения, состоящие из углерода, водорода и кислорода. Их делят на простые — моносахариды (от греч. «монос» — один) и сложные — полисахариды (от греч. «поли» — много).

Моносахариды (их общая формула СnН2nОn) — бесцветные вещества с приятным сладким вкусом, хорошо растворимы в воде. Они различаются по количеству атомов углерода. Из моносахаридов наиболее распространены гексозы (с 6 атомами С): глюкоза, фруктоза (содержащиеся в фруктах, меде, крови) и галактоза (содержащаяся в молоке). Из пентоз (с 5 атомами С) наиболее распространены рибоза и дезоксирибоза, входящие в состав нуклеиновых кислот и АТФ.

Полисахариды относятся к полимерам — соединениям, у которых многократно повторяется один и тот же мономер. Мономерами полисахаридов являются моносахариды. Полисахариды растворимы в воде, многие обладают сладким вкусом. Из них наиболее просты дисахариды, состоящие из двух моносахаридов. Например, сахароза состоит из глюкозы и фруктозы; молочный сахар — из глюкозы и галактозы. С увеличением числа мономеров растворимость полисахаридов падает. Из высокомолекулярных полисахаридов наиболее распространены у животных гликоген, у растений — крахмал и клетчатка (целлюлоза). Последняя состоит из 150—200 молекул глюкозы.

Углеводы — основной источник энергии для всех форм клеточной активности (движение, биосинтез, секреция и т. д.). Расщепляясь до простейших продуктов СO2 и Н2O, 1 г углевода освобождает 17,6 кДж энергии. Углеводы выполняют строительную функцию у растений (их оболочки состоят из целлюлозы) и роль запасных веществ (у растений — крахмал, у животных — гликоген).

Липиды — это нерастворимые в воде жироподобные вещества и жиры, состоящие из глицерина и высокомолекулярных жирных кислот. Животные жиры содержатся в молоке, мясе, подкожной клетчатке. При комнатной температуре это твердые вещества. У растений жиры находятся в семенах, плодах и других органах. При комнатной температуре это жидкости. С жирами по химической структуре сходны жироподобные вещества. Их много в желтке яиц, клетках мозга и других тканях.

Роль липидов определяется их структурной функцией. Из них состоят клеточные мембраны, которые вследствие своей гидрофобности препятствуют смешению содержимого клетки с окружающей средой. Липиды выполняют энергетическую функцию. Расщепляясь до СO2 и Н2O, 1 г жира выделяет 38,9 кДж энергии. Они плохо проводят тепло, накапливаясь в подкожной клетчатке (и других органах и тканях), выполняют защитную функцию и роль запасных веществ.

8. примеры и разбор решения заданий тренировочного модуля (не менее 2 заданий).

Найдите и выделите цветом по вертикали и горизонтали названия химических элементов:

что такое буферность в биологии. Смотреть фото что такое буферность в биологии. Смотреть картинку что такое буферность в биологии. Картинка про что такое буферность в биологии. Фото что такое буферность в биологии

Тип вариантов ответов: Текстовые,Графические, Комбинированные.

Правильный вариант/варианты (или правильные комбинации вариантов):

Подсказка:при необходимости обратитесь к дополнительным материалам

Заполните пропуски в тексте, выбрав вариант ответа из выпадающего списка.

Выпадающий список 1.

Выпадающий список 2.

Тип вариантов ответов: Текстовые, Графические, Комбинированные.

Правильный вариант/варианты (или правильные комбинации вариантов):выделены жирным шрифтом

Выпадающий список 1.

Выпадающий список 2.

Подсказка:В большинстве клеток организма рН составляет 7,0 – 7,4.

Источник

Лекция № 1. Введение. Химические элементы клетки. Вода и другие неорганические соединения

Введение

Биология — наука о жизни. Важнейшая задача биологии — изучение многообразия, строения, жизнедеятельности, индивидуального развития и эволюции живых организмов, их взаимоотношений со средой обитания.

Живые организмы имеют ряд особенностей, отличающих их от неживой природы. По отдельности каждое из отличий достаточно условно, поэтому их следует рассматривать в комплексе.

Признаки, отличающие живую материю от неживой:

Уровни организации живой материи:

Многообразие жизни

Первыми на нашей планете появились безъядерные клетки. Большинством ученых принимается, что ядерные организмы появились в результате симбиоза древних архебактерий с синезелеными водорослями и бактериями-окислителями (теория симбиогенеза).

