Хроматограф для чего используется
Хроматограф в промышленности и лабораторных исследованиях
Хроматография — метод разделения многокомпонентных смесей на отдельные составляющие, открытый Михаилом Цветом в начале XX века. Использование же хроматографов в промышленности началось только в 60-х годах, когда приборы были усовершенствованы и адаптированы для применения в лабораториях.
В этой статье будут рассмотрены ключевые вопросы:
Принцип действия хроматографа и его преимущества
Исходное вещество растворяется в жидком или газообразном носителе и подается на сорбент, в качестве которого используется твердое пористое тело или жидкая пленка, нанесенная на него. Сорбаты вместе с носителем передвигаются вдоль неподвижной фазы и взаимодействуют с ней с разной скоростью. Вследствие физических и физико-химических процессов (например, адсорбции), компоненты смеси удерживаются разными слоями сорбента или покидают хроматограф вместе с подвижной фазой. В результате проба разделяется на составляющие, а анализ скорости их выхода из прибора позволяет установить точный качественный и количественный состав.
К преимуществам использования хроматографического оборудования относят:
Газоадсорбционый и газожидкостный хроматографы
Особенность оборудования этого типа заключается в использовании в качестве носителя инертных газов: азота, водорода, аргона и так далее. Это оптимальный вариант для разделения термостабильных летучих соединений. Под эту классификацию попадает всего 5% органических веществ, но именно они составляют до 80% продуктов промышленности. Именно поэтому для проведения всевозможных анализов предприятия нефтегазового комплекса, фармакологические фирмы, любые компании, нуждающиеся в экологическом контроле на производстве стремятся купить хроматограф.
К преимуществам использования оборудования относятся:
Детекторы: их назначение и особенности
Ключевым элементом хроматографа является система детектирования, состоящая из самого детектора, усилителя его сигнала и регистратора. В задачи системы входит отслеживание физических и физико-химических процессов, протекающих в колонке, и их преобразование в электрический сигнал, который в дальнейшем передается на цифровое устройство.
Детектор может измерять общее количество компонентов, выделяемых из смеси (в таком случае его называют интегральным), или фиксировать непосредственно изменения их свойств в процессе прохождения через колонку (дифференциальные детекторы). Общие требования к ним одинаковы:
Высокоэффективный жидкостный хроматограф
В этом типе приборов в качестве подвижной фазы используется жидкий носитель. Его задача не только обеспечивать движение пробы по колонке, но и регулировать константы равновесия. Стоит помнить, что от выбора жидкости напрямую зависит конечный результат исследований.
Жидкостные хроматографы подходят для анализа широкого круга соединений и используются в следующих целях:
Требования к современным хроматографам
При выборе хроматографа для производства и лабораторных исследований в первую очередь требуется установить цель проводимых анализов и понять, с какими веществами и в каких концентрациях будет работать прибор. От этого будет зависеть, какой тип оборудования лучше предпочесть. Другими важными требованиями к устройству являются:
Принцип работы хроматографа
Хроматограф — принцип действия, виды хроматографов
Одним из самых популярных методов по анализу соединений в веществе и их разделению является хроматография.
Основан данный метод на распределении компонентов между двумя фазами – подвижной и стационарной (неподвижной).
Первая выступает в формегаза или жидкости, вторая – в виде твердого материала или в жидкости на носителе неактивного типа.
Принцип действия хроматографа и его преимущества
Первичная субстанция поддается растворению в носителе, который может быть в газовой форме или жидким.
Далее она доставляется на твердый материал (сорбент) или на жидкую пленку сорбента. Носитель с пробой перемещается по стационарной (неподвижной) фазе и взаимодействует с ней с разной скоростью. В результате разных процессов компоненты смеси будут по-разному удерживаться сорбентом и попадать в детектор хроматографа через разные промежутки времени.
Характеристика детекторов
В состав системы детектора, кроме него самого, входит усилитель сигнала.
Основной целью данного компонента
является регистрация компонентов, выходящих из колонки, и дальнейшая
переработка их в сигнал электрического типа, поступающий на цифровуюаппаратуру. С помощью детекторной системы определяется количественный икачественный состав пробы.
