что такое зона конвекции
Зона конвекции
Зона конвекции — область Солнца (или более обще, звезды) в которой перенос энергии из внутренних районов во внешние происходит главным образом путём активного перемешивания вещества — конвекции.
Содержание
Расположение и строение
Выше зоны конвекции расположена фотосфера, ниже — зона лучистого переноса. Вещество в конвективной зоне все ещё непрозрачно для излучения, как и в лучистой зоне, однако его плотность уже не настолько велика, чтобы препятствовать его перемешиванию. Наглядным аналогом процессов, происходящих в конвективной зоне, является подогрев воды в сосуде. Пламя нагревает нижние слои воды, и они в результате теплового расширения вытесняются вверх другими, холодными и более тяжёлыми слоями. Аналогичный процесс происходит и в Солнце, где источником энергии служит солнечное ядро с происходящими в нем термоядерными реакциями.
Конвективные зоны звёзд различной массы
Обычная конвективная зона
Солнце, а также все звезды главной последовательности, имеющие среднюю массу, обладают конвективной зоной, которая занимает приблизительно треть объёма звезды. Когда горячая плазма поднимается к верхней границе конвективной зоны, она охлаждается за счёт излучения энергии в фотосферу, остывает и погружается вглубь, где нагревается излучением лучистой зоны, после чего цикл повторяется. Поскольку зона ядерных реакций отделена от зоны перемешивания вещества зоной лучистого переноса, то гелий практически не выносится в поверхностные слои Солнца, а накапливается в его ядре.
Ядерная конвективная зона
У звёзд, чья масса превышает солнечную в 1,1 раза синтез гелия осуществляется не протон-протонным, а азотно-углеродным циклом. Скорость этой реакции очень сильно зависит от температуры, поэтому температура внутри ядра по мере движения от центра звезды очень быстро опускается. Большой температурный градиент внутри ядра создаёт условия для формирования ещё одной, внутриядерной зоны конвекции, которая лежит под зоной лучистого переноса, и в которой происходит активное перемешивание массы вещества, участвующего в ядерных реакциях.
Звезды без лучистой зоны
У звёзд главной последовательности, имеющих малую массу — красных карликов, зона конвекции занимает все пространство от ядра до фотосферы, поскольку давление в их недрах не может сжать вещество настолько, чтобы препятствовать его перемешиванию, и привести к возникновению зоны лучистого переноса. У красных гигантов зона конвекции также простирается непосредственно до ядра.
Конвективная зона
Зона конвекции — область Солнца (или более обще, звезды) в которой перенос энергии из внутренних районов во внешние происходит главным образом путём активного перемешивания вещества — конвекции.
Содержание
Расположение и строение
Выше зоны конвекции расположена фотосфера, ниже — зона лучистого переноса. Наглядным аналогом процессов, происходящих в конвективной зоне, является подогрев воды в сосуде. Пламя нагревает нижние слои воды, и они в результате теплового расширения вытесняются вверх другими, холодными и более тяжёлыми слоями. Аналогичный процесс происходит и в Солнце, где источником энергии служит солнечное ядро с происходящими в нем термоядерными реакциями.
Движение вещества в конвективной зоне происходит не хаотично, а в виде устойчивых ячеек циркуляции шестигранной формы — по оси ячейки вещество поднимается, а у периферии опускается. Кроме того, по вертикали конвекция разбивается на слои, толщина которых близка к толщине «однородной атмосферы», где плотность меняется в e = 2,7 раза. Поэтому размер ячеек меняется по мере движения к поверхности звезды. У основания конвективной зоны образуются гигантские ячейки размером около половины радиуса звезды, в промежуточных слоях их размер уменьшается, а в верхнем слое их размер составляет несколько сотен км. На поверхности Солнца видны следы всех слоёв ячеек, в виде гранул и более крупных структур (супергрануляция).
