что такое значащие цифры в математике
Значащие цифры
Смотреть что такое «Значащие цифры» в других словарях:
ЗНАЧАЩИЕ ЦИФРЫ — (значащие разряды), цифры числа, которые выражают его с требуемой точностью; последние цифры могут быть округлены. Так, число 2,871828, округленное до шести цифр, будет представлено как 2,87183; округленное до трех цифр как 2,87 … Научно-технический энциклопедический словарь
ЗНАЧАЩИЕ ЦИФРЫ — в приближенных вычислениях все цифры числа, начиная с первой слева, отличной от нуля, до последней, за правильность которой можно ручаться. Напр., в записи результата взвешивания 0,03020 кг значащими цифрами будут 3, 0, 2 и 0 … Большой Энциклопедический словарь
значащие цифры — в приближённых вычислениях, все цифры числа, начиная с первой слева, отличной от нуля, до последней, за правильность которой можно ручаться. Например, в записи результата взвешивания 0,03020 кг значащими цифрами будут 3, 0, 2 и 0. * * * ЗНАЧАЩИЕ… … Энциклопедический словарь
ЗНАЧАЩИЕ ЦИФРЫ — в приближённых вычислениях все цифры числа, начиная с первой слева, отличной от нуля, до последней, за правильность к рой можно ручаться. Напр., в записи результатов взвешивания 0,320 кг 3. ц. будут 3, 2 и 0 … Большой энциклопедический политехнический словарь
ЗНАЧАЩИЕ ЦИФРЫ — в приближённых вычислениях, все цифры числа, начиная с первой слева, отличной от нуля, до последней, за правильность к рой можно ручаться. Напр., в записи результата взвешивания 0,03020 кг значащими цифрами будут 3, 0, 2 и 0 … Естествознание. Энциклопедический словарь
Закон Бенфорда — Закон Бенфорда, или закон первой цифры, описывает вероятность появления определённой первой значащей цифры в распределениях величин, взятых из реальной жизни. Закон верен для многих таких распределений, но не для всех. Ра … Википедия
АРИФМЕТИКА — искусство вычислений, производимых с положительными действительными числами. Краткая история арифметики. С глубокой древности работа с числами подразделялась на две различные области: одна касалась непосредственно свойств чисел, другая была… … Энциклопедия Кольера
Логарифм — График двоичного логарифма Логарифм числа … Википедия
Метод одной касательной — Метод Ньютона (также известный как метод касательных) это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном (1643 1727), под именем… … Википедия
Метод Ньютона — Метод Ньютона, алгоритм Ньютона (также известный как метод касательных) это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном… … Википедия
Разряды и классы чисел
Числа и цифры
Числа — это единицы счета. С помощью чисел можно сосчитать количество предметов и определить различные величины.
Для записи чисел используются специальные знаки — цифры. Всего их десять: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0.
Натуральные числа — это числа, которые мы используем при счете. Вот они: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, …
От количества цифр в числе зависит его название.
Число, которое состоит из одного знака, называется однозначным. Наименьшее однозначное — 1, наибольшее — 9.
Число, которое состоит из двух знаков цифр, называется двузначным. Наименьшее двузначное — 10, наибольшее — 99.
Числа, которые записаны с помощью двух, трех, четырех и более цифр, называются двузначными, трехзначными, четырехзначными или многозначными. Наименьшее трехзначное — 100, наибольшее — 999.
Каждая цифра в записи многозначного числа занимает определенное место — позицию.
Классы чисел
Цифры в записи многозначных чисел разбивают справа налево на группы по три цифры в каждой. Эти группы называют классами. В каждом классе цифры справа налево обозначают единицы, десятки и сотни этого класса.
Названия классов многозначных чисел справа налево:
Чтобы читать запись многозначного числа было удобно, между классами оставляют небольшой пробел. Например, чтобы прочитать число 125911723296, удобно сначала выделить в нем классы:
А теперь прочитаем число единиц каждого класса слева направо:
Разряды чисел
От позиции, на которой стоит цифра в записи числа, зависит ее значение. Например:
Можно сформулировать иначе и сказать, что в заданном числе 1 123 цифра 3 располагается в разряде единиц, 2 в разряде десятков, 1 в разряде сотен, а 1 служит значением разряда тысяч.
