что такое задерживающий потенциал
Определение
Определение: фотоэффект – это вырывание электронов из металла под действием падающего света.
Вырванные электроны называются «фотоэлектронами».
Законы фотоэффекта
а) Скорость фотоэлектронов не зависит от интенсивности падающего света.
б) Число фотоэлектронов пропорционально интенсивности падающего света.
U_ <з>– задерживающее или запирающее напряжение.
Уравнение Эйнштейна для фотоэффекта
E_ <ф>– энергия падающего фотона, т.е. частицы света
\nu – частота падающего света
\nu=\frac<1>
h – постоянная Планка
A_ <вых>– работа выхода электрона из металла, т.е. работа, которую необходимо совершить, чтобы вырвать электрон из вещества
Кинетическая энергия фотоэлектрона:
v_
m_
Красная граница фотоэффекта
Минимальная частота, при которой возможен фотоэффект:
v_ <кр>– красная граница по частоте;
\lambda – длина волны света
Cвязь между частотой и длиной волны:
c – скорость света в вакууме
\lambda_ <кр>– красная граница по длине волны
Задерживающее напряжение
Определение: Задерживающее напряжение – это напряжение обратной полярности, при котором все электроны возвращаются назад на тот электрод, с которого были вырваны.
Это происходит, когда работа поля по возращению электронов становится равной кинетической энергии:
Подставим это выражение в уравнение Эйнштейна:
q_ <0>– заряд носителя электричества;
v – скорость дрейфа, т.е. направленного движения частиц;
S – площадь поперечного сечения проводника
При увеличении частоты скорость фотоэлектронов растет \Rightarrow растет задерживающее напряжение.
При увеличении интенсивности света растет концентрация электронов \Rightarrow растет ток насыщения.
Энергия и импульс фотона
Замечание: Фотоны не имеют массы покоя. Рождаясь, они приобретают скорость c.
Корпускулярно-волновой дуализм
Определение: Корпускулярно-волновой дуализм – это двойственность свойств элементарных частиц: они одновременно обладают свойствами частиц и волн.
Длина волны де Бройля
Длину волны можно определить для любой частицы.
Задерживающий потенциал
Уравнение Эйнштейна можно записать в виде:
и выразить задерживающий потенциал:
|
На рисунке показан график зависимости задерживающего потенциала от частоты падающего света. По графику можно найти работу выхода А, красную границу nгр , а по наклону прямой можно определить величину постоянной Планка h.
Фотоэлементы широко используются в физике и технике. Вакуумные фотоэлементы довольно громоздки и дают небольшие токи, но вследствие своей безинерционности и линейной световой характеристики они незаменимы в тех случаях, когда необходимо превратить световые сигналы в электрические без каких-либо искажений. Существование тока насыщения в фотоэлементах позволят использовать их в стабилизаторах (напряжение изменяется, а ток остается постоянным). Фотоэлементы очень часто применяют в турникетах, для подсчета движущихся изделий на конвейерах и т.п.
Эффектом Комптона называется рассеяние веществом электромагнитного излучения, при котором частота рассеянного излучения уменьшается по сравнению с первоначальной, и одновременно наблюдается вылет быстрых электронов (электроны отдачи). Изменение частоты оказывается различной в зависимости от угла наблюдения. Американский ученый Комптон, открывший это явление (1923 г) разработал теорию явления. Он предложил рассматривать наблюдаемое взаимодействие света с веществом как упругое столкновение
Мы не будем приводить полный вывод формулы для изменения длины волны, а запишем только законы сохранения и окончательную формулу. Так как эффект Комптона наблюдается только для фотонов с большой энергией (рентгеновские и гамма-лучи), то при вычислениях необходимо использовать формулы СТО, и вывод становится громоздким. [x]
Подставив в эти законы выражения для указанных величин, приведенные ниже, после преобразований получим:
| изменение длины волны при комптоновском рассеянии излучения (на свободном электроне) Из формул следует, что комптоновское изменение длины волны не зависит от природы рассеивающего вещества, а определяется только углом наблюдения. |
Комптоновское рассеяние может наблюдаться и на свободном протоне, тогда следует использовать комптоновскую длину волны протона:
Из формулы (¨) следует, что изменение l при различных углах рассеяния равно:
q = 0 о | Dl = 0 | фотоны, продолжающие лететь в первоначальном направлении, не изменяют свою длину волны |
q = 90 о | Dl = | в этом случае изменение l равно комптоновской длине волны электрона |
q = 180 о | Dl = | максимальное изменение l происходит в случае, когда рассеянный фотон движется в противоположном направлении |
Ниже приводится таблица формул, используя которые можно получить выражение (¨) для Dl. Компактное расположение формул облегчает также решение задач.
