криогенная техника что это такое
Криогенная техника
Полезное
Смотреть что такое «Криогенная техника» в других словарях:
криогенная техника — криотехника Ндп. техника глубокого охлаждения техника глубокого холода Область техники, связанная с достижением или практическим использованием криогенных температур. [ГОСТ 21957 76] Недопустимые, нерекомендуемые техника глубокого… … Справочник технического переводчика
КРИОГЕННАЯ ТЕХНИКА — КРИОГЕННАЯ ТЕХНИКА, отрасль науки и техники, изучающая вопросы получения, поддержания и использования криогенных температур (ниже 120 К; около 150шC). Основные задачи: сжижение газов, разделение газовых смесей, охлаждение и термостатирование… … Современная энциклопедия
КРИОГЕННАЯ ТЕХНИКА — отрасль науки и техники, изучающая вопросы получения, поддержания и использования температур ниже 120 К (криогенных температур). Основные задачи: сжижение газов, разделение газовых смесей, охлаждение и термостатирование сверхпроводящих и других… … Большой Энциклопедический словарь
Криогенная техника — КРИОГЕННАЯ ТЕХНИКА, отрасль науки и техники, изучающая вопросы получения, поддержания и использования криогенных температур (ниже 120 К; около 150°C). Основные задачи: сжижение газов, разделение газовых смесей, охлаждение и термостатирование… … Иллюстрированный энциклопедический словарь
КРИОГЕННАЯ ТЕХНИКА — область науки и техники, разрабатывающая теоретические вопросы и технические методы получения как криогенных температур (ниже 120 К), так и глубокого охлаждения, близкого к абсолютному (см.), а также способы их поддержания и практического… … Большая политехническая энциклопедия
Криогенная техника — 1. Криогенная техника Криотехника Ндп. Техника глубокого охлаждения Техника глубокого холода D. Kryogene Technik Е. Cryogenic engineering F. Technique de la cryogenie Область техники, связанная с достижением или практическим использованием… … Словарь-справочник терминов нормативно-технической документации
криогенная техника — отрасль науки и техники, изучающая вопросы получения, поддержания и использования температур ниже 120 К (криогенных температур). Основные задачи: сжижение газов, разделение газовых смесей, охлаждение и термостатирование сверхпроводящих и других… … Энциклопедический словарь
криогенная техника — kriogeninė technika statusas T sritis radioelektronika atitikmenys: angl. cryogenic engineering; cryogenic technique vok. Kryotechnik, f rus. криогенная техника, f pranc. technique cryogénique, f … Radioelektronikos terminų žodynas
криогенная техника — kriogeninė technika statusas T sritis Energetika apibrėžtis Žemos (<120 °C) temperatūros gavimo ir naudojimo technika. Kriogeninės technikos priemonėmis skystinamos dujos; jos išskiriamos iš mišinių, sudaroma superlaidumo būsena ir t.t… … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas
КРИОГЕННАЯ ТЕХНИКА — техника получения и использования криогенных темп р, т. е. темп р ниже 120 К. Осн. проблемы, решаемые К. т.: сжижение, хранение и транспортирование в жидком состоянии газов с темп рами конденсации ниже 120 К (азота, кислорода, гелия и др.);… … Большой энциклопедический политехнический словарь
Криогенная техника
Криогеника – раздел физики, изучающий процессы, протекающие в системах, находящихся в условиях криогенных температур (температура ниже 120К).
Криогенная техника – машины и аппараты, позволяющие получать и поддерживать системы при криогенных температурах.
Применение криогенной техники в современной промышленности широко:
Сжиженные газы
Как любая энергетическая система, криосистема состоит из ресивера, в данном случае сосуда Дьюара, насоса, осуществляющего перемещение сжиженного газа по системе и распылителя, который преобразует поток сжиженного газа в его естественное при атмосферном давлении газообразное состояние. Насосы сжиженных газов (НСГ) существенно отличаются от обычных ввиду того, что их эксплуатация происходит при криогенных температурах.