Проясним, что такое разряд в математике. Разряд — это позиция или место расположения цифры в записи натурального числа.
У каждого разряда есть свое название. Слева всегда живут старшие разряды, а справа — младшие. Чтобы быстрее запомнить, можно использовать таблицу.
Количество разрядов всегда соответствует количеству знаков в числе. В этой таблице есть названия всех разрядов для числа, которое состоит из 15 знаков. У следующих разрядов также есть названия, но они используются крайне редко.
Низший (младший) разряд многозначного натурального числа — разряд единиц.
Высший (старший) разряд многозначного натурального числа — разряд, соответствующий крайней левой цифре в заданном числе.
Вы наверняка заметили, что в учебниках часто ставят небольшие пробелы при записи многозначных чисел. Так делают, чтобы натуральные числа было удобно читать. А еще чтобы визуально разделить классы чисел.
Разрядные единицы обозначают так:
Каждые три разряда, следующие друг за другом, составляют класс. Первые три разряда: единицы десятки и сотни — образуют класс единиц (первый класс). Следующие три разряда: единицы тысяч, десятки тысяч и сотни тысяч — образуют класс тысяч (второй класс). Третий класс будут составлять единицы, десятки и тысячи миллионов и так далее.
Чтобы легче понимать математику — записывайтесь на наши онлайн-курсы по математике!
Потренируемся
Пример 1. Записать цифрами число, в котором содержится:
Все разрядные единицы, кроме простых единиц, называют составными единицами. Каждые десять единиц любого разряда составляют одну единицу следующего более высокого разряда:
Чтобы узнать, сколько в числе заключается всех единиц какого-либо разряда, нужно отброс ить все цифры, обозначающие единицы низших разрядов и прочитать число, которое выражено оставшимися цифрами.
Пример 2. Сколько сотен содержится в числе 6284?
В числе 6284 на третьем месте в классе единиц стоит цифра 2, значит, в числе есть две сотни.
Следующая цифра слева — 6, означает тысячи. Так как в каждой тысяче содержится 10 сотен то, в 6 тысячах их заключается 60.
Значит, в данном числе содержится 62 сотни.
Цифра 0 в любом разряде означает отсутствие единиц в данном разряде.
Проще говоря, цифра 0 в разряде десятков означает отсутствие десятков, в разряде сотен — отсутствие сотен и т. д. В том разряде, где стоит 0, при чтении числа ничего не произносится:
Чтобы проще освоить эту тему, можно распечатать таблицу классов и разрядов для учащихся 4 класса и обращаться к ней, если возникнут сложности.
Значимые цифры: правила, примеры, решенные упражнения
Содержание:
А что происходит, когда число целое? Это означает, что он известен с максимально возможной точностью, другими словами, он имеет бесконечную точность. Например, при подсчете людей, животных или таких предметов, как книги и телефоны, результатом будет точное целое число.
Если мы скажем, что в кинотеатре 110 человек смотрят фильм, это точное число, ни много, ни мало, и оно состоит из трех значащих цифр.
Значительные числа обрабатываются по некоторым простым правилам, которые запоминаются после небольшой практики, как мы увидим дальше.
Правила определения значащих цифр числа
Правило 1
Начальные нули не считаются значащими цифрами, поэтому 0,045 и 4,5 имеют две значащие цифры, поскольку они начинают отсчет слева и начиная с первой ненулевой цифры.
Правило 2
Нули после (справа) первой значащей цифры действительно считаются значащей цифрой (если это оправдано точностью измерительного прибора).
Наконец, нули в середине также считаются значащей цифрой.
Правило 3
Для чисел, записанных в экспоненциальном представлении, все цифры в мантиссе значимы, а показатель степени не влияет на точность.
Правило 4
При выполнении операций с десятичными знаками, например при вычислении площадей или других подобных операций, результат должен иметь такое же количество значащих цифр, что и количество с наименьшим количеством значащих цифр, участвовавших в операции. Это правило действует для любых арифметических операций.
Правило 5
Знак числа не влияет на количество его значащих цифр.
Мы сразу же увидим некоторые примеры этого и всех других правил.
Примеры
Пример 1
Найдите, сколько значащих цифр в каждом из этих чисел.