Скорость конвекции зависит от глубины. У основания конвективной зоны она мала (десятки м/c), под фотосферой она достигает значений 1-2 км/с.
Физические процессы в конвективной зоне
Движение вещества в конвективной зоне тесно связано с процессами ионизации и рекомбинации атомов водорода и гелия, и во многом обусловлено ими.
Конвективные зоны звёзд различной массы
Обычная конвективная зона
Солнце, а также звёзды главной последовательности, имеющие среднюю массу и близкий спектральный класс, обладают конвективной зоной, которая занимает приблизительно треть объёма звезды. Когда горячая плазма поднимается к верхней границе конвективной зоны, она охлаждается за счёт излучения энергии в фотосферу, остывает и погружается вглубь, где нагревается излучением лучистой зоны, после чего цикл повторяется. Поскольку зона ядерных реакций отделена от зоны перемешивания вещества зоной лучистого переноса, то гелий практически не выносится в поверхностные слои Солнца, а накапливается в его ядре.
Конвективная зона на Солнце и сходных звёздах представляет собой зону частично ионизованных водорода и гелия. Конвективная зона простирается до глубины, где водород и гелий полностью ионизованы. Чем ниже температура звезды, тем толще её конвективная зона, у холодных красных звёзд её толщина достигает половины радиуса. Наоборот, у более горячих звёзд спектрального класса А водород заметно ионизован уже на поверхости, поэтому уже на небольшой глубине и водород и гелий полностью ионизованы, следовательно толщина конвективной зоны у таких звёзд мала.
Ядерная конвективная зона
У массивных звёзд ранних спектральных классов (O и B) синтез гелия осуществляется не протон-протонным, а азотно-углеродным циклом. Скорость этой реакции очень сильно зависит от температуры, поэтому температура внутри ядра по мере движения к центру звезды очень быстро возрастает. Большой температурный градиент внутри ядра создаёт условия для формирования ещё одной, внутриядерной зоны конвекции, которая лежит под зоной лучистого переноса, и в которой происходит активное перемешивание массы вещества, участвующего в ядерных реакциях. Это приводит к равномерному выгоранию водорода по всему ядру, что существенно влияет на ход эволюции таких звёзд.
Звёзды без лучистой зоны
У звёзд главной последовательности, имеющих малую массу (менее 0,26 массы Солнца) — красных карликов, зона конвекции занимает весь объём звезды. Лучистая зона отсутствует и у молодых звёзд малой массы (до трёх масс Солнца), ещё не завершивших процесс гравитационного сжатия и находящихся на подходе к главной последовательности. У красных гигантов зона конвекции также простирается непосредственно до ядра.
Строение Солнца. Конвективная зона
Пропустила понедельник. Исправляюсь. Сегодня размещу два поста.
Начиная от глубины примерно 200 тыс. км, или со слоя радиусом в 0,7 солнечных радиусов, под видимой поверхностью Солнца (фотосферой), находится конвективная зона, в которой вещество Солнца (плазма) «чувствует себя» довольно свободно и не может не двигаться. В этом слое температура вещества заметно понижается (до 1–2 млн К), поскольку энергия распределяется на всё больший объём плазмы. Механизм лучистого переноса в этом слое не может
справиться с доставкой наружу всей тепловой энергии, выделенной ядром, и на помощь ему приходит другой механизм переноса тепла — конвекция. И если «единицей переноса энергии»
до этого были фотоны, то теперь — гранулы и супергранулы.
Конвекция — перенос тепла вместе с разогретым веществом снизу вверх — самый эффективный способ переноса энергии В СРЕДЕ (то есть в вакууме конвекция не работает). Представьте себе кипящий суп: за счет конвекции вода (жидкая среда) эффективно передает тепло кусочкам овощей. Тепло со дна кастрюли, нагреваемого плитой, распределяется на всю жидкость и достигает её верхних слоев за счет конвекции. Суп кипит. примерно такую картину мы рисуем (еще не наблюдаем, но уже достаточно точно «прощупываем» и просчитываем) в конвективной зоне Солнца.
Под высокою белой звездою,
Над зыбучею тёмной водой
Мы стояли в тот вечер с тобою
Словно в центре Вселенной самой!
Небо-купол над нами качалось,
Море чашей плескалось у ног,
И гудящая Вечность, казалось,
Наши души брала под залог!
Недоступна и неисчислима
Мириадами звёздных миров,
Словно Страсть негасима,
как Жизнь и Любовь!
А мне греча ближе, её и напоминает.
Приятно, когда человек посвящает себя серьезным научным исследованиям, но находит время, чтобы рассказать о своих результатах простому обывателю
Оказывается действительно можно сравнить с котлом кипящей каши, даже «пузырьки» живут примерно столько-же времени (10 +\- минут))
Все мы в Матрице
Неповторимый полёт «Бурана»: 33 года с запуска системы «Энергия—Буран»
15 ноября 1988 года с космодрома Байконур взлетела ракета-носитель «Энергия» с космическим кораблём «Буран». Это был уже второй полёт для ракеты и первый для данной многоразовой транспортной космической системы. К сожалению, «Буран» не смог доказать свою многоразовость, слетав всего один раз. Полёт корабля был беспилотным, но предполагалось, что в кабине могут находиться до 10 космонавтов.
Одним из главных преимуществ был грузовой отсек «Бурана» — шириной 4,7 м, длиной 18,55 м и объёмом 350 м³. Он мог вмещать полезный груз массой до 30 т для доставки на орбиту и до 20 т для возвращения на Землю. Например, корабль смог бы выводить на орбиту новые модули орбитальных станций. А на обратном пути возвращать на Землю выработавшие свой срок службы. Таким образом, за 6 запусков можно было бы полностью «обновить» станцию «Мир».
Технологии и разработки на основе двигателя РД-170 РН «Энергия» использовались или востребованы до сих пор:
— РД-171 — в российско-украинских ракетах «Зенит» и его модификация РД-171МВ для перспективной российской РН «Союз-5»
— «половинка» РД-180 применена в американских ракетах Atlas III и Atlas V
— «четвертинка» РД-191 применяется в российских ракетах «Ангара» и его экспортная версия РД-181 для американской ракеты Antares
На видео — посадка «Бурана» на аэродроме «Юбилейный» на Байконуре. Полёт космического корабля в космос и спуск его на Землю в автоматическом режиме под управлением бортового компьютера вошёл в книгу рекордов Гиннеса.
Как устроен Пояс астероидов?
Если взглянуть на Солнечную Систему со стороны, то она предстанет перед нами четко отлаженным механизмом. Однако, между орбитами Марса и Юпитера расположено настоящее царство хаоса. В нем сотни тысяч небольших небесных тел преодолевают космическое пространство в самых разных направлениях, время от времени пересекая чужие орбиты. Порой они сталкиваются, порождая тысячи осколков. Облик этого сектора постоянно меняется, и вряд ли получится предсказать, каким он станет в далеком будущем.
Один месяц Солнца. В 4К
Из описания к видео:
«78 846 кадров данных Ангстрема-171 из обсерватории Солнечной динамики были отремонтированы, обработаны и масштабированы для создания фильма, который относится к августу 2014 года.Эти кадры составляют 22 минуты отснятого материала со скоростью 60 кадров в секунду. Противоположная сторона Солнца показана во второй половине фильма.»
Сам люблю такие вещи, успокаивает.
Ученые предложили способ как спасти Землю от Армагеддона
Очередной конец света, возможно, отменяется. Астероид, приближающийся к Земле, можно будет уничтожить. И ради этого не надо будет жертвовать командой смельчаков или героем-одиночкой, как в известном американском блокбастере. Все можно будет сделать пусть и не проще, но точно безопаснее.