Насосы для сжиженных газов
В качестве насосов сжиженных газов чаще всего используются поршневые, центробежные и ротационно-пластиночные насосы. Их частотное регулирование позволяет добиться плавного регулирования производительности.Как любая энергетическая система, криосистема состоит из ресивера, в данном случае сосуда Дьюара, насоса, осуществляющего перемещение сжиженного газа по системе и распылителя, который преобразует поток сжиженного газа в его естественное при атмосферном давлении газообразное состояние. Насосы сжиженных газов (НСГ) существенно отличаются от обычных ввиду того, что их эксплуатация происходит при криогенных температурах.
Испарители и газификаторы
Криогенная техника
Все о криогенных технологиях
Демако — специалист по криогенной инфраструктуре. Сорок лет назад наша компания сильно увлеклась этой специализированной областью, эта страсть с тех пор только возросла. Но как именно работает криогенная техника? Что такое криогенные газы, как достигается сверхнизкая температура, какие риски и в каких отраслях промышленности криогенная техника используется больше всего? Вы можете прочитать все это и многое другое на этой странице.
Что такое криогенная технология
Криогеника происходит от греческого слова «Kryos», что означает «холодный». Это область, в которой материалы производятся, хранятся, транспортируются и используются при сверхнизких температурах. Крайний холод может вызвать интересные химические реакции. Например, вещества переходят из газового состояния в жидкое или принимают твердую форму благодаря охлаждению.
Температура, необходимая для сжижения газа, варьируется от одного газа к другому. Например, кислород разжижается при температуре минус 183 градуса Цельсия, в то время как гелий требует температуры не менее минус 269 градусов Цельсия.
Как достигается криогенная температура?
Для достижения температуры замерзания необходимы сложные технологии. В большинстве случаев для генерации криогенных температур используются 4 различных метода:
1. Тепловая проводимость
Тепловая проводимость является, пожалуй, наиболее знакомым методом. При контакте двух продуктов или материалов тепло передается от самого горячего продукта к самому холодному. Этот же принцип применим и к криогенным температурам. Крайний холод передается путем контакта газа, жидкости или твердого вещества с криогенной жидкостью. В результате этого газ, жидкий или твердый, также достигает желаемой криогенной температуры.
2. Испарительное охлаждение
Атомы или молекулы имеют меньше энергии в жидкой форме, чем в газообразной. Во время испарения жидкого продукта атомы или молекулы, находящиеся на поверхности, получают из окружающей жидкости достаточную энергию, чтобы перейти в газообразное состояние. Оставшаяся же жидкость, напротив, удерживает меньше энергии, что делает ее холоднее. Таким образом, вызывая процесс испарения, можно добиться охлаждения жидкости.
3. Охлаждение за счет быстрого расширения
Третий метод — использование эффекта Джоуль-Томпсона. Это включает в себя охлаждение газов путем резкого увеличения объема или одинаково быстрого перепада давления. Этот метод широко используется при сжижении водорода и гелия.
4. Адиабатическое размагничивание
Четвертый и последний метод в основном используется для охлаждения жидкого гелия и включает в себя парамагнитные соли для поглощения тепла. Парамагнитную соль можно рассматривать как огромное количество маленьких магнитов, которые при размещении на сильном магнитном поле и обработке электромагнитом генерируют или используют энергию. Поглощая энергию с этими материалами из газа, газ становится холоднее и холоднее.
История криогенной технологии
Появляется все больше и больше жидких газов
Когда компания Demaco была впервые представлена в криогенной отрасли около 1985 года, это была относительно новая область специализации. Однако криогенная техника получила широкую известность лишь в XIX веке, так как к тому времени все больше и больше газов можно было успешно сжигать.
Все началось еще в 1877 году, когда Кейлет и Пикте преуспели в разжижении кислорода. Примерно в это время эксперименты шли полным ходом, и вскоре появились жидкие версии других газов. Например, в 1884 году водород стал первым газом, преобразованным в водяную пыль. В 1892 году сэр Джеймс Дьюар разработал вакуумно-изолированный сосуд для хранения криогенных жидкостей, что облегчило работу со сжиженными газами.
В последующие годы специалистам удалось сжижить все большее количество газов, в том числе последний в очереди — гелий. Впервые жидкая форма этого газа была использована в 1908 году.
Криогенные методы в различных отраслях промышленности
Тем временем все больше отраслей промышленности открывали для себя полезность криогенных технологий. Например, в 1961 году криохирургия впервые практиковалась в США. Ученые обнаружили, что медленное охлаждение может разрушить нездоровые человеческие ткани. В Соединенных Штатах для этой цели использовался жидкий азот, а несколько лет спустя врачи в Южной Африке также использовали этот метод. Однако в Южной Африке вместо жидкого азота использовался окись азота.
В отрасли космических полетов в 20-м веке также были внедрены криогенные технологии. В 1961 году американская ракета «Атлас-Центавр» впервые в космической программе использовала жидкий водород и жидкий азот. Это событие считается важной вехой в криогенике и сразу же привело к крупномасштабному производству жидкого водорода для подобных проектов.
Медицинская и аэрокосмическая отрасли являются лишь примерами отраслей, в которых криогенная технология используется уже давно. Криогенная техника также долгое время занимала видное место в научных исследованиях, морской промышленности, а также в массовом производстве сжиженных газов в установках разделения воздуха.
Узнайте больше об отраслях, в которых используются криогенные технологии.
Как создать искусственный холод и для чего используют криогенную технику?
В магистратуре Университета ИТМО студенты факультета низкотемпературной энергетики изучают все, что связано с холодом, производством сжиженного газа, микроклиматом и возобновляемыми источниками энергии. Специалисты в этой области проектируют холодильные, криогенные и жизнеобеспечивающие системы. На восьми образовательных программах исследования охватывают все — от сверхнизких температур до техносферной безопасности. Руководители программ и выпускники рассказывают об обучении и перспективных сферах. Подробнее — в нашем материале.
«По оценкам Международного энергетического агентства, до 30% всей энергии планеты потребляют инженерные системы зданий и сооружений, — рассказывает декан факультета Андрей Никитин. — Исследования факультета направлены на сокращение потерь как в производстве, так и в потреблении энергетических ресурсов. Грамотные специалисты, способные разрабатывать энергоемкие инженерные системы зданий и использующие в своих работах энергосберегающие технологии, будут всегда востребованы на рынке труда. Наши выпускники успешно работают в области генерации, транспортирования и использования энергетических ресурсов, в основном в области теплоэнергетики».
Андрей Никитин
Все исследования в магистратуре факультета можно условно разделить на четыре направления:
Системы жизнеобеспечения
«На программе есть две специализации: проектирование тепломассобменного оборудования холодильной техники и пневматики; системы жизнеобеспечения в зданиях, сооружениях и автономных объектах, — комментирует Владимир Пронин, руководитель программы и академик Международной академии холода. — У программы корпоративный статус: в качестве индустриального партнера для первой специализации выбрали научно-производственное объединение ‘’Компрессор’’. Вторая специализация связана с вопросами микроклимата, без которого невозможно строить и эксплуатировать современные объекты. Выпускники обеих специализаций востребованы на рынке труда».
Выпускники могут работать во многих сферах — от космической отрасли до агропромышленного комплекса.
Основная задача систем жизнеобеспечения — создание комфортной среды через поддержание параметров микроклимата: температура, влажность, чистота воздуха. Александра Бажанова закончила обучение в 2006 году, тогда еще это был специалитет. Сейчас она работает в Департаменте систем кондиционирования ООО «Мицубиси Электрик (РУС)».