Детектор должен быть:
Выбор детектора всегда зависит от определяемых компонентов в каждой аналитической задаче.
Жидкостный прибор
Как подвижную фазу тут применяют носитель в жидком состоянии. Он предназначен для передвижения пробы, а также для корректировки баланса. При этом выбор типа жидкости влияет на итоговые показатели опытов. С помощью высокоэффективных жидкостных устройств выполняется детектирование нелетучих смесей, которые невозможно перевести в форму для использования в газовых хроматографах.
Цели, для которых может использоваться хроматограф:
4 разных типа хроматографии
Существует несколько видов хроматографии, каждый из которых имеет свой вид подвижной и стационарной фазы.
Хотя основной принцип остается тем же самым, способ взаимодействия различных компонентов с подвижной фазой и стационарной фазой может варьироваться в зависимости от используемого хроматографического метода.
1. Бумажная хроматография
Бумажная хроматография является наиболее распространенным и простым аналитическим методом для разделения и обнаружения цветных компонентов, таких как пигменты. Хотя он был заменен тонкослойным хроматографическим процессом, он все еще является мощным учебным пособием.
Этот метод включает в себя размещение пятна образца смеси (например, чернил) вблизи края фильтровальной бумаги, а затем подвешивание бумаги вертикально, при этом ее край погружают в растворитель (такой как вода или спирт). Бумага повешена таким образом, что пятно чернил никогда не касается растворителя и остается немного над ним.
Через некоторое время растворитель (подвижная фаза) начинает постепенно продвигаться вверх по бумаге (неподвижная фаза) посредством капиллярного воздействия. Поскольку растворитель движется вверх, он принимает красители, присутствующие в чернилах, вместе с ним.
Когда он поднимается, мы видим разные цвета на фильтровальной бумаге. Эти цвета представляют различные красители, присутствующие в чернилах. Поскольку разные красители имеют разные уровни растворимости и движутся с разной скоростью, когда растворитель поднимается, мы видим полосы разного цвета на разной высоте.
Вот как бумажная хроматография используется для разделения разных цветов чернил. В некоторых случаях смеси не содержат цветных компонентов, поэтому химики добавляют другие вещества для идентификации.
2. Тонкослойная хроматография
Тонкослойная хроматография очень похожа на бумажную хроматографию. Основное отличие состоит в том, что вместо куска бумаги у нас есть предметное стекло, покрытое слоем силикагеля.
В этом методе предметное стекло (неподвижная фаза) удаляется из резервуара для растворителя, когда растворитель (подвижная фаза) достигает другого края стекла. Различные соединения в смеси перемещаются вверх по предметному стеклу с различной скоростью, оставляя пятна в разных местах на неподвижной фазе.
Эти отделенные пятна затем визуализируются ультрафиолетовым светом. В некоторых случаях для визуализации пятен используются химические процессы: например, серная кислота обугливает большинство органических компонентов, оставляя темное пятно на предметном стекле.
Это простая и быстрая техника для разделения смесей органических соединений. Он часто используется для определения пигментов внутри растения, анализа состава красителей в волокнах и выявления инсектицидов или пестицидов в пищевых продуктах.
По сравнению с бумажной хроматографией методы тонкослойной хроматографии работают быстрее и приводят к лучшему разделению.
3. Газовая хроматография
Смесь образцов (в газообразной форме) вводится через инъекционное отверстие. Обычно количество пробы газа слишком мало, порядка микролитров. Поэтому газ-носитель используется для создания большего давления и проталкивания образца через колонку.
Поскольку мы не хотим, чтобы газ-носитель (подвижная фаза) реагировал с образцом, это должен быть инертный газ, такой как гелий, или нереакционноспособный газ, такой как азот. Колонна (металлическая или стеклянная трубка) состоит из микроскопического слоя жидкости или полимера (стационарная фаза) на инертной твердой подложке.
Различные компоненты в смеси имеют разные температуры кипения, поэтому они по-разному взаимодействуют со стенками колонны при повышении температуры. Это приводит к тому, что каждый компонент элюируется в разное время, также называемое временем удержания компонента.
