что такое защита системы теплопотребления
Защита оборудования систем централизованного теплоснабжения от недопустимых изменений давления сетевой воды и гидравлических ударов. Повышение надежности и безопасности теплоснабжения
Надежное и эффективное теплоснабжение населенных пунктов и промышленных предприятий может быть обеспечено, в первую очередь, при условии минимизации рисков негативного воздействия на здоровье людей (обслуживающего персонала и населения), а также исключения случаев прекращения или перерывов подачи потребителям тепловой энергии, уничтожения или порчи имущества юридических и физических лиц при аварийных ситуациях.
Одним из существенных факторов, влияющих на безопасность и надежность теплоснабжения, является обеспечение защиты трубопроводов и оборудования водоподогревательных установок источников тепловой энергии, тепловых сетей и потребителей тепловой энергии от гидравлических ударов, а также от повышения давления сетевой воды сверх допускаемых значений.
Гидравлические удары в системах теплоснабжения возникают при отключении под нагрузкой сетевых или перекачивающих насосных групп вследствие отказов электроснабжения, при ошибочном закрытии запорной и регулирующей арматуры, а также при повторной конденсации вскипевшего теплоносителя по причине резких колебаний давления в системе теплоснабжения. Согласно статистическим данным, в течение года происходит 10 и более случаев потери электроснабжения собственных нужд на ТЭЦ и крупных котельных по Российской Федерации. Значительно чаще происходят отказы электроснабжения подкачивающих насосных станций, групп сетевых и подпиточных насосов источников тепловой энергии. Также нередки случаи несанкционированных действий персонала или посторонних лиц, приводящие к подобным аварийным ситуациям.
Аварии, вызванные гидравлическими ударами, могут сопровождаться разрушением сетевого оборудования источника тепловой энергии, теплопроводов, массовыми разрывами отопительных приборов потребителей, что приводит к порче имущества, ожоговому травматизму людей и, как правило, к длительному прекращению теплоснабжения, а в период стояния низких температур наружного воздуха – часто к невозможности восстановить теплоснабжение вплоть до потепления с тяжелейшими социальными последствиями. Разрывы сетевых станционных трубопроводов нередко приводят к затоплению сетевой водой источника тепловой энергии со стороны тепловых сетей с «посадкой на ноль».
Такие аварии имели место в различных городах России и сопровождались ожоговым травматизмом персонала и населения, приводили к серьезным материальным ущербам, социальным последствиям и в разные годы происходили в гг. Белгороде, Владивостоке, Ижевске, Москве, Новочебоксарске, Чебоксарах, Петропавловске-Камчатском, Саратове, Сургуте, Сызрани, Томске, Улан-Удэ, Электростали Московской обл. и ряде других городов России, многии из которых широко освещались в средствах массовой информации.
Основные требования по защите оборудования источников тепловой энергии, тепловых сетей, систем теплопотребления от недопустимых изменений (повышения и понижения) давления устанавливаются требованиями обязательных нормативно-технических документов:
— СНиП 41-02-2003 «Тепловые сети» пункт 8.18: регламентирует для систем теплоснабжения с присоединенной нагрузкой 100 Гкал/ч и более обязательность комплексной проработки систем защиты, предотвращающей возникновение гидравлических ударов и недопустимых давлений в оборудовании водоподогревательных установок источников теплоты, в тепловых сетях, системах теплоиспользования потребителей;
— СП 124.13330.2012 «Свод правил Тепловые сети Актуализированная редакция СНиП 41-02-2003» пункт 8.19: «При проектировании СЦТ следует определять необходимость комплексной системы защиты, предотвращающей возникновение гидравлических ударов, недопустимых давлений и вскипания сетевой воды в оборудовании водоподогревательных установок источников теплоты, в тепловых сетях, системах теплоиспользования потребителей. В подкачивающих насосных станциях следует устанавливать на обводной линии, соединяющей напорные и всасывающие коллекторы, обратный клапан, диаметром, равным диаметру подходящего к насосной станции трубопровода. Отказ от выполнения защитных мероприятий должен быть обоснован расчетными или экспериментальными исследованиями»;
— «Правила технической эксплуатации электрических станций и сетей РФ» п.4.11.8, п.4.12.40, «Правила технической эксплуатации тепловых энергоустановок» п.5.1.14, п.6.2.62, СП 124.13330.2012 «Свод правил Тепловые сети Актуализированная редакция СНиП 41-02-2003» пункт 15.6 – устанавливают обязательность предварительной проверки опасности для оборудования всех элементов системы теплоснабжения (источника тепловой энергии, тепловых сетей, потребителей) возникающих гидравлических ударов и колебаний давления при отключении под нагрузкой сетевых и подкачивающих насосов, и в случае опасности – предусматривать установку подпиточно-сбросных устройств, при этом производить проверку возможности снижения давления с обеспечением невскипания сетевой воды и повторной конденсации теплоносителя, обеспечивать запрет повторного пуска (самозапуска, пуска по АВР) отключаемых насосов;
— «Правила технической эксплуатации тепловых энергоустановок» п.9.1.1 и п.9.1.42, а также СП 124.13330.2012 «Свод правил Тепловые сети Актуализированная редакция СНиП 41-02-2003» пункт 15.14 – предписывают установку защитных устройств на тепловых пунктах (центральных и индивидуальных).
— «Методические указания по проведению испытаний источников тепловой энергии и тепловых сетей в системах централизованного теплоснабжения при нестационарных гидравлических режимах их работы» СО 34.20.365-98 (РД 153-34.1-20.365-98) – устанавливают классификацию систем теплоснабжения по степени сложности для выполнения специальных работ по определению параметров нестационарных гидравлических режимов, указывают способы определения параметров нестационарных режимов, рекомендуют последовательность и состав работ при выборе защитных мероприятий и их реализации.
ООО «Центр Тепловидения» выполняет:
Результаты работы ООО «Центр Тепловидения» являются основой для разработки Технического задания на проектирование и собственно проекта системы защиты от повышения давления сетевой воды и гидравлических ударов в СЦТ в целом или на ее локальных элементах (источнике теплоты, подкачивающей насосной станции, группы потребителей тепловой энергии, центральном или индивидуальном тепловом пункте).
ООО «Центр Тепловидения» при необходимости консультирует эксплуатирующую, проектную организацию по всем вопросам, связанным с разработанными защитными мероприятиями, проводит анализ разработанного проекта в части полноты реализации защитных мероприятий, участвует в согласовании и приемке разработанного проекта, проведении экспертизы промышленной безопасности проекта.
ООО «Центр Тепловидения» при необходимости по заявке Заказчика участвует в надзоре за монтажом устройств защиты, пуско-наладочных работах, поузловом и комплексном опробовании системы защит, включая ее приемо-сдаточные испытания.
ООО «Центр тепловидения» обладает
необходимыми кадровыми ресурсами:
квалифицированными специалистами, имеющими большой опыт выполнения работ по предотвращению негативного воздействия повышенных давлений (в том числе гидравлических ударов) на оборудовании систем теплоснабжения более чем 40 городов России и СНГ, включая :
необходимыми материально-техническими ресурсами:
Что такое защита системы теплопотребления
Разработанные системы защит от недопустимых давлений в переходных гидравлических режимах внедрены в действующих системах теплоснабжения ряда городов: Москва, Кострома, Кисловодск, Ульяновск, Нерюнгри, Саратов, Рязань, Тюмень, Томск, Омск, Петропавловск-Камчатский, Владивосток, Сургут, Нижневартовск, Санкт-Петербург, Кемерово, Железноводск, Чебоксары, Нижнекамск, Ижевск, Белгород, Минск, Харьков, Кишинев, Таллин, Шяуляй, Рига, Тарту и др. Выбор защитных устройств и мероприятий в системах теплоснабжения необходимо осуществлять на основе расчетных данных и (или) экспериментальных исследований переходных гидравлических режимов при наиболее часто встречающихся в практике эксплуатации возмущениях, вызванных отказами в работе оборудования систем централизованного теплоснабжения. Защита оборудования в технологически и гидравлически единой системе теплоснабжения должна быть комплексной для того, чтобы предотвратить возникновение недопустимых давлений на оборудовании всех элементов системы теплоснабжения (источника тепла, тепловых сетей, систем теплопотребления) и учесть взаимовлияние средств защиты, установленных в различных точках системы теплоснабжения. Следует отметить, что вопросы защиты оборудования систем теплоснабжения от недопустимых давлений в переходных гидравлических режимах должны решаться, особенно для источников тепла, совместно с вопросами нарушения электроснабжения электродвигателей сетевых насосов и анализа соответствующих систем защиты в схемах электроснабжения источника тепла [12]. Более подробно вопросы работы системы теплоснабжения при кратковременных перерывах электроснабжения изложены в [12, 13]. Кроме того, внедрение противоударных устройств требует внесения изменений в существующие схемы защиты и автоматизации источников тепла и насосных станций (например, использование автоматики включения резерва (АВР) сетевых насосов, уставки защиты минимального напряжения на отключение электродвигателей сетевых насосов, изменение схем рассечки тепловых сетей на гидравлически изолированные зоны и др.).
Отдельно следует рассмотреть вопрос о внедрении средств защиты без предварительного обоснования (расчетного или экспериментального) системы защит и определения требований к конструктивным параметрам и настройке противоударных устройств. Выбранные неверно средства защиты либо просто не обеспечивают защиту оборудования системы теплоснабжения в аварийных переходных гидравлических режимах, либо могут привести к развитию аварии. Подобная ситуация может быть проиллюстрирована результатами натурных испытаний, проведенных в одной из систем теплоснабжения, схема которой приведена на рисунке 1. На рис.1 также показан график давления в эксплуатационном гидравлическом режиме. На ТЭЦ циркуляция сетевой воды обеспечивается двухступенчатой группой сетевых насосов типа СЭ 2500-70 (первая степень) и СЭ 2500-180 (вторая ступень) по два насоса в каждой группе. Для защиты сетевых подогревателей типа ПСГ в обратном коллекторе ТЭЦ установлен быстродействующий сбросной клапан (БСК). Обоснование выбора параметров БСК и его настройки не было выполнено в соответствии с вышеуказанными требованиями. Во время натурных испытаний был проведен ряд экспериментов, имитирующих аварийные ситуации. Один из опытов имитировал аварийное отключение одного сетевого насоса второй ступени ТЭЦ. Результаты указанного эксперимента приведены на рис. 2, где показано изменение мгновенных давлений во всасывающем и напорном коллекторах сетевых насосов второй ступени, до сетевых подогревателей типа ПСГ, в подающем и обратном коллекторах ТЭЦ.
Аварийное отключение одного сетевого насоса второй ступени на ТЭЦ из двух работающих обусловило резкий рост давления во всасывающем коллекторе сетевых насосов второй ступени (на 0,3 МПа за 1 с) и резкое снижение давления в напорном коллекторе сетевых насосов второй ступени (на 0,4 МПа за 1 с). Повышение давления, от всасывающего коллектора сетевых насосов второй ступени, проходя по станционным теплопроводам со скоростью звука в воде (с учетом упругих свойств трубопровода
1000 м/с) привело к повышению давления перед сетевыми подогревателями типа ПСГ. Сложная конфигурация станционных теплопроводов, при значительной протяженности станционных теплопроводов, обусловила усиление роста давления перед ПСГ по сравнению с ростом давления во всасывающем коллекторе сетевых насосов второй ступени (рис. 2). Во время эксперимента сбросной клапан открылся по импульсу повышения давления перед сбросным клапаном до 0,75 кГ/см2 (при времени t=20 c в соответствии с рис. 2). За это время давление перед ПСГ возросло до 1,1 МПа и превысило допустимое значение на 0,3 МПа. Срабатывание сбросного устройства обусловило резкое снижение давления в обратном коллекторе ТЭЦ, и, как следствие, снижение давления в подающем коллекторе ТЭЦ. Снижение давления в подающем коллекторе ТЭЦ, вызванное как аварийным отключением сетевого насоса, так и срабатыванием сбросного устройства, распространяясь по подающему трубопроводу от ТЭЦ к ПНС, приведет к снижению давления во всасывающем коллекторе ПНС. Снижение давления может обусловить возникновение вскипания сетевой воды при высоких температурах (в зимний отопительный период). Опасность в этом режиме представляет последующая нестационарная (быстрая) конденсация при росте давления, вследствие, например, пуска насосов. Следует отметить, что эксплуатационный гидравлический режим характеризуется давлениями близкими к допустимым величинам, что существенно снижает надежность работы системы теплоснабжения при возникновении аварийных ситуаций. Таким образом, установленное быстродействующее сбросное устройство не только не обеспечило защиту ПСГ на ТЭЦ, но могло обусловить в отопительном сезоне развитие аварийной ситуации до полного останова системы теплоснабжения и разрыва теплопроводов. При разработке технических решений по защите оборудования рассматриваемой системы теплоснабжения в одном из вариантов было предложено для локализации возмущающих воздействий от отключения сетевых насосов ТЭЦ обеспечить работой АВР сетевых насосов первой и второй ступени по факту отключения электродвигателя рабочего насоса. Установленное сбросное устройство на ТЭЦ должно быть настроено таким образом, чтобы не допускать избыточного снижения давления при его срабатывании, импульс на срабатывание БСК должен определяться давлением перед ПСГ. Ниже представлен другой пример недопустимости использования противоударных устройств, не обоснованных расчетным и (или) экспериментальным исследованиями переходных гидравлических режимов. В последнее время компанией «ДКМ Венчурные проекты» предлагается для противоаварийной защиты в системах теплоснабжения от недопустимых давлений в переходных гидравлических режимах и пульсаций давлений стабилизаторы давления [14]. Указанные устройства по принципу своего действия обеспечивают защиту в гидравлических режимах, сопровождающихся незначительными пульсациями давлений (амплитуда колебаний
± 0,04 МПа) свидетельствует о нецелесообразности применений этой конструкции стабилизаторов в системах теплоснабжения в качестве защитных устройств от недопустимых изменений давлений, возникающих в переходных гидравлических режимах.