Александра Бажанова
«В своем департаменте я курирую два региона — это Северо-Западный Федеральный округ и Дальний Восток. Как бы тривиально это ни звучало, но самое полезное, что дал университет, — это знания. Университет учит самостоятельности, организованности, быстрому реагированию на изменения, причем не только в состоянии стресса во время сессии, но и в стабильности, когда ты ее закрыл. В этом году компания впервые приняла студента ИТМО на практику. Стажер мог попробовать себя как в отделе продаж, так и в техническом отделе. Это нужно, чтобы он смог понять, что ему ближе и где бы он хотел развиваться дальше. Какую бы вы ни выбрали сферу работы в дальнейшем, нужно работать там, где интересно. Только так возможно стать классным специалистом в своей области — без драйва ничего не получится», — говорит она.
Холодильное оборудование
«Технологии охлаждения применяются практически во всех областях человеческой жизнедеятельности: энергетика, сельское хозяйство, биология, горное дело, космос, строительство, транспорт, — рассказывает профессор факультета, академик Международной академии холода Александр Бараненко. — Для техники низких температур основной тренд — повышение ее энергетической эффективности и экологической безопасности. Усилия ученых сконцентрированы на этих направлениях. Большой интерес для исследования представляют новые принципы охлаждения и повышения давления газов, использование для охлаждения возобновляемых источников энергии, создание сложных комплексов одновременной генерации теплоты, холода и электроэнергии и многое другое».
Программа по твердотельным системам охлаждения реализуется в сотрудничестве с Университетом «ЛЭТИ», лабораториями Физико-технического института им. Иоффе и НИТУ «МИСиС». Она сосредоточена на научных исследованиях.
Этой сфере близка программа магистратуры «Автоматизация технологических процессов и производств пищевой промышленности». Она готовит специалистов по поиску оптимальных решений в производстве пищевой продукции. Программа не имеет аналогов в России. Выпускники востребованы в биоиндустрии, холодильной индустрии, энергетике и транспорте.
Александр Бараненко
«По оценкам международных организаций, к середине нынешнего века производство и потребление пищевых продуктов может увеличиться практически в два раза. Это приведет к увеличению на такую же величину холодильных мощностей, задействованных в пищевой индустрии, в сфере хранения, распределения и реализации продовольствия», — добавляет Александр Бараненко.
Сфера активно развивается, поэтому выпускникам не составляет труда устроиться по специальности.
«Я решил поступать в магистратуру для того, чтобы повысить свои компетенции по специальности, в рамках которой вел трудовую деятельность, — рассказывает выпускник 2014 года Максим Полторацкий. — Работа была связана с созданием новых видов климатической техники. Профессорский состав факультета стоял у истоков развития холодильной и климатической техники в России, было у кого поучиться. Сейчас я работаю в организации “НПК Морсвязьавтоматика” в должности главного конструктора в отделе разработки холодильного оборудования».
«НПК Морсвязьавтоматика» с этого года начала сотрудничать с факультетом низкотемпературной энергетики. Первые студенты уже прошли там производственную практику.
Криогенные системы
Криосауна
«Криогенная техника применима во всех сферах — от сверхпроводящих магнитов ТОКОМАКА до систем криотерапевтического лечения тяжелых болезней, — объясняет Александр Баранов, профессор факультета и академик Международной академии холода. — Основной тренд современных исследований — развитие отрасли производства и потребления сжиженного природного газа, в том числе развитие отечественного машиностроения для обеспечения действующих и строящихся предприятий криогенной техникой. Также начинается строительство криогенных сверхпроводящих линий электропередачи, идет развитие транспорта на сверхпроводящей магнитной подвеске».
Эту сферу изучают на магистерской программе «Техника и технологии сжиженного природного газа». Такие специалисты нужны во всех областях, связанных с криогенными технологиями — не только в производстве энергоносителей.