Цитология

Цитология — наука о клетке. Изучает строение и функции клеток одноклеточных и многоклеточных организмов. Клетка является элементарной единицей строения, функционирования, роста и развития всех живых существ. Поэтому процессы и закономерности, характерные для цитологии, лежат в основе процессов, изучаемых многими другими науками (анатомия, генетика, эмбриология, биохимия и др.).

Химические элементы клетки

Химический элемент — определенный вид атомов с одинаковым положительным зарядом ядра. В клетках обнаружено около 80 химических элементов. Их можно разделить на четыре группы:
1 группа — углерод, водород, кислород, азот (98% от содержимого клетки),
2 группа — калий, натрий, кальций, магний, сера, фосфор, хлор, железо (1,9%),
3 группа — цинк, медь, фтор, йод, кобальт, молибден и др. (меньше 0,01%),
4 группа — золото, уран, радий и др. (меньше 0,00001%).

Элементы первой и второй групп в большинстве пособий называют макроэлементами, элементы третьей группы — микроэлементами, элементы четвертой группы — ультрамикроэлементами. Для макро- и микроэлементов выяснены процессы и функции, в которых они участвуют. Для большинства ультрамикроэлементов биологическая роль не выявлена.

Атомы химических элементов в живых организмах образуют неорганические (вода, соли) и органические соединения (белки, нуклеиновые кислоты, липиды, углеводы). На атомном уровне различий между живой и неживой материей нет, различия появятся на следующих, более высоких, уровнях организации живой материи.

Вода — самое распространенное неорганическое соединение. Содержание воды составляет от 10% (зубная эмаль) до 90% массы клетки (развивающийся эмбрион). Без воды жизнь невозможна, биологическое значение воды определяется ее химическими и физическими свойствами.

Молекула воды имеет угловую форму: атомы водорода по отношению к кислороду образуют угол, равный 104,5°. Та часть молекулы, где находится водород, заряжена положительно, часть, где находится кислород, — отрицательно, в связи с этим молекула воды является диполем. Между диполями воды образуются водородные связи. Физические свойства воды: прозрачна, максимальная плотность — при 4 °С, высокая теплоемкость, практически не сжимается; чистая вода плохо проводит тепло и электричество, замерзает при 0 °С, кипит при 100 °С и т.д. Химические свойства воды: хороший растворитель, образует гидраты, вступает в реакции гидролитического разложения, взаимодействует со многими оксидами и т.д. По отношению к способности растворяться в воде различают: гидрофильные вещества — хорошо растворимые, гидрофобные вещества — практически нерастворимые в воде.

что такое буферность в биологии. Смотреть фото что такое буферность в биологии. Смотреть картинку что такое буферность в биологии. Картинка про что такое буферность в биологии. Фото что такое буферность в биологии

Биологическое значение воды:

Купить проверочные работы
по биологии

что такое буферность в биологии. Смотреть фото что такое буферность в биологии. Смотреть картинку что такое буферность в биологии. Картинка про что такое буферность в биологии. Фото что такое буферность в биологии что такое буферность в биологии. Смотреть фото что такое буферность в биологии. Смотреть картинку что такое буферность в биологии. Картинка про что такое буферность в биологии. Фото что такое буферность в биологии

что такое буферность в биологии. Смотреть фото что такое буферность в биологии. Смотреть картинку что такое буферность в биологии. Картинка про что такое буферность в биологии. Фото что такое буферность в биологии что такое буферность в биологии. Смотреть фото что такое буферность в биологии. Смотреть картинку что такое буферность в биологии. Картинка про что такое буферность в биологии. Фото что такое буферность в биологии

Другие неорганические соединения клетки

Низкий рНВысокий рН(1)
НРО4 2— + Н +Н2РО4
ГидрофосфатДигидрофосфат
Низкий рНВысокий рН(2)
НCО3 — + Н +Н23
ГидрокарбонатУгольная кислота

В твердом нерастворенном состоянии находятся в костной ткани, в раковинах моллюсков карбонаты и фосфаты кальция и магния, в зубной эмали — фторид кальция и т.д.

Перейти к лекции №2 «Строение и функции углеводов и липидов»

Смотреть оглавление (лекции №1-25)

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *