что такое закись железа
Окись железа
Окси́ды желе́за — соединения железа с кислородом.
Известно 3 наиболее распространённых оксида железа:
Оксид железа(II)
Оксид железа FeO — чёрные кристаллы, нерастворимые в воде. Температура плавления 1420 °C
Хорошо растворимы в кислотах:
Оксид железа получают при восстановлении оксида железа (III) при +500 °C оксидом углерода(II):
Оксид железа(II) обладает основными свойствами.
Оксид железа(III)
Оксид железа Fe2O3 — красно-бурый порошок. Температура плавления 1565 °C.
Оксид железа(III) обладает слабо выраженными амфотерными свойствами:
Применение
В пищевой промышленности оксиды железа зарегистрированы в качестве пищевой добавки Е172.
Полезное
Смотреть что такое «Окись железа» в других словарях:
ОКИСЬ ЖЕЛЕЗА — ОКИСЬ ЖЕЛЕЗА, соединение, в котором железо обладает большей ВАЛЕНТНОСТЬЮ (как правило, три), чем в ЖЕЛЕЗИСТЫХ соединениях … Научно-технический энциклопедический словарь
окись железа(II) — закись железа … Cловарь химических синонимов I
окись железа(III) — полуторная окись железа … Cловарь химических синонимов I
полуторная окись железа — окись железа(III) … Cловарь химических синонимов I
красная окись железа — geležies(III) oksidas statusas T sritis chemija formulė Fe₂O₃ atitikmenys: angl. colcothar; ferric oxide; iron minium; iron sesquioxide; ironic oxide; iron(III) oxide; Prussian red; red iron oxide; red ocher, US; red ochre, GB; Spanish oxide rus … Chemijos terminų aiškinamasis žodynas
черная окись железа — Краска под названием «Черный марс». Представляет собой окись железа, является минеральным черным пигментом. В отличие от всех черных углеродистых красок (сажи, слоновой кости и др.) хорошо высыхает в масляной живописи, но уступает по глубине… … Словарь иконописца
черная окись железа — geležies juodasis statusas T sritis chemija apibrėžtis Pigmentas. formulė FeO·Fe₂O₃ atitikmenys: angl. black iron oxide; black rouge rus. черная окись железа … Chemijos terminų aiškinamasis žodynas
коричневая окись железа — geležies rudasis statusas T sritis chemija apibrėžtis Fe₂O₃, kuriame yra 6–14% FeO, pigmentas. atitikmenys: angl. brown iron oxide rus. коричневая окись железа … Chemijos terminų aiškinamasis žodynas
железа окись — geležies(III) oksidas statusas T sritis chemija formulė Fe₂O₃ atitikmenys: angl. colcothar; ferric oxide; iron minium; iron sesquioxide; ironic oxide; iron(III) oxide; Prussian red; red iron oxide; red ocher, US; red ochre, GB; Spanish oxide rus … Chemijos terminų aiškinamasis žodynas
железа сесквиоксид — geležies(III) oksidas statusas T sritis chemija formulė Fe₂O₃ atitikmenys: angl. colcothar; ferric oxide; iron minium; iron sesquioxide; ironic oxide; iron(III) oxide; Prussian red; red iron oxide; red ocher, US; red ochre, GB; Spanish oxide rus … Chemijos terminų aiškinamasis žodynas
Метаболизм железа в условиях инфекции. Обзор литературы
Ю.П. Орлов, Н.В. Говорова, В.Н. Лукач, Г.А. Байтугаева, А.В. Клементьев, Е.Н. Какуля
Для корреспонденции: Орлов Юрий Петрович — д-р мед. наук, профессор кафедры анестезиологии и реаниматологии ФГБОУ ВО «Омский государственный медицинский университет» Минздрава России, Омск; e-mail: orlov-up@mail.ru
Для цитирования: Орлов Ю.П., Говорова Н.В., Лукач В.Н., Байтугаева Г.А., Клементьев А.В., Какуля Е.Н. Метаболизм железа в условиях инфекции. Обзор литературы. Вестник интенсивной терапии им. А.И. Салтанова. 2020;1:90–99. DOI: 10.21320/1818-474X-2020-1-90-99
Реферат
Цель написания обзора. Анализ публикаций о роли метаболизма железа в манифестации сепсиса и зависимости активности бактериальной флоры от условий их доступа к железу. Методы. Проанализировано более 200 публикаций в базах данных медицинской литературы Pubmed, Medline, EMBASE в период с 2000 по 2018 г. с использованием поисковых слов: «железо и инфекция», «железо и сепсис», «обмен железа», «железо и бактерии» — включительно и доступные работы в отечественной (e-library) литературе. Результаты. В обзоре использованы материалы из 68 публикаций, отвечающих задачам поиска и отражающих как связь обмена железа с развитием септического процесса, так и важность для врачебного сообщества понимания выявленных взаимосвязей для поиска будущих терапевтических подходов.