Александр Баранов
Иван Баранов, генеральный директор «Крион», выпускник магистратуры ИТМО, рассказывает о своем опыте:
«Я хотел изучать именно криогенные системы, так как там очень много пространства для развития, а в России одна из самых сильных криогенных школ. Мне были интересны криотерапевтические аппараты. Они появились и особенно хорошо развились именно в ИТМО. “Крион” был основан выпускниками кафедры криогенной техники еще в 90-е и сейчас продолжает тесно сотрудничать с ИТМО. Я попал в набор магистрантов, которые проходили практику в “Крионе”, а дальше решил остаться тут. С каждым годом все становится сложнее и интереснее. Периодически я выступаю на международных научных конференциях».
Безопасность
При разработке любой технической системы необходимо обеспечить ее безопасность. Для этого готовят специалистов на программах «Информационные системы для экологической и техносферной безопасности» и «Стандартизация и метрология в высокотехнологичном секторе экономики».
«Технологии для жизни и точные измерения как основа качества и безопасности — главный тезис, который раскрывает сущность реализуемых программ, — рассказывает Марина Кустикова, доцент факультета. — Производственная и экологическая безопасность являются неотъемлемой частью устойчивого развития страны, города, региона. Задачи, стоящие перед специалистами в этих областях, всегда будут перспективным направлением. При этом развитие обусловлено внедрением передовых измерительных технологий, цифровых и Iot-систем».
Выпускники могут заниматься не только безопасностью технологий, но и предотвращением и ликвидацией экологического ущерба.
День открытых дверей направления «Холодильная индустрия, пищевые биотехнологии» для поступающих в бакалавриат и магистратуру
О своей работе рассказывает выпускник магистратуры Александр Рогов, исполнительный директор предприятия, занимающегося утилизацией ртутьсодержащих отходов:
«Я пошел в магистратуру, потому что сменил работу и хотел получить профессиональное образование в новой области. Бакалавриат я окончил в ИТМО по физико-технической специальности. Магистерская программа была связана с экологической безопасностью и моей текущей работой. Университет дал необходимую базу знаний для карьерного роста. На некоторых предметах была возможность работать с внешними структурами. Так, удалось наладить полезные контакты с профессионалами из НИИ метрологии Менделеева — это очень приятные люди, с которыми интересно работать. Наш холдинг “Меркурий” занимается отходами I-II класса опасности: утилизация, сбор, обезвреживание.
Во время обучения важно сочетать собственные интересы и получение знаний. Как говорил мой преподаватель: “Студент — это человек, который сам ищет знания”. А всем полученным знаниям надо искать применение на практике».
Безопасность системы обеспечивается также ее правильным управлением. На программе «Информационные технологии в теплофизике» готовят специалистов, компетентных в разработке инновационных принципов функционирования высокотехнологичных устройств. Программа связана с энерго- и ресурсосберегающими технологиями, повышением энергоэффективности зданий и сооружений, компьютерным моделированием и разработкой научных методов создания устройств, работающих при сложных воздействиях окружающей среды, термостатированием и управлением тепловыми процессами.
День открытых дверей мегафакультета «Биотехнологии и низкотемпературные системы» для поступающих в бакалавриат и магистратуру
Программа реализуется совместно с Казахским национальным университетом имени аль-Фараби и предусматривает получение двух дипломов. У всех выпускников есть возможность работать по специальности.
Прием заявлений на обучение в магистратуре открыт онлайн. Подать документы можно в личном кабинете. Подробнее о шагах для поступления мы рассказали здесь. Вы можете задать любые вопросы о поступлении в чате магистратуры ИТМО ВКонтакте. Полный список программ магистратуры — на сайте для абитуриентов.
«Мы сможем получить колоссальное количество энергии»
Криогенная обработка поршня на заводе в Китае
Lei Yong/Costfoto/picture alliance
— В представлении обывателя криогеника — это «что-то связанное с холодом», чем занимается эта наука?
