что такое желтый водород
Классификация водорода по цвету
Для простоты каждый «сорт» обозначается цветом
В классификации водорода главным критерием является его экологичность.
Чем больше оксидов углерода выделяется при производстве водорода, тем менее экологичным он будет считаться.
Для простоты каждый «сорт» обозначается цветом.
Зеленый водород
Данный водород является самым экологичным, т. к. получают его с помощью электролиза.
Если электричество поступает от возобновляемых источников энергии (ВИЭ), таких как ветер, солнечная или гидроэнергия, то выбросы СО2 отсутствуют.
Желтый (оранжевый) водород
Как и зеленый, его получают путем электролиза.
Однако источником энергии являются атомные электростанции (АЭС).
Выбросы СО2 отсутствуют, но метод не является абсолютно экологичным.
Бирюзовый водород
Этот водород получают разложением метана на водород и твердый углерод путем пиролиза.
Производство бирюзового водорода дает относительно низкий уровень выброса углерода, который может быть либо захоронен, либо использован в промышленности, например, в производстве стали или батарей.
Таким образом, он не попадает в атмосферу.
Серый водород
Серый водород производится путем паровой конверсии метана.
Исходным сырьем для такой реакции служит природный газ.
Этот процесс легко осуществим с практической точки зрения, однако в ходе химической реакции выделяется углекислота, причем в тех же объемах, что и при сгорании природного газа (также расходуется энергия на конверсию).
Коричневый (бурый) водород
Для получения коричневого водорода в качестве исходного сырья используется бурый уголь.
Далее с помощью газификации бурого угля образуется синтез-газ (сингаз): смесь углекислого газа (CO2), окиси углерода (CO), водорода, метана и этилена, а также небольшое количество других газов.
Первые 2 из этих газов бесполезны в производстве электроэнергии.
Это делает процесс очень неэкологичным по сравнению с другими методами.
Водород — новое светлое будущее энергетики?
Развитые страны постепенно отказываются от ископаемого топлива. На смену ему должны прийти экологически чистые источники энергии. Такой альтернативой наряду с электричеством становится водород. Как будет выглядеть водородное будущее и чем «зелёный» водород отличается от «серого» и «синего», рассказывает Фарид Мамедов.
Немецкая фирма «Пауль Вюрт» 12 марта 2020 года анонсировала строительство в Роттердаме электролитической установки по производству «зелёного» водорода. Установку уже успели испытать и признали годной к запуску в промышленное производство. К 2024 году она должна проработать 16 тысяч часов и произвести 960 тонн газа. Гораздо важней, что в атмосферу не попадет 8 тысяч тонн углерода — именно столько выбрасывается при производстве такого количества водорода.
Да, сейчас водород — это грязное производство. На каждый полученный килограмм водорода выбрасывается от 9 до 10 кг углерода. Такой водород получил название «серого». При этом элемент необходим для производства удобрений, используется в металлургическом производстве и химической промышленности. Сейчас мировое производство водорода составляет чуть более 70 млн тонн в год. Его углеродный след составляет более полумиллиарда тонн CO2.
Светлое будущее грязного продукта
Резкое снижение выбросов СО2 в атмосферу, подразумеваемое Парижским соглашением, зависит от глобального перехода к «зелёной» энергетике. По оценкам WRI (Института мировых ресурсов) на транспорт приходится 15,9% мировых выбросов, на промышленность — 18%, строительство и ЖКХ дают 20,4%. Это значит, что необходимо не только внедрение возобновляемых источников энергии, важно перевести все эти отрасли на энергоресурсы с низкой долей углерода. Без этого снизить антропогенные выбросы вдвое к 2050 году не получится.
Водород — это просто идеальное решение этой проблемы. Результат его сгорания — пар, то есть вода. Более того, самый перспективный получения водорода — электролиз воды. А это создаёт нечто наподобие замкнутого цикла, когда ресурсы газа будут восполняться при его потреблении. Никакой другой «зеленый» энергоресурс не дает такой возможности. Биотопливо, коксовый газ, аммиак — все при сжигании выбрасывают в атмосферу целый букет парниковых газов.