Заключение. В представленном обзоре приведены доказательства прямого участия железа в манифестации септического процесса, вызванного различной бактериальной (+/−) и грибковой флорой. Введение хелатирующих железо агентов и сидерофор — конъюгированных препаратов септическим пациентам представляется сегодня биологически приемлемым подходом в качестве вспомогательной терапии при лечении сепсиса, вызванного патогенами, зависящими от снабжения хозяина железом (многими бактериальными и грибковыми патогенами), но, безусловно, поднимаемая проблема требует продолжения экспериментальных и клинических исследований.
Ключевые слова: обмен железа, инфекция, сепсис, железо и сепсис, железо и бактерии, сидерофоры
Поступила: 14.12.2019
Принята к печати: 02.03.2020
Введение
Нарушение гомеостаза железа является основной стратегией взаимодействия хозяина и патогена. Области научного интереса колеблются от лучшего понимания молекулярных механизмов, лежащих в основе функции метаболизма железа, до потенциальной неблагоприятной роли железа, которая может быть сыграна при ряде критических состояний.
Поэтому современный обзор гомеостаза железа был бы неполным без рассмотрения влияния железа на микробиом и на сепсис, так как большинство бактерий требуют железа для роста и выживания, при этом для некоторых бактерий характерна абсолютная потребность в железе. В настоящем обзоре представлены доказательства автокаталитического участия железа, ведущего, в частности, к манифестации сепсиса. Этот факт ставит ряд вопросов, которые возникают перед клиницистом в период лечения пациентов с сепсисом, где для коррекции анемии часто используют препараты железа и переливание крови. Конечно, точные молекулярные механизмы, каскады и сети, задействованные в метаболизме железа, зависят и от многих других факторов, но тем не менее существуют обширные доказательства участия железа в развитии сепсиса, которые очень трудно игнорировать.
Природная суть железа и механизмы безопасности для организма
Ценность железа для организма можно объяснить тем, что его метаболизм до минимума исключает потери, а количество всасываемого микроэлемента, напротив, строго лимитировано [1, 2]. Организм человека содержит 3–5 г железа, большая часть которого внутриклеточная, и 65–75 % железа организма связано с порфириновым гемом (в виде гемоглобина) в эритроцитах. Каждый эритроцит может содержать до 280 млн молекул гемоглобина, в результате чего емкость железа составляет более 1 млрд атомов на клетку. Гемоглобин в стареющих эритроцитах тщательно перерабатывается макрофагами в ретикулоэндотелиальной системе, а гемоксигеназа (HO-1) высвобождает железо и монооксид углерода из протопорфиринового кольца, что приводит к образованию биливердина и перемещению железа обратно, в бассейны деятельности трансферрина или ферритина [3].
Сложная система транспортеров регулирует гомеостаз железа у человека, который поддерживается за счет тщательной координации дуоденальной абсорбции и утилизации запасов железа. Баланс железа жестко регулируется для предотвращения пагубных последствий не столько его дефицита, сколько перегрузки железом [4, 5].
На клеточном уровне регуляторные молекулы, такие как ферропортин и гепсидин, вносят вклад в регуляцию железа. Гепсидин — это «антибактериальный» пептидный гормон, вырабатываемый главным образом в печени, и его синтез жестко контролируется на транскрипционном уровне в ответ на уровень поступающего железа, потребности для эритропоэза, и особенно при воспалении или гипоксии [6]. Гепсидин регулирует доступность железа для использования в гемоглобине [7], но может подавлять экспорт железа на уровне тканей, и, наоборот, в ответ на дефицит железа организм может синтезировать дополнительные белковые субстанции для увеличения всасывания и транспортировки железа к местам его потребления [8]. Увеличение общего объема запасов железа в организме запускает выработку гепсидина, который впоследствии вызывает интернализацию и деградацию ферропортина. Поскольку ферропортин присутствует на поверхности макрофагов, гепсидин также уменьшает экспорт железа после рециркуляции ретикулоэндотелиальной системой [9].
Природа включает все механизмы безопасности, так как «знает» железо с «плохой стороны»: как активатора свободно-радикального окисления (СРО) [10], источник энергетического потенциала для бактерий и мембраноагрессора [11–13]. Например, инкубирование эритроцитов от здоровых доноров с плазмой крови больных с септическим шоком индуцировало гидролиз фосфатидилхолина мембраны эритроцитов до лизофосфатидилхолина, что повышало экспрессию фосфатидилсерина эритроцитов [13] и сокращало продолжительность жизни эритроцитов.
Взаимосвязь с миром бактерий только за счет потребления железа
Таким образом, во время сепсиса организм использует природную, эволюционно разработанную способность поглощать меньше железа, чтобы лишить вторгающиеся бактерии доступа к железу, которое им необходимо для роста и размножения [14, 17, 18]. Это врожденный иммунный механизм против вторжения патогенов, характерный не только для сепсиса, но и для различных критических состояний [19, 20].
Какие же стратегии используют патогены человека для преодоления всех многочисленных защитных барьеров, созданных природой, чтобы уберечь организм от развития инфекционного процесса и манифестации сепсиса?
Методы и стратегии бактериального «железного пиратства»
Патогены развили сложные стратегии, чтобы обойти «питательный иммунитет» хозяина. Существует несколько механизмов, с помощью которых бактерии реагируют на изменения концентраций Fe в окружающей среде. Самый общий механизм — через отрегулированное выражение системы поглощения железа, включает в себя регулятор поглощения железа (Fur), и небольшие РНК [21–23]. В связи с этим Fur служат в качестве датчиков, которые регулируют факторы вирулентности в дополнение к системам получения железа. Попав в организм хозяина и оценив Fe-окружающую среду, S. aureus реализует много факторов вирулентности, но наиболее активен альфа-токсин (Hla), который и приводит к гемолизу эритроцитов [24, 25].
Для того чтобы высвободить гемоглобин из эритроцитов, многие бактерии выделяют гемолизины. Эти протеины повреждают мембрану эритроцита, приводя к осмотическому лизису, позволяя патогену получить доступ к свободному гемоглобину, и транспортируют эту молекулу в цитоплазму — с целью повредить кольцо гема, для того чтобы получить свободное Fe2+ [26]. В ряде исследований было обнаружено, что S. pneumoniaе уклоняются от «убийства» антибиотиками, нейтрофилами и H2O2 в присутствии эритроцитов человека. Наше собственное исследование показало, что измеренная в первый день течения тяжелого сепсиса концентрация свободного гемоглобина, как следствие гемолиза эритроцитов, выше средней величины и прямо связана с увеличением 30-дневной летальности; уровень свободного гемоглобина в 1-е сутки заболевания характеризуется высокой чувствительностью, специфичностью и с точностью до 96,7 % может определить исход сепсиса [27].
Например, активность P. aeruginosa прямо зависит от приобретения железа у своего хозяина, и во время манифестации сепсиса бактерии могут активно использовать несколько различных систем для сбора железа: с помощью сидерофора пиовердина и путем утилизации гема [28]. Бактерии, используя свои рецепторы внешней мембраны, могут связывать и хелатировать железо непосредственно из трансферрина. Кроме того, бактерии могут синтезировать белки гемофоры, которые способны связывать гем и транспортировать белок хозяина в микробную среду через рецепторное поглощение [29]. Гемофоры, присущие как грамотрицательным (например, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae), так и грамположительным бактериям (например, золотистый стафилококк), применяют и второй способ получения железа — путем синтеза и секреции различных сидерофоров [30]. Это приводит к распространению бактерий в периферические органы, при этом активируется секреция провоспалительных цитокинов — интерлейкин-6 (ИЛ-6), нейтрофильные хемоаттрактанты (CXCL1 и CXCL2), которые рекрутируют нейтрофилы в место септического очага, что является демонстрацией неканонической роли сидерофоров в естественных условиях во время клебсиеллезного сепсиса. В дополнение к обеспечению железом возбудителя сидерофоры также способствуют распространению K. pneumoniae в селезенку путем индукции и стабилизации (гипоксия-индуцирующий фактор) HIF-1 в легочных эпителиальных клетках [31, 32].
Таким образом, микроорганизмы, в свою очередь, эволюционировали и приобрели множество стратегий, включая сложные системы транспортеров и регуляторов, для того чтобы получить важный металл, и приобретают железо для своих собственных нужд, как из окружающей среды, так и «похищая» металлы из ресурсов макроорганизма. Для многих типичных грамотрицательных и грамположительных бактерий и патогенных грибов именно гем — самый «богатый» источник железа [33].
Железо и сепсис
Сепсис представляет собой системный иммунный ответ на инфекцию. На сегодняшний день специфического лечения сепсиса пока нет. В настоящее время большое количество публикаций по тематике «обмен железа и сепсис» касается решения вопроса о целесообразности назначения таким пациентам препаратов железа или проведения гемотрансфузии, так как все пациенты с сепсисом имеют анемию воспаления. Как отмечено выше, рост бактерий, вирусов и грибков прямо зависит от наличия железа [34]. Как только насыщение трансферрина в организме человека превышает критический порог, свободное железо сразу становится доступным для использования бактериями [35].
В ряде исследований отмечено, что содержание гепсидина, эритропоэтина и ИЛ-6 в плазме крови больных сепсисом при поступлении в ОРИТ было достоверно выше (при р
Литература
Słomka A., Zekanowska E., Piotrowska K., Kwapisz J. Iron metabolism and maternal-fetal iron circulation. Postepy Hig Med Dosw (Online). 2012; 66: 876–887. DOI: 10.5604/17322693.1019651
Tandara L., Salamunic I. Iron metabolism: current facts and future directions. Biochem. Med. (Zagreb). 2012; 22 (3): 311–328.
Anderson G.J., Fraser D.M. Current understanding of iron homeostasis. Am J ClinNutr. 2017; 106(6): 1559S–1566S. DOI: 10.3945/ajcn.117.155804
Zhang D.L., Ghosh M.C., Rouault T.A. The physiological functions of iron regulatory proteins in iron homeostasis — an update. Front. Pharmacol. 2014; 5: 124. DOI: 10.3389/fphar.2014.00124
Kohgo Y., Ikuta K., Ohtake T., et al. Body iron metabolism and pathophysiology of iron overload. Int J Hematol. 2008; 88(1): 7–15. DOI: 10.1007/s12185-008-0120-5
Schmidt P.J. Regulation of Iron Metabolism by Hepcidin under Conditions of Inflammation. J Biol Chem. 2015; 290(31):18975–18983. DOI: 10.1074/jbc.R115.650150
Ganz T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood. 2003; 102(3): 783–788.
Nemeth E., Ganz T. Regulation of iron metabolism by hepcidin. Annu Rev Nutr. 2006; 26: 323–342.
Nemeth E., Tuttle M.S., Powelson J., et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004; 306(5704): 2090–2093.
Imam M.U., Zhang S., Ma J., et al. Antioxidants Mediate Both Iron Homeostasis and Oxidative Stress. Nutrients. 2017; 9(7): pii: E671. DOI: 10.3390/nu9070671
Olsson M.G., Allhorn M., Bülow L., et al. Pathological conditions involving extracellular hemoglobin: molecular mechanisms, clinical significance, and novel therapeutic opportunities for α(1)-microglobulin. Redox Signal. 2012; 17(5): 813–846. DOI: 10.1089/ars.2011.4282
Runyen-Janecky L.J. Role and regulation of heme iron acquisition in gram-negative pathogens. Front. CellInfect. Microbiol. 2013; 3: 55. DOI: 10.3389/fcimb.2013.00055
Dinkla S., van Eijk L.T., Fuchs B., et al. Inflammation-associated changes in lipid composition and the organization of the erythrocyte membrane. BBA Clin. 2016; 5: 186–192.