— Криогеника в прикладном значении — это возможность работать в условиях крайне низких температур. Криогенными считаются температуры в диапазоне от 120 К (-153 °C) до температуры 0,7 K (-272 °C). Несмотря на то что эти технологии не новы, появились они сравнительно недавно. Человечество научилось добывать огонь и высокие температуры примерно 20 тысяч лет назад, а вот холод получать не удавалось. Первые примитивные системы охлаждения появились в древнем Египте, у шумеров, но это случилось гораздо позже. Само же понятие криогенной техники появилось только в конце XIX — начале XX века.
— Что стало началом этого направления? Какие возможности оно открывает?
— Благодаря применению криогенных температур люди научились сжижать газы — то есть переводить газ в жидкое состояние. Долгое время считалось, что такие вещества, как азот, кислород, могут находиться только в газообразном состоянии. Лишь в XIX веке Майкл Фарадей впервые смог осуществить сжижение большинства известных тогда газов, кроме кислорода, водорода, азота, которые научились сжижать гораздо позже.
— А как криогенные технологии используются в космосе?
— Почему ставка делается именно на сжижение газов?
— Как я отмечал ранее, спектр их применения обширен, ракетостроение лишь одна из областей применения. Получение и сжижение промышленных газов, в частности сжиженного природного газа (СПГ), и применение сжиженных газов в различных технологиях вызывают все более пристальный экономический интерес в мире. В странах, где углеводородных топлив не так много, а потребность в них большая, уже сейчас активно применяется СПГ. Это характерно в первую очередь для Юго-Восточной Азии: Японии, Южной Кореи, Китая.
И интерес этот будет только расти, по двум причинам. Первая — к использованию сжиженных газов подталкивает весь ход развития нынешних технологий. Вторая лежит в плоскости экологии — во всем мире все острее встает вопрос эффективной энергетики, экономии природных ресурсов и сохранения экологии. Это вынуждает нас искать новые технологии преобразования энергии, использовать новые виды топлива, иными словами, создавать эффективные экологически чистые энергосистемы. Это непростая задача, но использование СПГ способно в большой степени ее решить. Ключевые инструменты для получения энергии на нашей планете — это ТЭЦ, ГЭС и АЭС. Причем львиную долю, почти 90%(!) всей энергии на земле обеспечивают ТЭЦ. Они могут работать на газе, мазуте, жидком топливе, угле. Учитывая, что теплоэлектростанции это основа большой энергетики, очевидно, что за счет повышения их энергоэффективности мы достигнем несравнимо лучших результатов, чем дают наши пока еще первые попытки полностью перейти на возобновляемые источники энергии.
— Альтернативные источники энергии экологичнее?
— Все не так однозначно. Возьмем, к примеру, фотоэлектрические преобразователи энергии — солнечные батареи. Их же нужно будет со временем утилизировать, нельзя просто взять и в «мусорку» их выкинуть. Для утилизации должна быть выстроена целая инфраструктура, а на это необходимо затратить ресурсы той самой природы, которую мы «бережем». На данном уровне развития технологий человечество не готово переключиться на возобновляемые источники энергии.
Другой пример «экологического» подхода — попытки перейти на электродвигатель. Как локальное решение этот вариант вполне пригоден, пример — Пекин, где массово переходят на электродвигатели. Китайцы вынуждены это сделать, потому что город очень загазован. Однако повторю — это локальное решение. Потому что где-то эта электроэнергия была выработана, а как она вырабатывается? С помощью стандартных энергетических методов, то есть тех самых ТЭЦ. Поэтому в первую очередь нужно совершенствовать существующие энергетические системы. Тем более что природный газ в России распространен, добывать его несложно, и, если наши энергетические системы будут активно переходить на СПГ, мы еще сможем получать дополнительную энергию из самого криопродукта.
— За счет чего вы получите энергию?
— Каким образом это можно сделать?