Ответы
а) 876 имеет 3 значащих цифры.
б) 1000,68 имеет 6 значащих цифр, поскольку нули в середине считаются как таковые.
c) Вместо 0,00005026 имеется 4 значащих цифры. Обратите внимание, что 5 нулей слева от 5 не считаются значащими цифрами, тогда как 0 между 5 и 2 считается.
г) 4.8 имеет 2 значащих цифры.
Пример 2
Обычно измерения проводят с помощью измерительных инструментов, таких как рулетки, часы, термометры, весы и т. Д. Со сколькими значащими цифрами мы должны указывать количества, которые мы измеряем таким образом?
Ответить
Это зависит от оценки инструмента, которым он измеряется. Возьмем пример: измерьте внешний диаметр трубы с помощью градуированной линейки и штангенциркуля.
Он более точен, чем градуированная линейка, потому что с его помощью мы можем узнать более значащие числа определенной длины.
Вот почему нет смысла сообщать периметр, скажем, 35,88 см, если мы измеряем его рулеткой, поскольку этот инструмент недостаточно точен, чтобы указать такое количество значащих цифр.
Оценка рулетки A определяется по:
Пример 3
Сколько значащих цифр в показании цифрового термометра?
Ответить
Термометр на рисунке показывает трехзначные показания температуры. Однако в показанном измерении 36,6 ºC только первые две цифры слева направо являются точными, поскольку на десятичную дробь влияет погрешность оценки прибора, которая обычно указывается на задней стороне прибора или на ваше руководство по эксплуатации.
Обычно для представленного типа цифрового прибора погрешность оценки составляет 0,1 ºC. Этого достаточно, чтобы быть уверенным, что у вас нет температуры.
Правила округления чисел
При использовании калькулятора для выполнения расчетов с полученными измерениями некорректно давать результат, используя все цифры, которые появляются на экране.
Сохраняются только те, которые точно известны, поскольку только они имеют истинное значение. Затем необходимо округлить результаты, чтобы они соответствовали количеству точно известных цифр. Вот эти правила:
-Если число, следующее за цифрой, которую необходимо скрыть, является равно или больше 5, к этой цифре добавляется 1.
Например, при округлении 3,786 до двух десятичных знаков мы хотим сохранить числа до 8. Поскольку число, следующее за (6), больше 5, 8 становится 8 + 1 = 9, и число остается как 3.79.
-Когда число, следующее за цифрой, которую необходимо сохранить, менее 5, цифра останется прежней.
Если мы хотим округлить 1,27924, чтобы у него было только 3 десятичных разряда, это достигается путем достижения 9, за которым следует 2. Поскольку 2 меньше 5, эти десятичные дроби исчезают, а округленное число остается 1,279.
Упражнение решено
Обеденный стол имеет форму и размеры, указанные на прилагаемом рисунке. Вам предлагается рассчитать его площадь по правилам работы со значащими цифрами.
Решение
Зона стола может быть разделена на центральную прямоугольную зону и два полукруга, по одному с каждой стороны, которые вместе составляют один полный круг.
Мы будем называть A1 к площади прямоугольника, задаваемой:
К1 = основание × высота = 2,5 м x 1,0 м = 2,5 м 2
Со своей стороны, площадь круга, равная площади 1 полукруга, умноженной на 2, равна:
Диаметр любого из полукругов составляет 1,0 м, поэтому радиус равен 0,50 м. Диаметр также можно использовать напрямую для расчета площади, в этом случае:
К2 = (π × диаметр 2 ) / 4
К2 = [π x (1,0 м) 2 ] / 4 = 0,785398163 м 2
Были использованы все цифры, предоставленные калькулятором. Теперь добавляем A1 уже2 для общей площади стола A:
A = (2,5 + 0,785398163) м 2 = 3,285398163 м 2
Поскольку размеры таблицы известны до двух значащих цифр, не имеет смысла выражать результат со всеми десятичными знаками, указанными калькулятором, который никогда не дает количество значащих цифр в результате.
Что вам нужно сделать, так это округлить область так, чтобы в ней было такое же количество значащих цифр, что и размеры таблицы, то есть 2. Таким образом, окончательный результат будет представлен следующим образом:
Ссылки
36 лучших фраз Аль Пачино, уникального актера