Есть только одна загвоздка: в отличие от нефти или газа, больших запасов водорода в естественных условиях просто нет. Водород сейчас — это результат переработки углеводородов со всем скопом сопутствующих проблем. Самым популярным методом получения этого газа остается паровая конверсия метана (95% получаемого водорода). При этом в атмосферу выбрасывается огромное количество углерода. Оставшиеся 5% приходятся в основном на не менее грязный риформинг нефти и нефтепродуктов. Небольшую долю процента составляют электролиз воды — самый массовый из «зелёных» методов получения водорода — и лабораторные биореакторы.
Такое соотношение не устраивает большинство стран, включившихся в водородную гонку. Поэтому стратегии достижения «безуглеродного» будущего нацелены на получение водорода максимально «зелёным» способом.
Цель — водород
Первой страной, которая сформулировала «водородную стратегию» стала Япония в 2017 году. За ней последовали и другие развитые страны. В 2019 году стратегии появились у Южной Кореи и Австралии, в 2020 году сразу у нескольких стран ЕС, от Голландии и Великобритании до Португалии и Франции. А 12 октября 2020 к этому списку стран присоединилась и Россия.
Так как с ходу перейти к «зелёной» энергетике не получится, программы предусматривают промежуточные меры. В первую очередь, это использование для перевозки и хранения водорода газовой инфраструктуры. Например, добавление 20% водорода к природному газу приведет к снижению выбросов СО2 на 7%.
Другой целью стал транспорт. В норвежской стратегии подчеркивается, что число электромобилей и автомобилей с водородными топливными ячейками должно достигнуть 50 тысяч к 2024 году. Их покупка не облагается НДС, а владельцы не обязаны платить транспортный налог до 2023 года. А Нидерланды планируют в ближайшие пару десятилетий перевести весь общественный транспорт на «водородную» тягу. Помимо этого, разрабатываются многочисленные варианты турбин, работающих на смеси природного газа и/или водорода. По такому же пути идут и другие страны, включая Германию.
Водородный транспорт
При этом у некоторых участников водородной гонки уже есть инфраструктура для водородного транспорта. Французская компания Air Liquide, один из лидер ов рынка переработки газа, уже успела установить по всему миру более 120 водородных заправочных станций. Концерн Тойота еще в 2013 году выпустил на рынок водородную модель — «Мираи». В Токио, Лондоне уже давно ходят автобусы на водородных топливных элементах. Скоро к нем должен присоединиться Эдинбург.
В Германии в 2018 году стали регулярно ходить пригородные водородные поезда. Фирма Alstom, которая их выпускала, получила заказ на 27 машин. В Великобритании в 2019 году запустили экспериментальный водородный экспресс. К 2040 году в стране собираются полностью избавиться от парка дизельных локомотивов.
К 2030 году Китай, Южная Корея, Япония и штат Калифорния должны будут выпустить 4,6 млн автомобилей на водородном топливе. Одновременно с производством машин планируется и инфраструктура для них. Только в Калифорнии и Нидерландах будет построено по тысяче водородных заправок.
Несмотря на то, что Россия присоединилась к гонке сравнительно поздно, в 2019 году Росатом и «Трансмашхолдинг» тоже решили запустить производство водородных поездов. РЖД планировало тестировать их на Сахалине. А летом 2020 года в подмосковной Черноголовке наконец открылась первая в стране водородная заправка. За счет этих «первых шагов» в будущем нам пророчат взрывной рост водородного транспорта.
Водородная заправка в Черноголовке. Фото: Олег Егоров / vk.com
Где еще будут использовать водород?
Важнейший элемент стратегий — это «энергетическая» реформа ЖКХ. В Великобритании первопроходцем станет Лидс: там энергоснабжение будет полностью водородным. А согласно плану H21 North of England газовые сети и транспортное оборудование английского севера также переведут под водород. Водородное отопление 4 млн жилых домов и предприятий снизит выбросы СО2 на 20 млн тонн, хотя и обойдутся в огромную сумму — 30 млрд долларов.
И хотя в стратегиях промышленность и сельское хозяйство практически не упоминаются, ассоциации отраслевых игроков тоже участвуют в выработке «водородного будущего». Предполагается, что уже в 2030 году 10% аммиака для удобрений будет получено «зеленым» способом с помощью электролизеров. В современных домнах во время плавки уже используется сингаз, на 55-58% состоящий из водорода. В ближайшем будущем практически все крупнейшие игроки, от Швеции и ФРГ, до США и Бразилии планируют довести долю водорода до 90% и выше, чтобы по максимуму отказаться от кокса. Эти меры позволят снизить на 10-11% выбросы углерода в атмосферу.