Сравнивая времена удерживания, химики могут анализировать отдельные газообразные соединения в смеси.
4. Жидкостная хроматография
В этом методе жидкий растворитель под давлением (подвижная фаза) используется для пропускания смеси образцов через колонку, которая содержит твердый абсорбирующий материал. Колонна обычно представляет собой трубчатую структуру, заполненную крошечными частицами с определенным химическим составом поверхности.
Поскольку каждое соединение в смеси по-разному реагирует с абсорбирующим материалом (из-за различий в размерах, адсорбции и ионного обмена), они движутся в колонне с разными скоростями.
Эти различные скорости потока помогают химикам разделять компоненты смеси по мере их вытекания из колонки.
Области применения газовых и жидкостных хроматографов
02.12.2019
Хроматография – способ разделения многокомпонентных составов на отдельные элементы. Промышленное использование хроматографов началось в 60-х годах ХХ века. Современное оборудование позволяет проводить детальный анализ, используя несколько методик. Область использования хроматографов не ограничивается научными исследованиями.
Виды хроматографического оборудования и область их применения
Газовый, жидкостный и газоадсорбционный хроматографы
В качестве носителя инертных газов применяется водород, аргон, азот, пр. Этот агрегат оптимален при разделении летучих термостабильных соединений. В такую категорию попадают около 50% всех органических веществ, но они составляют около 80% от числа всех промышленных продуктов. Для анализа на предприятиях нефтегазового комплекса, фармакологии, в компаниях, продукция которых нуждается в экологическом контроле, обязательно должен быть хроматограф.
Преимущества этого оборудования:
Область использования газовой хроматографии обширна. С помощью устройств проводят различные исследования – от анализа простых газов до выявления веществ в сложных составах. Газовый хроматограф позволяет анализировать летучие и полулетучие вещества. Ограничение распространяются только на термолабильные газы, которые деградируют в условиях высокой температуры. При этом образуются неспецифичные продукты распада.
Газовая хроматография применяется:
Детекторы: особенности и область назначения
Система детектирования является главным элементом хроматографа. Они состоит из самого детектора, усилителя, регистратора. Система отслеживает физико-химические и физические процессы в колонке, их превращения в электрический сигнал, который в дальнейшем передается на цифровое устройство.
Детектор проводит измерение количества компонентов, выделяемых из соединений, фиксирует изменение свойств в процессе, их прохождение через колонку. Требования ко всем детекторам такие:
Жидкостный хроматограф высокой эффективности
В приборе в качестве подвижной фазы применяется жидкий носитель. Он обеспечивает движение пробы по колонке, регулирует константы равновесия. Конечный результат исследования зависит от выбора жидкости. Жидкостные хроматографы используются со следующими целями:
Каким критериям должны соответствовать современные хроматографы?
Выбирая агрегат, стоит определить цели исследований, и понять с какими веществами и объемами будет работать прибор. Исходя из полученных ответов, определяют тип необходимого оборудования. К другим требованиям относятся:
Принцип работы хроматографа и преимущества его использования
Вещество растворяется в газообразном или жидком состоянии. Подается на сорбент, в качестве которого используется пористое твердое тело или жидкая пленка, нанесенная на тело. Сорбенты с носителем воздействуют с неподвижной фазой, одновременно продвигаясь вдоль нее. Вследствие физико-химических процессов разные слои сорбента удерживают компоненты или покидают хроматограф вместе с подвижной фазой. В итоге проба разделяется на составляющие. Анализ скорости выхода элементов позволяет определить количественный и качественный состав среды.
Область использования газовых и жидкостных хроматографов не ограничивается описанными отраслями. По мере выпуска новых устройств расширяется область их применения. Точность анализа и простота использования делает хроматографы незаменимыми во всех отраслях промышленности, иных сферах.
ГХ или ВЭЖХ? Что выбрать?
При появлении новой аналитической задачи…
16.11.2021
Хроматография. Простыми словами.