На данный момент небесные тела, бороздящие просторы галактики, по мнению астрономов, не представляют серьезной угрозы для землян. Так, может где-то что-то упасть из пролетевших незаметно космических глыб, но вреда от них в глобальном плане ждать не стоит. Они могут повторить судьбу Челябинского метеорита, но про конец света не стоит даже заикаться. А вот крупные астероиды – явление более опасное. И может так оказаться, что некоторые из них уже через 100 – 200 лет, а то и раньше, окажутся на прямой траектории к нашей планете.
Путешествие из центра Солнца
Светило, которому обязаны своим существованием и наша планета, и ее биосфера, и человеческая цивилизация, с точки зрения астрономов вполне банально.
Новорожденное светило продолжало сжиматься, всё больше разогревая свои недра. Через несколько миллионов лет их температура достигла 10 млн градусов Цельсия, и там начались самоподдерживающиеся реакции термоядерного синтеза. Юная протозвезда превратилась в нормальную звезду главной последовательности. Вещество ближней и дальней периферии диска сгустилось в холодные тела — планеты и планетоиды.
Вот кое-какие паспортные данные Солнца. Возраст — 4,59 млрд лет; масса — 1,989×10 30 кг; средний радиус — 696 000 км; средняя плотность — 1,409 г/см 3 (плотность земной материи в четыре раза выше); эффективная температура поверхности (вычисленная в предположении, что Солнце излучает как абсолютно черное тело) — 5503°C (в пересчете на абсолютную температуру — 5778 кельвинов); суммарная мощность излучения — 3,83×10 23 кВт.
Поскольку Солнце вращается вокруг собственной оси не как единое целое, строго определенных суток оно не имеет. Поверхность его экваториальной зоны делает полный оборот за 27 земных суток, а приполярных зон — за 35 суток. Осевое вращение солнечных внутренностей еще сложнее и во всех деталях пока неизвестно.
В химическом составе солнечного вещества, естественно, доминируют водород (примерно 72% массы) и гелий (26%). Чуть меньше процента составляет кислород, 0,4% — углерод, около 0,1% — неон. Если выразить эти соотношения в количестве атомов, то получается, что на миллион атомов водорода приходится 98 000 атомов гелия, 850 атомов кислорода, 360 — углерода, 120 — неона, 110 — азота и по 40 атомов железа и кремния.
Солнечная механика
День грядущий
От процессов в солнечных недрах непосредственно зависит грядущая судьба нашего светила. По мере уменьшения запасов водорода ядро постепенно сжимается и разогревается, что увеличивает светимость Солнца. С момента превращения в звезду главной последовательности она уже выросла на 25–30% — и процесс будет продолжаться. Примерно через 5 млрд лет температура ядра достигнет сотни миллионов градусов, и тогда в его центре загорится гелий (с образованием углерода и кислорода). На периферии в это время будет дожигаться водород, причем зона его сгорания несколько сдвинется по направлению к поверхности. Солнце потеряет гидростатическую устойчивость, его внешние слои сильно раздуются, и оно превратится в исполинское, но не очень яркое светило – красный гигант. Светимость этого исполина на два порядка превысит нынешнюю светимость Солнца, но его жизненный срок будет короче. В центре его ядра быстро накопится большое количество углерода и кислорода, которые вспыхнуть уже не смогут — не хватит температуры. Внешний гелиевый слой будет продолжать гореть, постепенно расширяясь и в силу этого охлаждаясь. Скорость термоядерного сгорания гелия чрезвычайно быстро растет с повышением температуры и падает с ее снижением. Поэтому внутренности красного гиганта начнут сильно пульсировать, и в конце концов дело может дойти до того, что его атмосфера окажется выброшенной в окружающий космос со скоростью в десятки километров в секунду. Сначала разлетающаяся звездная оболочка под действием ионизирующего ультрафиолетового излучения нижележащих звездных слоев ярко засияет голубым и зеленым светом — на этой стадии она называется планетарной туманностью. Но уже через тысячи или десятки тысяч лет туманность остынет, потемнеет и рассеется в пространстве. В ядре превращение элементов прекратится вовсе, и оно будет светить лишь за счет накопленной тепловой энергии, все больше остывая и угасая. Такие холодеющие остатки почивших в бозе звезд солнечного типа называют белыми карликами.