Dutra F.F., Bozza M.T. Heme on innate immunity and inflammation. Front Pharmacol. 2014; 5: 115. DOI: 10.3389/fphar.2014.00115
Gozzelino R., Arosio P. Iron Homeostasis in Health and Disease. Int. J. Mol. Sci. 2016; 17(1): 130. DOI: 10.3390/ijms17010130
Spitalnik S.L. Stored red blood cell transfusions: iron, inflammation, immunity, and infection. Transfusion. 2014; 54(10): 2365–2371. DOI: 10.1111/trf.12848
Bullen J.J. The significance of iron in infection. Rev Infect Dis. 1981; 3(6): 1127–1138.
Cassat J.E., Skaar E.P. Iron in infection and immunity. Cell Host Microbe. 2013; 13: 509–519. DOI: 10.1016/j.chom.2013.04.010
Saito H. Storage Iron Turnover from a New Perspective. Acta Haematol. 2019; 141(4): 201–208. DOI: 10.1159/000496324
Becker K.W., Skaar E.P. Metal limitation and toxicity at the interface between host and pathogen. FEMS Microbiol Rev. 2014; 38(6): 1235–1249. DOI: 10.1111/1574-6976.12087
Weiss G., Carver P.L. Role of divalent metals in infectious disease susceptibility and outcome. Clin Microbiol Infect. 2018; 24(1): 16–23. DOI: 10.1016/j.cmi.2017.01.018
Agranoff D., Krishna S. Metal ion transport and regulation in Mycobacterium tuberculosis. Front Biosci. 2004; 9: 2996–3006.
Schmitt M.P., Holmes R.K. Iron-dependent regulation of diphtheria toxin and siderophore expression by the cloned Corynebacterium diphtheriae repressor gene dtxR in C. diphtheriae C7 strains. Infect Immun. 1991; 59(6): 1899–1904.
Torres V.J., Attia A.S., Mason W.J, et al. Staphylococcus aureus fur regulates the expression of virulence factors that contribute to the pathogenesis of pneumonia. Infect Immun. 2010; 78(4): 1618–1628. DOI: 10.1128/IAI.01423-09
Mazmanian S.K., Skaar E.P., Gaspar A.H., et al. Passage of heme-iron across the envelope of Staphylococcus aureus. Science. 2003; 299(5608): 906–909.
Bonneau A., Roche B., Schalk I.J. Iron acquisition in Pseudomonas aeruginosa by the siderophorepyoverdine: an intricate interacting network including periplasmic and membrane proteins. Sci Rep. 2020; 10(1): 120. DOI: 10.1038/s41598-019-56913-x
Wilson B.R., Bogdan A.R., Miyazawa M., et al. Siderophores in Iron Metabolism: From Mechanism to Therapy Potential. Trends Mol Med. 2016; 22(12): 1077–1090. DOI: 10.1016/j
Li N., Zhang C., Li B., et al. Unique iron coordination in iron-chelating molecule vibriobactin helps Vibrio cholerae evade mammalian siderocalin-mediated immune response. J Biol Chem. 2012; 287(12): 8912–8919. DOI: 10.1074/jbc.M111. 316034
Behnsena J., Raffatellu M. Siderophores: More than Stealing Iron. mBio. 2016; 7(6): e01906– e01916. DOI: 10.1128/mBio.01906-16
Hartmann H., Eltzschig H.K., Wurz H., et al. Hypoxia-independent activation of HIF-1 by enterobacteriaceae and their siderophores. Gastroenterology. 2008; 134: 756–767. DOI: 10.1053/j.gastro.2007.12.008/
Holden V.I., Bachman M.A. Diverging roles of bacterial siderophores during infection. Metallomics. 2015; 7: 986–995. DOI: 10.1039/c4mt00333k