О хроматографии написано много. Мы…
10.11.2021
Как проводится хроматография
Хроматографический анализ представляет собой один…
18.03.2021
Абсорбционная спектрометрия уже больше века…
18.03.2021
Основные Параметры Хроматографических Пиков
Ключевую для хроматографии информацию получают…
21.01.2021
Результатом хроматографии является хроматограмма, дающая…
21.01.2021
Распространённые причины поломки хроматографов
Использование любых сложных видов оборудования…
02.10.2020
Как Хроматография Применяется в Парфюмерии?
Методику хроматографии активно используют в…
02.10.2020
Хроматография: история открытия и развития
Хроматография сегодня активно используется в…
06.09.2020
Как правильно выбрать хроматограф?
Хроматография – метод анализа жидкостных…
05.09.2020
Работа любого сложного устройства сопровождается…
28.07.2020
Сегодня хроматография остается самым используемым…
28.07.2020
Предшественником всех современных спектрометров считается…
06.07.2020
Разделение сложных смесей на единичные…
06.07.2020
Хроматографические методы в криминалистике
Криминалистические экспертизы играют важную роль…
06.07.2020
Хроматография в фармацевтической промышленности
В настоящее время можно выделить…
27.05.2020
Принципы работы спектрометра
Спектрометр – прибор, работающий на…
08.05.2020
Хромато-масс-спектрометры: принцип действия
Командой Хроматограф.ру в Печорской центральной…
08.05.2020
Порядок технического обслуживания оборудования производства «НПО СПЕКТРОН»
При поставке приборы снабжаются всем…
17.04.2020
Хроматография в контроле качества продовольственного сырья и пищевых продуктов
Безопасность и качество продуктов питания…
17.04.2020
Телемедицина для хроматографов
Что такое телемедицина? Это консультация…
15.04.2020
Основные производители хроматографов в мире, в России
Хроматографы используются в аналитических исследованиях,…
02.12.2019
Области применения газовых и жидкостных хроматографов
Хроматография – способ разделения многокомпонентных…
02.12.2019
Хроматографические Методы Анализа
Хроматографические методы анализа базируются на…
02.12.2019
Хроматограф — принцип действия, виды хроматографов
Одним из самых популярных методов…
23.02.2019
Обучение с выдачей удостоверения
С июня 2017 года наши…
28.11.2018
Скидка на Хромато-масс-спектрометр с МСД Хроматэк 12% до 31 октября 2017 года
Руководством предприятия принято решение предоставить…
28.11.2018
Что такое хроматография? Типы и применения
Слово «хроматография» означает «цветное письмо», но оно является неправильным, потому что оно часто не включает бумагу, чернила, цвет или письмо.
Михаил Семёнович Цвет (1872-1919)— русский ботаник-физиолог и биохимик растений, создатель хроматографического метода.
M.С. Цвет использовал хроматографичекий метод для разделения пигментов растений. Для разделения хлорофиллов Цвет наполнял стеклянную трубку (колонку) твердым адсорбентом (например, инулином) и наносил на верхний слой экстракт хлорофиллов в лигроине. Затем промывал колонку лигроином. Цвет писал так – «Из нижнего конца воронки вытекает сначала бесцветная, потом желтая жидкость (каротин), в то время как в поверхностных слоях инулинового столба возникает интенсивное зеленое кольцо, на нижнем крае которого быстро образуется желтая кайма.
При последующем пропускании через инулиновый столб чистого лигроина, оба кольца, зеленое и желтое, значительно расширяются и распространяются вниз до известного предела». «Как цветные лучи солнечного спектра различные компоненты из смеси пигментов были выделены и могли анализироваться дальше количественно и качественно». 2 Результат разделения, а именно последовательность различных цветовых зон Цвет назвал – хроматограммой. Для разделения пигментов Цвет использовал более ста различных адсорбентов, детально отработал технику разделения и предложил различные варианты аппаратов для своего метода (хроматографов).