В ходе этих превращений (а их довольно много) сгорает водород и рождаются различные изотопы таких элементов Периодической системы, как гелий, бериллий, литий и бор. Три последних элемента вступают в ядерные реакции либо распадаются, а гелий остается — вернее, остается его основной изотоп гелий-4. В результате оказывается, что четыре протона дают начало одному ядру гелия, двум позитронам и двум нейтрино. Позитроны немедленно аннигилируют с электронами, а нейтрино покидают Солнце, практически не реагируя с его веществом. Каждая реакция p-p-цикла высвобождает 26,73 мегаэлектронвольта в форме кинетической энергии рожденных частиц и гамма-излучения.
Если бы протосолнечное облако состояло исключительно из элементов, возникших в ходе Большого взрыва (водорода и гелия-4 с очень малой примесью дейтерия, гелия-3 и лития-7), то этими реакциями все бы и закончилось. Однако композиция протосолнечного вещества была намного богаче, неоспоримым доказательством чему служит хотя бы наличие железа в солнечной атмосфере. Этот элемент, как и его ближайшие соседи в менделеевской таблице, рождается только в недрах гораздо более массивных светил, где температуры достигают миллиардов градусов. Солнце к ним не относится. Если железо там все-таки имеется, то лишь потому, что первичное облако уже было загрязнено и этим металлом, и еще многими другими элементами. Все они образовались в ядерных топках гигантских звезд прежних поколений, взорвавшихся сверхновыми и разбросавших продукты своей творческой деятельности по всему космическому пространству.
Это обстоятельство не сильно меняет вышеприведенную схему внутрисолнечного термоядерного синтеза, но все-таки привносит в нее кое-какие поправки. Дело в том, что при 15 млн градусов водород может превратиться в гелий и в углеродно-азотно-кислородном цикле (CNO-цикл). В его начале протон сталкивается с ядром углерода-12 и порождает ядро азота-13 и квант гамма-излучения. Азот распадается на ядро углерода-13, позитрон и нейтрино. Ядро тяжелого углерода опять-таки сталкивается с протоном, из чего происходят азот-14 плюс гамма-квант. Азот заглатывает третий протон с выделением гамма-кванта и кислорода-15, который трансформируется в азот-15, позитрон и нейтрино. Ядро азота захватывает последний, четвертый протон и раскалывается на ядра углерода-12 и гелия-4. Суммарный баланс такой же, как и в первом цикле: четыре протона в начале, альфа-частица (она же ядро гелия-4), пара позитронов и пара нейтрино в конце. Плюс, естественно, такой же выход энергии, без малого 27 МэВ. Что до углерода-12, то он в этом цикле вообще не расходуется, исчезает в первой реакции и снова появляется в последней. Это не топливо, а катализатор.
Реакции CNO-цикла внутри Солнца идут довольно вяло и обеспечивают лишь полтора процента общего выхода энергии. Однако забывать их не стоит хотя бы потому, что иначе расчетная мощность потока солнечных нейтрино будет заниженной. Загадки нейтринного излучения Солнца очень интересны, но это вполне самостоятельная тема, которая не укладывается в рамки данной статьи.
Лучистый перенос
Внешняя граница ядра находится приблизительно в 150 000 км от центра Солнца (0,2 радиуса). В этой зоне температура снижается до 9 млн градусов. При последующем охлаждении реакции протон-протонного цикла прекращаются — у протонов недостает кинетической энергии для преодоления электростатического отталкивания и слияния в ядро дейтерия. Реакции CNO-цикла там тоже не идут, поскольку их температурный порог даже выше. Поэтому на границе ядра солнечный термояд сходит на нет.