Butt A.T., Thomas M.S. Iron Acquisition Mechanisms and Their Role in the Virulence of Burkholderia Species. Front. Cell. Infect. Microbiol. 2017; 7: 460. DOI: 10.3389/fcimb.2017.00460
Ali M.K., Kim R.Y., Karim R., et al. Role of iron in the pathogenesis of respiratory disease. Int J Biochem Cell Biol. 2017; 88: 181–195. DOI: 10.1016/j.biocel.2017.05.003
Jiang Y., Jiang F., Kong F., et al. Inflammatory anemia-associated parameters are related to 28-day mortality in patients with sepsis admitted to the ICU: a preliminary observational study. Ann. Intensive Care. 2019; 9: 67. DOI: 10.1186/s13613-019-0542-7
Darveau M., Denault A.Y., Blais N., NotebaertE. Bench-to-bedside review: iron metabolism in critically ill patients. Crit Care. 2004; 8(5): 356–362. DOI: 10.1186/cc2862
Tacke F., Nuraldeen R., Koch A., et al. Iron parameters determine the prognosis of critically Ill patients. Crit Care Med. 2016; 44(6): 1049–1058. DOI: 10.1097/CCM.0000000000001607
Boshuizen M., Binnekade J.M., Nota B., et al. Iron metabolism in critically ill patients developing anemia of inflammation: a case control study. Ann Intensive Care. 2018; 8(1): 56. DOI: 10.1186/s13613-018-0407-5
Weiss G., Ganz T., Goodnough L.T. Anemia of inflammation. Blood. 2019; 133(1): 40–50. DOI: 10.1182/blood-2018-06-856500
Lasocki S., Lefebvre T., Mayeur C., et al. Iron deficiency diagnosed using hepcidin on critical care discharge is an independent risk factor for death and poor quality of life at one year: an observational prospective study on 1161 patients. Crit Care. 2018; 22(1): 314. DOI: 10.1186/s13054-018-2253-0
Lasocki S., Baron G., Driss F., et al. Diagnostic accuracy of serum hepcidin for iron deficiency in critically ill patients with anemia. Intensive Care Med. 2010; 36(6): 1044–1048. DOI: 10.1007/s00134-010-1794-8
Claessens Y.E., Fontenay M., Pene F., et al. Erythropoiesis abnormalities contribute to early-onset anemia in patients with septic shock. Am J Respir Crit Care Med. 2006; 174(1): 51–57. DOI: 10.1164/rccm.200504–561OC
Van Iperen C.E., Gaillard C.A., Kraaijenhagen R.J., et al. Response of erythropoiesis and iron metabolism to recombinant human erythropoietin in intensive care unit patients. Crit Care Med. 2000; 28(8): 2773–2778. DOI: 10.1097/00003246-200008000-00015
Ganz T. Erythropoietic regulators of iron metabolism. Free Radic Biol Med. 2019; 133: 69–74. DOI: 10.1016/j.freeradbiomed.2018.07.003
Rogiers P., Zhang H., Leeman M., et al. Erythropoietin response is blunted in critically ill patients. Intensive Care Med. 1997; 23(2): 159–162. DOI: 10.1007/s001340050310
Elliot J.M., Virankabutra T., Jones S., et al. Erythropoietin mimics the acute phase response in critical illness. Crit Care. 2003; 7(3): R35–R40. DOI: 10.1186/cc2185
Ganz T., Nemeth E. Iron homeostasis in host defence and inflammation. Nat Rev Immunol. 2015; 15(8): 500–510. DOI: 10.1038/nri3863
Rodriguez R.M., Corwin H.L., Gettinger A., et al. Nutritional deficiencies and blunted erythropoietin response as causes of the anemia of critical illness. J Crit Care 2001; 16(1): 36–41.