— Один из возможных способов — встраивание вспомогательного технологического цикла. Прежде чем СПГ попадет в газопоршневую установку, он совершит замкнутый цикл в паросиловой машине, где за счет тепла окружающей среды или другого внешнего источника тепла он превратится в газ и произведет дополнительную работу. Такая встроенная установка не требует сверхусилий и суперзатрат, при этом мы получаем энергию, которая обычно теряется. Конечно, всю энергию, затраченную на сжижение, согласно законам термодинамики вернуть невозможно, можно рассчитывать процентов на 10%. Тем не менее мы сможем получить колоссальное количество энергии, потому что наша разработка может быть применима везде, где используются криогенные продукты, а это очень обширная сфера. Учитывая масштабность применения, выгода, которую обеспечат наши разработки, может быть внушительной.
— То есть лаборатория по криотехнологиям будет заниматься разработкой вспомогательных циклов энергосбережения для ТЭЦ?
— Это только одна из частных задач, которая входит в гораздо более широкое поле исследований. Область наших исследований включает любые установки, где есть криогенное вещество и процесс, где оно регазифицируется и при этом за счет внешнего тепла и низкопотенциального тепла (холода) криопродукта можно получить энергию. Мы сможем разрабатывать энергоэффективные схемы для железнодорожной, аэрокосмической, автомобильной техники и не только.
— Автомобили на газу — повседневность, а самолеты, летающие на жидком водороде или СПГ, уже существуют?
— Нет, но уникальные экспериментальные образцы были созданы и даже прошли летные испытания. В 1980-х годах предприятие «Кузнецов» совместно с КБ Туполева приступили к исследованию возможности использования жидкого водорода и СПГ в качестве альтернативного топлива для авиационных двигателей. В КБ Туполева был создан первый в мире экспериментальный самолет Ту-155, с инновационным (и, кстати, по сей день единственным в мире) двигателем НК-88, работающим на жидком водороде. В основной состав инженеров-разработчиков входили выпускники Самарского университета (в то время КуАИ). Сейчас НК-88, изготовленный в единственном экземпляре, хранится в Центре истории авиационных двигателей Самарского университета.
В апреле 1988 года состоялся первый полет Ту-155, а в следующем году также успешно отлетал Ту-156 с инновационным двигателем НК-89, работающим на СПГ. Всего на криогенном топливе было выполнено около 100 полетов, в том числе 5 на жидком водороде, также Ту-155 совершил полет на конференцию по проблемам использования криогенного топлива в авиации. Это, конечно, был огромный успех, но возникла сложность — новое топливо требовало слишком больших емкостей для размещения, из-за чего полезное пространство существенно сокращалось и использование становилось нецелесообразным.
Вероятно, инженерные задачи удалось бы решить, но, к сожалению, наступили сложные для нашей страны 1990-е годы: СССР прекратил свое существование, предприятия переживали кризис и программа по криогенным топливам была закрыта. Однако потенциал нового топлива очень велик: к примеру, водород существенно превосходят авиационный керосин по теплотворной способности, при этом он абсолютно экологичен.
Наши исследования, возможно, дадут новый толчок разработкам, находящимся в мировом тренде современного авиастроения. Зарубежные компании, которые занимаются производством летательных аппаратов, самолетов, в том числе пассажирских, вплотную разрабатывают вопросы использования СПГ. Примерно та же ситуация с использованием СПГ и в железнодорожной технике. Еще 15 лет назад мы участвовали в создании силовой установки для газотурбовоза совместно с предприятием «Кузнецов». Она работала на метане — и вполне успешно, как показали испытания. Основными достоинствами газотурбовоза были повышение мощности и экологичность, но по тем же причинам исследования были свернуты. Возрождаются они только сейчас.
— Куда будет двигаться дальше криогеника в университете?
— В рамках нашей кафедры теплотехники и тепловых двигателей направление, связанное с криотехнологиями, вопросами повышения эффективности систем охлаждения, в том числе и бортовых, сформировалось давно. У нас существует целая школа под руководством Владимира Бирюка по вихревому эффекту — вихревые технологии обязательно найдут свое применение в криогенике.