Как это происходит? Рожденные в центре ядра гамма-кванты рассеиваются в его веществе, постепенно теряя энергию. До границы ядра они добираются в виде мягкого рентгена (длина волны порядка одного нанометра и энергия 400–1300 эВ). Тамошняя плазма для них почти непрозрачна, фотоны могут преодолеть в ней расстояние всего лишь в доли сантиметра. При столкновении с ионами водорода и гелия кванты отдают им свою энергию, которая частично уходит на поддержание кинетической энергии частиц на прежнем уровне, а частично переизлучается в виде новых квантов большей длины. Так что фотоны постепенно диффундируют через плазму, погибая и рождаясь вновь. Блуждающие кванты легче уходят вверх (где вещество менее плотно), нежели вниз, и поэтому лучистая энергия перетекает из глубин зоны к ее внешней границе.
Поскольку в зоне лучистого переноса вещество неподвижно, она вращается вокруг солнечной оси как единое целое. Но лишь до поры до времени. Во время перемещения к поверхности Солнца фотоны проходят все более длинные дистанции между столкновениями с ионами. Это означает, что разница в кинетической энергии излучающих и поглощающих частиц все время возрастает, ведь солнечная материя на бОльших глубинах горячее, чем на меньших. В результате плазма дестабилизируется и в ней возникают условия для физического перемещения вещества. Зона лучистого переноса переходит в конвективную зону.
Зона конвекции
Она начинается на глубине в 0,3 радиуса и простирается вплоть до поверхности Солнца (вернее, его атмосферы). Ее подошва нагрета до 2 млн градусов, в то время как температура внешней границы не достигает и 6000°C. От лучевой зоны ее отделяет тонкий промежуточный слой — тахоклин. В нем происходят интереснейшие, но пока не слишком изученные вещи. Во всяком случае есть основания считать, что движущиеся в тахоклине потоки плазмы вносят основной вклад в формирование солнечного магнитного поля. Нетрудно вычислить, что зона конвекции занимает около двух третей объема Солнца. Однако масса ее очень невелика — всего два процента солнечной. Это и естественно, ведь солнечное вещество по мере удаления от центра неотвратимо разрежается. У нижней границы зоны плотность плазмы равна 0,2 плотности воды, а при выходе в атмосферу она уменьшается до 0,0001 плотности земного воздуха над уровнем моря.
Вещество в конвективной зоне перемещается весьма запутанным образом. От ее подошвы восходят мощные, но медленные потоки горячей плазмы (поперечником в сотню тысяч километров), скорость которых не превышает нескольких сантиметров в секунду. Навстречу им опускаются не столь могучие струи менее нагретой плазмы, скорость которых измеряется уже метрами в секунду. На глубине в несколько тысяч километров восходящая высокотемпературная плазма разделяется на гигантские ячейки. Наиболее крупные из них имеют линейные размеры порядка 30–35 тысяч километров — их называют супергранулами. Ближе к поверхности образуются мезогранулы с характерным размером в 5000 км, а еще ближе — в 3–4 раза меньшие гранулы. Супергранулы живут около суток, гранулы — обычно не более четверти часа. Когда эти продукты коллективного движения плазмы добираются до солнечной поверхности, их легко увидеть в телескоп со специальным фильтром.
Атмосфера
Она устроена довольно сложно. Весь солнечный свет уходит в космос с ее нижнего уровня, который называют фотосферой. Основным источником света служит нижний слой фотосферы толщиной в 150 км. Толщина всей фотосферы составляет около 500 км. Вдоль этой вертикали температура плазмы снижается от 6400 до 4400 К.
В фотосфере постоянно возникают области пониженной (до 3700 К) температуры, которые светятся слабее и обнаруживаются в виде темных пятен. Количество солнечных пятен изменяется с периодом в 11 лет, но они никогда не покрывают больше 0,5% площади солнечного диска.