Вместе со странами стратегии пишут и многочисленные производители оборудования для ВИЭ. По одной из них у побережья Нидерландов предлагается соорудить гигаваттные оффшорные ветростанции, напрямую завязанные с электролизным производством водорода. Полученную электроэнергию предлагается распределить по всей Европе в зависимости от локального производства водорода. А чтобы сэкономить потребление энергии, стратегия предлагает подключить солнечный и сырьевой потенциал стран Северной Африки. Углеводороды перерабатывались бы в водород прямо на месте, после чего по новым водородным трубопроводам поступали в Европу. Фактически, ЕС получали бы сырьевой придаток к своей «зелёной» энергетики.
России пока ещё далеко до настолько проработанных программ. Основной упор в современной стратегии делается на экспорт водорода на наиболее перспективные рынки, например японский. В то же время, в энергобюллетенях Аналитического центра при правительстве РФ подчеркивается, что использование водородного топлива позволит снизить на треть энергопотребление на удаленных и малозаселенных территориях. Можно сказать, что сочетание ВИЭ и водорода здесь будет выигрышной стратегией.
Пульт управления производством в операторной установке производства водорода на площадке «Новойл» филиала «Башнефть-Уфанефтехим» ПАО АНК “Башнефть”. Фото: Кирилл Каллиников / Фотохост БРИКС/ШОС
Но многое будет зависеть от стоимости производства водорода, которая зависит от технологии получения. Так, стоимость электролиза 1 кг водорода на ветростанции — 4 доллара, с помощью солнечных панелей — 7 долларов. А вот газификация углеводородов и паровая конверсия метана пока обходится всего в 1,5-2,5 доллара.
От серого к синему, желтому и зеленому
Современные «серые» методы получения водорода отрабатывались десятилетиями. Тут даже вопроса не стоит о снижении выбросов углерода — дело в удобстве производства и энергоэффективности.
Как промежуточную меру перехода к безуглеродным способам получения водорода, предлагается дополнить «серый» водород технологией захвата и захоронения углерода (CCS). Такой водород называют «синим». Проблема в том, что технологии CCS совершенно не отработаны. Захваченный углерод предлагают закачивать под землю. Сейчас эти технологии в основном используются для добычи нефти: в обедневшую скважину закачивают СО2, чтобы увеличить добычу. Но, во-первых, «зеленая» энергетика должна увести человечество от постоянной добычи углеводородов, а не увеличить её. А во-вторых, потребности нефтяной промышленности просто не предполагают использование 500 млн тонн углерода.
Гораздо перспективней выглядит получение с помощью АЭС «жёлтого» водорода. Во-первых, в этом случае у нас под рукой есть и пар, и избыток электроэнергии. А во-вторых, электролиз Н2 не даст дополнительных выбросов СО2 в атмосферу. В США из-за понижения расценок на кВт/ч, выработанных с помощью ВИЭ, получение водорода на АЭС уже признано стратегией спасения этой отрасли энергетики. С 2019 года местное Минэнерго выделяет крупные гранты на эксперименты в этой области.
В эту ядерно-водородную гонку потихоньку включаются все ядерные державы. Во Франции и Великобритании крупнейшие операторы и владельцы АЭС также рассматривают вопрос производства «жёлтого» водорода. В России Росатом планирует к 2030 году создать атомную электротехнологическую станцию (АЭТС) производства водорода. Так же в планах у компании создание целой сети ядерно-водородных комплексов на базе уже имеющихся АЭС.
Однако наиболее перспективным считается использование возобновляемых источников для создания дешевого и действительно «зелёного» водорода. На это опираются большинство стратегий перехода к «безуглеродному миру». Насколько все серьезно, говорит проект с сооружением самого большого в мире завода по производству водорода в Саудовской Аравии на базе солнечной электростанции. И это только начало.
Биоводород: отходы превращаются в топливо
Наиболее «хардкорным» способом безотходного производства водорода являются… водоросли. Эксперименты с биореакторами на их основе ведутся уже не первое десятилетие, но результаты пока что не внушают оптимизма.