Последнее время появилось ряд сообщений авторитетных российских химиков о том, что практически параллельно с западными учеными первые работы в области аналитической газовой хроматографии выполнили в 1940-е г.г. советские исследователи М.М. Сенявин, Н.М. Тулькертауб, А.А. Жуховицкий и Д.А. Вяхирев. Это были работы по газо-адсорбционному разделению, выполненные задолго до широко известной публикации А. Джеймса и А. Мартина в 1952 г., от которой официально ведет отсчет история газовой хроматографии. 4
Метод хроматографии основан на динамическом процессе распределения веществ между двумя фазами — неподвижной (твёрдая фаза или жидкость, связанная на инертном носителе) и подвижной (газовая или жидкая фаза, элюент). В зависимости от природы взаимодействия компонентов смеси с неподвижной и подвижной фазами и индивидуальных свойств, компоненты движутся с различной скоростью, что позволяет разделять их между собой.
Основные термины и понятия, относящиеся к хроматографии, а также области их применения были систематизированы и унифицированы специальной комиссией ИЮПАК. Согласно рекомендациям ИЮПАК, термин «хроматография» имеет три значения и используется для обозначения специального раздела химической науки, процесса, а также метода. 6
Существуют различные способы классификации хроматографических методов: по физическому состоянию подвижной фазы (газовая и жидкостная хроматографии), по технике выполнения хроматографического разделения (колоночная, плоскостная, хроматография в полях сил), по природе взаимодействия разделяемых компонентов с неподвижной фазой (адсорбционная, ионообменная, эксклюзионная и др.) и др.
Современная хроматография имеет много разновидностей, наиболее популярные их них, которые помогут вам получить более полное представление о процессе представлены ниже. Мы попытались объяснить их очень простым языком.
Основы хроматографии
По своей сути хроматография включает взаимодействие двух разных фаз. Химическое соединение в одном состоянии вещества (например, жидкость или газ) перемещается по поверхности другого вещества в другом состоянии вещества (например, твердое вещество или жидкость).
Движущееся соединение известно как подвижная фаза, в то время как устойчивое вещество (которое вообще не движется) называется стационарной фазой. Компоненты подвижной фазы отделяются, когда она движется по стационарной фазе. Затем химики могут анализировать отдельные компоненты один за другим.
4 разных типа хроматографии
Существует несколько видов хроматографии, каждый из которых имеет свой вид подвижной и стационарной фазы. Хотя основной принцип остается тем же самым, способ взаимодействия различных компонентов с подвижной фазой и стационарной фазой может варьироваться в зависимости от используемого хроматографического метода.
Ниже приведен список основных типов хроматографии, которые помогут вам получить более полное представление о процессе. Мы попытались объяснить их очень простым языком.
1. Бумажная хроматография
Бумажная хроматография является наиболее распространенным и простым аналитическим методом для разделения и обнаружения цветных компонентов, таких как пигменты. Хотя в современных лабораториях чаще используют тонкослойную хроматографию, он все еще является мощным учебным пособием.
В этом методе каплю образца смеси (например, чернил) помещают вблизи края фильтровальной бумаги, а затем бумагу подвешивают вертикально, при этом ее край погружают в растворитель (вода или спирт). Бумагу подвешивают таким образом, что пятно чернил не должно касаться растворителя и остается немного над ним.
Через некоторое время растворитель (подвижная фаза) начинает постепенно продвигаться вверх по бумаге (неподвижная фаза) посредством капиллярных сил. Поскольку растворитель движется вверх, он увлекает красители, присутствующие в чернилах, вместе с ним.
Когда он поднимается, мы видим разные цвета на фильтровальной бумаге. Эти цвета представляют различные красители, присутствующие в чернилах. Поскольку разные красители имеют разные уровни растворимости и движутся с разной скоростью, когда растворитель поднимается, мы видим полосы разного цвета на разной высоте.
Вот как бумажная хроматография используется для разделения разных компонентов чернил. В некоторых случаях смеси не содержат цветных компонентов, поэтому химики добавляют другие вещества для идентификации.
2. Тонкослойная хроматография
Тонкослойная хроматография очень похожа на бумажную хроматографию. Основное отличие состоит в том, что вместо куска бумаги у нас есть предметное стекло, покрытое слоем силикагеля (неподвижная фаза). В этом методе на нижний край предметного стекла с силикагелем наносятся капли раствора исследуемой смеси, лежащие на отрезке, параллельном нижнему краю и отстоящем от него на такое расстояние, чтобы капли не погружались в элюент.