Над фотосферой расположен хромосферный слой, а еще выше — солнечная корона. О существовании короны известно с незапамятных времен, поскольку она превосходно видна во время полных солнечных затмений. Хромосферу же открыли сравнительно недавно, лишь в середине XIX века. 18 июля 1851 года сотни астрономов, собравшихся в Скандинавии и окрестных странах, наблюдали, как Луна закрывает солнечный диск. За несколько секунд до появления короны и перед самым концом полной фазы затмения ученые заметили у края диска светящийся красный полумесяц. Во время затмения 1860 года удалось не только лучше рассмотреть такие вспышки, но и получить их спектрограммы. Спустя девять лет английский астроном Норман Локьер назвал эту зону хромосферой.
Корона — самая горячая часть атмосферы, ее температура достигает нескольких миллионов градусов. Этот нагрев можно объяснить с помощью нескольких моделей, базирующихся на принципах магнитной гидродинамики. К сожалению, все эти процессы очень сложны и изучены весьма слабо. Корона также насыщена разнообразными структурами — дырами, петлями, стримерами.
Солнечные проблемы
Несмотря на то что Солнце — это самый крупный и самый заметный объект земного неба, нерешенных проблем в физике нашего светила хватает. «Мы знаем, что магнетизм Солнца чрезвычайно сильно влияет на динамику его атмосферы — к примеру, порождает солнечные пятна. Но как он возникает и как распространяется в плазме, еще не выяснено, — отвечает на вопрос «ПМ» директор американской Национальной солнечной обсерватории Стивен Кейл. — На второе место я бы поставил расшифровку механизма возникновения солнечных вспышек. Это кратковременные, но крайне мощные выбросы быстрых электронов и протонов, сочетающиеся с генерацией столь же мощных потоков электромагнитного излучения самых разных длин волн. О вспышках собрана обширная информация, однако разумных моделей их возникновения пока нет. Наконец, надо бы понять, какими способами фотосфера подпитывает энергией корону и разогревает ее до температур, которые на три порядка превышают ее собственную температуру. А для этого прежде всего необходимо как следует определить параметры магнитных полей внутри короны, поскольку эти величины известны далеко не в полной мере».
Солнечные пятна
Трехмерная модель солнечного пятна, построенная на основе данных космической обсерватории SOHO. Верхняя плоскость — это поверхность Солнца, нижняя плоскость проходит на глубине 22 000 км. Вертикальная плоскость сечения продолжена до 24 000 км. Цветами обозначены области с различной скоростью звука (по мере убывания — от красной к синей и черной). Изображение: «Популярная механика»
Пятна — это места выхода в солнечную атмосферу сильных (в тысячи раз превышающих земное) магнитных полей. Это участки с пониженной (примерно до 3700 К) температурой на поверхности Солнца, поэтому на фоне горячей (5700 К) фотосферы пятна видны как темные области. Время их жизни — от нескольких дней до недель. Пятна чаще всего возникают «парными группами», магнитные поля одной группы имеет северную полярность, другой — южную. В самой темной части пятна — тени — поле максимально и направлено почти вертикально, вокруг — в полутени — поле менее сильное, линии его более «пологие». Часто пятна окружены более горячими активными областями — факелами. Количество пятен на Солнце изменяется с периодом в 11 лет; чем их больше, тем больше активность Солнца: именно пятна являются областями мощных солнечных вспышек.
«Исследованию солнечного магнетизма помогут два телескопа с полутораметровой апертурой, которые сооружают сейчас в Калифорнии и на Канарах, — продолжает Кейл. — Мы надеемся также, что в будущем году начнется строительство еще более совершенного четырехметрового телескопа для солнечных исследований. Мы с нетерпением ожидаем и запуска Solar Dynamics Observatory — тяжелого спутника, оснащенного приборами для всестороннего изучения солнечной атмосферы. Этот старт планируют на конец нынешнего или начало будущего года».