Сотрудники лаборатории отдела разработки биотехнологических процессов компании Biocad в Санкт-Петербурге занимаются моделированием биотехнологических процессов в биореакторах. Фото: Михаил Киреев / РИА Новости
Потенциально биореакторы способны работать на мусорных и пищевых отходах, тем самым совмещая переработку с получением «чистой» энергии. Лабораторные опыты показывают, что идеальным является двухстадийный процесс: стадия «темной ферментации», когда органика разлагается водорослями под малым воздействием солнечного излучения, и стадия фотоферментации, когда то же самое происходит при «нормальном» излучении. Для каждой стадии нужны свои виды водорослей. Поэтому реактор должен быть мультистадийным. Но пока на каждый килограмм сырья выход в лучшем случае составляет несколько десятков граммов водорода. Водоросли генетически модифицируют, чтобы усилить процессы ферментации, в сырье вводят кислоты и сахара, что удорожает биоректор, но прорыва нет. Увы, сложности биосистем и их «капризность», когда каждый реактор оказывается нетиповым, пока никак не поддаются химикам.
Так что пока наиболее выгодным с точки зрения экологии и технологических затрат остается получение водорода с помощью ВИЭ и АЭС. Это уже готовые технологии, а значит, «зеленый» водород перестал быть экзотической нишей. В ближайшие 15-20 лет мы можем оказаться в «водородном мире». И кто не успеет забраться в этот экспресс, рискует надолго оказаться в аутсайдерах.
Фролов оценил преимущества идеи Росатома добывать желтый водород
Заместитель гендиректора Института национальной энергетики Александр Фролов рассказал о преимуществах российской стратегии по производству водорода с использованием атомной электроэнергии.
Минэнерго РФ направило в правительство план развития водородной энергетики. Предполагается, что к 2024 году «Газпром» и Росатом станут создавать «чистый» водород, который сможет частично заменить углеводороды из-за мирового тренда на отказ от нефти и газа.
«Газпром» нацелен на добычу бирюзового водорода, а Росатом планирует производить так называемый желтый водород: он не сопровождается выбросом CO2, так как создается методом электролиза из воды. При производстве будет использоваться атомная электроэнергия.
Заместитель гендиректора Института национальной энергетики Александр Фролов в беседе с корреспондентом «ПолитЭксперта» рассказал подробнее о концепции получения желтого водорода и ее преимуществах. По его словам, водородная энергетика – это очередная модная тема, которая активно обсуждается и под которую охотно выделяют финансирование.
«Не будем тыкать пальцем в те темы, которые были популярны еще пару лет назад, хотя некоторые из них перетекают в тему водородной энергетики. Например, можно вспомнить о такой вещи, как энергопереход. Это важно в рамках данного обсуждения», – отметил Фролов.
Суть энергоперехода заключается в максимальном использовании электроэнергии вместо других источников. Например, мы не обогреваем свое жилище централизованно, а используем электрический обогреватель.
Но одна из проблем, связанных с энергопереходом и с развитием возобновляемой энергии, – это хранение электроэнергии. Водород является одним из решений данной задачи, отметил эксперт:
«Тема водородной энергетики является предложением по хранению энергии в виде такого вещества, как водород, который одновременно еще является и энергоносителем».
Однако бывают ситуации, когда в силу развития определенных концепций, воплощающихся в конкретных энергосистемах, получается избыток энергии в определенный период времени, объяснил Фролов:
«Так, избыток получается за счет производства энергии возобновляемым источником. Но он не постоянен и не абсолютен и касается отдельно взятых периодов времени. Тем не менее теоретически можно создать схемы: вы строите ветряки, солнечные панели, а потом отправляете избыточную, как считается, дармовую энергию на производство водорода. В идеальной схеме считается, что такая электроэнергия стоит очень дешево, поэтому ее можно направить на производство этого энергоносителя».
Идея с атомными станциями является неким отголоском подобных мыслей. Пару лет назад, напомнил эксперт, также предлагалось использовать АЭС для производства криптовалют. Где-то сочетании таких идей возникает план применять их для производства водорода. Атомная электростанция – базовая генерация, которая обеспечивает максимально стабильную и постоянную выработку определенных объемов электроэнергии, которые минимально меняются в течение суток.
«Проблема в том, что перепады потребления электроэнергии происходят постоянно. Вы приходите домой, включаете чайник, компьютер. В этот момент конкретно у вас потребление вырастает. Электроэнергия – специфический товар, который должен потребляться в момент производства, поэтому существует диспетчеризация – управление производством электроэнергии в зависимости от растущего или снижающегося спроса», – отметил эксперт.