Отдельно хочу отметить большое и многообещающее направление по газовым криогенным машинам Стирлига. Криогенные машины Стирлинга позволяют получить холод до 20 К, то есть температуры жидкого водорода. Применение этих экологически чистых и высокоэффективных машин — наиболее перспективный тренд развития криогенной техники в XXI веке, решающий проблему экономии топливных ресурсов и снижения загрязнения окружающей среды. Однако чтобы спроектировать такую машину, необходимо создать ее адекватную математическую модель и соответствующий метод расчета. Эти расчеты весьма сложны.
Создание подобных машин — очень наукоемкое направление, которое промышленным предприятиям трудно осилить без тесной связи с университетской наукой. Еще одно трендовое направление исследований нашей лаборатории — создание инновационных систем охлаждения на принципах термокаустики.
— Что такое термоакустика и зачем нужны такие системы?
— Это новое, возникшее совсем недавно направление в термодинамике. Основная идея в том, чтобы использовать акустическую энергию для преобразования ее в работу.
Например, когда работает акустический динамик, он вырабатывает акустическую энергию, которая рассеивается в пространстве. Однако если соединить этот динамик с акустическим резонатором и установить в нем соответствующий преобразователь, то можно получить или механическую энергию и далее электрическую, или получить низкопотенциальное тепло, то есть холод.
Это перспективное направление интересно для разных технологий: получения энергии, системы охлаждения, шумоглушения с утилизацией акустической энергии, процессов горения и др.
— Что вы имеете в виду под «умеренным холодом»?
— Умеренный холод включает в себя бытовые и промышленные системы охлаждения, системы кондиционирования. Целый пласт связан с пищевой промышленностью, где задачи охлаждения, хранения продуктов являются приоритетными. Поэтому исследования нашей лаборатории будут полезны не только на уровне энергетики, авиации, космонавтики и промышленности, но и в обыденной жизни для каждого из нас. Более того, в Поволжье есть потребность в специалистах в области холодильной техники, поэтому будет востребовано и образовательное направление — подготовка кадров по криогенной и холодильной технике, — которое, думаю, со временем у нас тоже появится. Вопросы этой области актуальны на любом производстве, и уж тем более в аэрокосмической отрасли.
Следует особо отметить тот факт, что в мировом рейтинге специальностей специальности, касающиеся холодильной и криогенной техники, по востребованности находятся на пятом месте.
— Сейчас ведутся какие-то конкретные работы в лаборатории?
— Лаборатория еще в процессе создания, требуется ее оснащение необходимым оборудованием, но на базе нашей кафедры уже начат проект, который мы будем в дальнейшем «доводить» в лабораторных условиях. Мы разрабатываем криогенный двигатель. Он будет работать на жидком азоте (или на жидком воздухе). Мы уже создали его прототип, и установка прошла первые испытания. Принцип действия следующий: в поршневой двигатель подается жидкий азот. Он вскипает, совершая фазовый и температурный переход из 77 К в 300 К, как следствие, давление возрастает, происходят процессы расширения, благодаря чему начинает работать двигатель. Такой двигатель не производит выбросов вредных веществ в атмосферу, он экологически чистый. При этом по затратам на «топливо» двигатель на азоте хоть и уступает бензиновым, но показывает себя не хуже других экологичных устройств.
Сейчас на этой действующей установке мы отрабатываем саму технологию, методы расчетов и поведение вещества (азота), а когда прототип будет готов, предложим его для реализации.
Современные и перспективные технологии требуют совершенствования и повышения эффективности использования энергии холода. Наши исследования закладывают фундамент для развития в нашем регионе новейших энергоэффективных, экологичных, низкотемпературных систем и устройств, позволяющих применять их не только в энергетике и аэрокосмической области, но и в повседневной жизни, а также в заботе об окружающей среде.