Когда они подсохнут, предметное стекло нижним краем погружается в слой растворителя (элюент). Предметное стекло с неподвижной фазой удаляется из резервуара с растворителем, когда растворитель (подвижная фаза) достигает верхнего края стекла. Различные соединения в смеси перемещаются вверх по слою силикагеля с различной скоростью в виде пятен. Эти отделенные пятна затем визуализируются в ультрафиолетовом свете.
В некоторых случаях для визуализации пятен используются химические процессы: например, серная кислота обугливает большинство органических компонентов, оставляя темное пятно на предметном стекле. Это простая и быстрая техника для разделения смесей органических соединений. Она часто используется для определения пигментов, анализа состава красителей в волокнах и выявления инсектицидов или пестицидов в пищевых продуктах.
По сравнению с бумажной хроматографией, применение тонкослойной хроматографии приводит к лучшему разделению.
3. Газовая хроматография
Обычно количество пробы газа невелико, порядка микролитров. Подвижную фазу в газовой хроматографии называют газом-носителем. Поскольку мы не хотим, чтобы газ-носитель (подвижная фаза) реагировал с образцом, это должен быть инертный газ, такой как гелий, или нереакционноспособный газ, такой как азот. Колонка для газовой хроматографии (металлическая или стеклянная трубка) содержит неподвижную фазу тонкий слой жидкости или полимера на инертной твердой подложке.
Разделение компонентов в смеси происходит за счет разницы в их температурах кипения – соединения с низкой температурой кипения движутся быстрее компонентов с более высокой температурой кипения, а также за счет полярности и других специфических взаимодействий с подвижной фазой.
Это приводит к тому, что каждый компонент элюируется в разное время, также называемое временем удерживания компонента. Сравнивая времена удерживания разделенных компонентов с временами удерживания известных соединений, химики могут анализировать соединения в смеси.
4. Жидкостная хроматография
Колонка обычно представляет собой металлическую или пластиковую трубку, заполненную крошечными частицами сорбента с определенным химическим составом поверхности. Поскольку каждое соединение в смеси по-разному реагирует с сорбентом (из-за различий в размерах, адсорбции и ионного обмена), они движутся в колонке с разными скоростями, что обеспечивает разделение их между собой. Выбор состава подвижной фазы зависит от свойств неподвижной фазы и анализируемых веществ.
Химики проводят серию тестов и отрабатывают методику разделения, чтобы найти оптимальный метод жидкостной хроматографии для смеси, который может обеспечить идеальное разделение пиков.
Применение
За научные исследования в области хроматографии или с применением хроматографического метода были присуждены несколько Нобелевских премий.
Более 60 процентов химических исследований во всем мире проводится с помощью различных видов хроматографии. Современные хроматографы способны разделить и идентифицировать несколько сотен соединений за один анализ. Некоторые хроматографические детекторы могут определять количество вещества в масштабе ppb.
Благодаря этим преимуществам, хроматография в настоящее время широко используется в
Помимо этого, хроматография также используется для расшифровки ДНК и в биоинформатике, клинической диагностике заболеваний и расстройств, а также в различных исследовательских целях.
1 Е.М. Сенченкова. Михаил Семенович Цвет. Москва: Издательство «Наука», 1973
2 М.С. Цвет «Хроматографический адсорбционный анализ. Избранные работы. Под ред. А.А. Рихтера и Т.А. Красносельской. Изд-во АН СССР. 1946
3 Измайлов Н.А., Шрайбер М.С.. Капельно-хроматографический метод анализа и его применение в фармации. Фармация. 1938, №3.с.1-7
4 Р.Х. Хамизов, В.Ф. Селеменев. Кто открыл газовую хроматографию? // Сорбционные и хроматографические процессы. 2018. Т. 18. № 2. С 128-130
5 «Сто лет хроматографии» В. А. Даванков, Я. И. Яшин // Вестник РАН, 2003, том 73, № 7, с. 637-646
6 Nomenclature for Chromatography // Pure and Appl. Chem. 1993.Т. 65, № 4. С. 819—872