Однако АЭС практически не приспособлены для таких перепадов. Их проще завести, чтобы они производили определенный объем электроэнергии, попытки изменить который – скорее плюс, чем минус.
«Теоретически можно создать систему, при которой искусственно создается некий потребитель электроэнергии производимой АЭС, чтобы выровнять объемы производства и избежать даже минимальных изменений. Сама АЭС стоит дорого, но это капитальные затраты, которые вы понесли один раз при строительстве либо несете очень редко в отличие от теплоэлектростанции, где необходимо закупать уголь», – подчеркнул он.
В рамках существующих сейчас идей и с точки зрения безопасности, если концепция будет реализована, то это большой плюс для работы атомных станций. Подобная технология, выравнивающая объемы производства электроэнергии на АЭС, только повышает безопасность этого вида генерации. Авария на ЧАЭС, напомнил Фролов, произошла в ходе эксперимента по изменению объемов производств, который проводился для разработки неких режимов работы, позволяющих маневрировать атомными электростанциями. В силу конструктивных особенностей это привело к аварии. На сегодняшний день все проблемы устранены, но данный случай хорошо иллюстрирует сложность управления АЭС.
«Сама по себе идея производства водородной энергетики очень активно лоббируется и обсуждается, однако эффект от нее пока что значительно меньше, чем информационная подпитка. Вопрос в потребителе – кому будет нужен водород. Если эта тема выстрелит, то производство подобного рода будет востребовано», – заключил Фролов.
Ранее китайские СМИ писали, что «чистый» водород поможет РФ закрепиться на мировом рынке энергетики. Они назвали стратегию России уникальной.
«Газпром» и «Росатом» начнут производить «чистый» водород в 2024 году
Минэнерго разработало и направило в правительство «дорожную карту» «Развитие водородной энергетики в России» на 2020–2024 годы, рассказал РБК представитель министерства. РБК ознакомился с документом; источник, близкий к одному из ведомств, подтвердил его подлинность.
Россия планирует производить и экспортировать водород в связи с мировым трендом на отказ от углеводородной энергетики из-за ее негативного влияния на климат и экологическую ситуацию, следует из пояснения к «дорожной карте». Пока этот тренд создает угрозу для энергобезопасности России — одного из крупнейших поставщиков нефти, газа и угля в мире. Уже со следующего года правительство намерено формировать репутацию России как поставщика водорода, который является одной из альтернатив традиционным энергоносителям, объясняется в документе.
Как Россия будет развивать новую отрасль
«Дорожная карта» предполагает следующие этапы.
«Дорожную карту» доработают с учетом мнений министерств, которые прислали много замечаний, говорит источник РБК, близкий к одному из ведомств. Например, Минтранс попросил Минэнерго изменить сроки реализации и исполнителей по некоторым мероприятиям, говорит представитель министерства, не уточняя детали. Минпромторг направлял замечания в июне и июле, сказал РБК представитель ведомства. Минэкономразвития в целом поддерживает «дорожную карту», но предложило включить пункт о проработке обращения с углекислым газом (CO2), который образуется в результате производства водорода (при выделении из метана. — РБК), сказал представитель МЭР.
Как мир переходит на новое топливо
По оптимистичной оценке Hydrogen Council (ассоциация крупных международных компаний, куда входят Total, Toyota, BP, Shell и другие, в основном европейские и японские, корпорации), в 2050 году доля водорода в потреблении энергии составит 18%. Другие эксперты говорят о доли потребления 12–19% в Великобритании, США и ЕС. Германия уже приняла национальную водородную стратегию и к 2030 году может перевести на водород часть своих газопроводов, а в перспективе и отводы от «Северного потока» и «Северного потока-2» Opal и Eugal, по которым поставляется (в случае Eugal — будет поставляться) газ из России.
Водород уже стал общим местом в энергетических политиках развитых стран, и коронакризис только ускорил этот тренд: переход на чистую энергию зафиксирован в пакетах мер господдержки пострадавших экономик, говорит директор инфраструктурного центра EnergyNet Дмитрий Холкин.