Shah A., Roy N.B., McKechnie S., et al. Iron supplementation to treat anaemia in adult critical care patients: a systematic review and meta-analysis. Crit Care. 2016; 20(1): 306. DOI: 10.1186/s13054-016-1486-z
Weiss G., Ganz T., Goodnough L.T. Anemia of inflammation. Blood. 2019; 133(1): 40–50. DOI: 10.1182/blood-2018-06-856500
Shah A., Roy N.B., McKechnie S., et al. Iron supplementation to treat anaemia in adult critical care patients: a systematic review and meta-analysis. Crit Care. 2016; 20(1): 306. DOI: 10.1186/s13054-016-1486-z
Vincent J.L., Baron J.F., Reinhart K., et al. Anemia and blood transfusion in critically ill patients. JAMA. 2002; 288(12): 1499–1507. DOI: 10.1001/jama.288.12.1499
Islam S., Jarosch S., Zhou J., et al. Anti-inflammatory and anti-bacterial effects of iron chelation in experimental sepsis. J SurgRes. 2016; 200(1): 266–273. DOI: 10.1016/j.jss.2015.07.001
Xia Y., Farah N., Maxan A., et al. Therapeutic iron restriction in sepsis. Med Hypotheses. 2016; 89: 37–39. DOI: 10.1016/j.mehy.2016.01.018
Lan P., Pan K.H., Wang S.J., et al. High Serum Iron level is Associated with Increased Mortality in Patients with Sepsis. Sci Rep. 2018; 8(1): 11072. DOI: 10.1038/s41598-018-29353-2
Gomes A.C., Moreira A.C., Mesquita G., Gomes M.S. Modulation of Iron Metabolism in Response to Infection: Twists for All TastesPharmaceuticals (Basel). 2018; 11(3). DOI: 10.3390/ph11030084
Ang M.T.C., Gumbau-Brisa R., Allan D.S., et al. DIBI, a 3-hydroxypyridin-4-one chelator iron-binding polymer with enhanced antimicrobial activity. Medchemcomm. 2018; 9(7): 1206–1212. DOI: 10.1039/c8md00192h
Thorburn T., Aali M., Kostek L., et al. Anti-inflammatory effects of a novel iron chelator, DIBI, in experimental sepsis. Clin Hemorheol Microcirc. 2017; 67(3–4): 241–250. DOI: 10.3233/CH-179205
Savage K.A., del Carmen Parquet M., Allan D.S., et al. Iron Restriction to Clinical Isolates of Candida albicans by the Novel Chelator DIBI Inhibits Growth and Increases Sensitivity to Azoles In Vitro and In Vivo in a Murine Model of Experimental Vaginitis. Antimicrob Agents Chemother. 2018; 62. DOI: 10.1128/AAC.02576-17
Richter K., Thomas N., Zhang G., et al. Deferiprone and Gallium-Protoporphyrin Have the Capacity to Potentiate the Activity of Antibiotics in Staphylococcus aureus Small Colony Variants. Front. Cell. Infect. Microbiol. 2017; 7: 280. DOI: 10.3389/fcimb.2017.00280
Dupuis C., Sonneville R., Adrie C., et al. Impact of transfusion on 2017. Ann Intensive Care. 2017; 7(1): 5. DOI: 10.1186/s13613-016-0226-5
Rodriguez R.M., Corwin H.L., Gettinger A., et al. Nutritional deficiencies and blunted erythropoietin response as causes of the anemia of critical illness. J CritCare 2001; 16(1): 36–41.
Salisbury A.C., Reid K.J., Alexander K.P., et al. Diagnostic blood loss from phlebotomy and hospital-acquired anemia during acute myocardial infarction. Archivesofinternal medicine. 2011; 171(18): 1646–1653. DOI: 10.1001/archinternmed.2011.361
Kristof K., Büttner B., Grimm A., et al. Anaemia requiring red blood cell transfusion is associated with unfavourable 90-day survival in surgical patients with sepsis. BMC Res Notes. 2018; 11(1): 879. DOI: 10.1186/s13104-018-3988-z
Nielsen N.D., Martin-Loeches I., Wentowski C. The Effects of red Blood Cell Transfusion on Tissue Oxygenation and the Microcirculation in the Intensive Care Unit: A Systematic Review. Transfus Med Rev. 2017; 31(4): 205–222. DOI: 10.1016/j.tmrv.2017.07.003
Dupuis C., Sonneville R., Adrie C., et al. Review Impact of transfusion on patients with sepsis admitted in intensive care unit: a systematic review and meta-analysis. Ann Intensive Care. 2017; 7(1):5.