Какими методами будут производить водород
Российские компании уже производят водород, но в основном для промышленности. Это дешевый и самый распространенный в мире так называемый серый водород из газа, его производство сопровождается выбросами CO2. Иногда такое топливо оказывается даже «грязнее» традиционных энергоносителей, писали эксперты энергоцентра бизнес-школы «Сколково».
Но производство водорода, которому посвящена «дорожная карта» по развитию водородной энергетики, будет чистым. «Газпром» нацелен на производство так называемого бирюзового водорода (также из газа, но с образованием в качестве побочного продукта сажи, а не углекислого газа), говорит старший аналитик энергоцентра «Сколково» Юрий Мельников. По его словам, он будет выпускаться близко к местам потребления водорода, на нынешних рынках сбыта природного газа — то есть, например, в Европе. Компания уже обсуждает пилотные проекты в ЕС, рассказывал в июле начальник отдела департамента перспективного развития «Газпрома» Константин Романов. Еще один вариант — производить водород в России и подмешивать его в газ. В старые трубы можно добавить до 20% водорода, а в газопроводы типа «Северного потока» — до 70%, оценивал «Газпром».
«Росатом» планирует производить так называемый желтый водород: он не сопровождается выбросом CO2, так как производится методом электролиза из воды. При производстве будет использоваться атомная электроэнергия, которую не все развитые страны поддерживают.
В «дорожной карте» указаны только две корпорации, но водородным бизнесом интересуется и НОВАТЭК, говорит федеральный чиновник. По его словам, компания активно изучает производство так называемого голубого водорода: также из газа, но с выбросом и последующим захоронением CO2. Пока проблема в том, что в России нет регламентов захоронения парниковых газов, говорит собеседник РБК. Об интересе НОВАТЭКа к водороду рассказывал и зампред правления компании Марк Джетвэй.
«Мы рассматриваем ряд пилотных проектов в области водородной энергетики: некоторые страны, прежде всего Европы, принимают стратегические решения по развитию чистой энергетики, и водород в будущем будет играть заметную роль в энергобалансе», — сказал РБК представитель НОВАТЭКа. По его словам, темп реализации проектов будет зависеть от роста потребностей рынка.
Страны ЕС готовы начать с импорта более «грязного» водорода, постепенно переходя на самый «чистый» — так называемый зеленый: это топливо производится из воды с помощью энергии солнца, ветра и т.д. «Росатом» активно развивает ветроэнергетику и также может производить «зеленый» водород, но пока о таких планах не заявлял, говорит один из участников совещаний на эту тему. Чем «зеленее» водород — тем дороже его производство, объясняет разницу федеральный чиновник.
Сколько это стоит
В пояснении к «дорожной карте» Минэнерго говорится, что реализация плана не потребует дополнительных расходов федерального бюджета. Но водородная экономика не появляется легко и бесплатно — помимо значительных бюджетных вливаний (например, в Японии затраты бюджета на НИОКР и субсидии достигают €300 млн в год) государства предпринимают и другие усилия: разрабатывают меры долгосрочного стимулирования инвесторов и технологических компаний, системы льгот и косвенных мер поддержки, говорит Мельников.
Например, «Росатом» уже привлек у государства деньги на водород. В этом году президент одобрил программу корпорации «Атомная наука, техника и технологии», куда входит и развитие водородных технологий. Финансирование составит 88,5 млрд руб., около половины — из федерального бюджета.
Будет ли конкуренция на рынке
По замыслу потребителей, водород может заместить в том числе природный газ. Пока единственным экспортером газа и владельцем газопроводов из России является «Газпром». Но в долгосрочной перспективе «Газпром» и «Росатом» могут стать конкурентами на водородном рынке, говорит партнер по электроэнергетике Vygon Consulting Алексей Жихарев. «Росатом» уже позиционирует себя как будущий крупный производитель: компания договорилась о совместном экспортно ориентированном проекте с Японией, обсуждает с Hyundai строительство инфраструктуры для водородных автомобилей. К 2050 году «Росатом» может производить 50 млн т водорода, говорил научный консультант гендиректора «Росатома» Николай Пономарев-Степной (в компании не прокомментировали это заявление).
Но сейчас вопрос регулирования рынка и будущей конкуренции между двумя гигантами не обсуждается — до этого слишком далеко, пока нужно запустить пилотные проекты, отмечает федеральный чиновник.
Представитель «Газпрома» не ответил на запрос РБК, в «Росатоме» отказались от комментариев.