Комптоновское рассеяние наблюдается только для рентгеновских и гамма-лучей. В этом случае изменение длины волны сравнимо с длиной волны падающего излучения, и может быть измерено экспериментально. Для видимого света обнаружить эффект Комптона невозможно, т.к. максимальное изменение Dl = 0,48 пм слишком мало по сравнению со средней длиной световой волны
l » 500 нм = 500000 пм (зеленый свет) и перекрывается тепловым уширением спектральных линий..
Эффект Комптона доказывает, что: 1) свет имеет квантовую природу и
2) для элементарных процессов взаимодействия частиц применимы законы сохранения импульса и энергии.
ЭНЕРГЕТИЧЕСКИЕ СПЕКТРЫ АТОМОВ И МОДЕЛЬ АТОМА БОРА.
Задерживающий потенциал.
Уравнение Эйнштейна можно записать в виде:
и выразить задерживающий потенциал:
|
На рисунке показан график зависимости задерживающего потенциала от частоты падающего света. По графику можно найти работу выхода А, красную границу nгр , а по наклону прямой можно определить величину постоянной Планка h.
Фотоэлементы широко используются в физике и технике. Вакуумные фотоэлементы довольно громоздки и дают небольшие токи, но вследствие своей безинерционности и линейной световой характеристики они незаменимы в тех случаях, когда необходимо превратить световые сигналы в электрические без каких-либо искажений. Существование тока насыщения в фотоэлементах позволят использовать их в стабилизаторах (напряжение изменяется, а ток остается постоянным). Фотоэлементы очень часто применяют в турникетах, для подсчета движущихся изделий на конвейерах и т.п.
Эффектом Комптона называется рассеяние веществом электромагнитного излучения, при котором частота рассеянного излучения уменьшается по сравнению с первоначальной, и одновременно наблюдается вылет быстрых электронов (электроны отдачи). Изменение частоты оказывается различной в зависимости от угла наблюдения. Американский ученый Комптон, открывший это явление (1923 г) разработал теорию явления. Он предложил рассматривать наблюдаемое взаимодействие света с веществом как упругое столкновение
Мы не будем приводить полный вывод формулы для изменения длины волны, а запишем только законы сохранения и окончательную формулу. Так как эффект Комптона наблюдается только для фотонов с большой энергией (рентгеновские и гамма-лучи), то при вычислениях необходимо использовать формулы СТО, и вывод становится громоздким. [x]
Подставив в эти законы выражения для указанных величин, приведенные ниже, после преобразований получим:
Комптоновское рассеяние может наблюдаться и на свободном протоне, тогда следует использовать комптоновскую длину волны протона:
Из формулы (¨) следует, что изменение l при различных углах рассеяния равно:
q = 0 о | Dl = 0 | фотоны, продолжающие лететь в первоначальном направлении, не изменяют свою длину волны |
q = 90 о | Dl = | в этом случае изменение l равно комптоновской длине волны электрона |
q = 180 о | Dl = | максимальное изменение l происходит в случае, когда рассеянный фотон движется в противоположном направлении |
Ниже приводится таблица формул, используя которые можно получить выражение (¨) для Dl. Компактное расположение формул облегчает также решение задач.
Комптоновское рассеяние наблюдается только для рентгеновских и гамма-лучей. В этом случае изменение длины волны сравнимо с длиной волны падающего излучения, и может быть измерено экспериментально. Для видимого света обнаружить эффект Комптона невозможно, т.к. максимальное изменение Dl = 0,48 пм слишком мало по сравнению со средней длиной световой волны
l » 500 нм = 500000 пм (зеленый свет) и перекрывается тепловым уширением спектральных линий..
Эффект Комптона доказывает, что: 1) свет имеет квантовую природу и
2) для элементарных процессов взаимодействия частиц применимы законы сохранения импульса и энергии.
ЭНЕРГЕТИЧЕСКИЕ СПЕКТРЫ АТОМОВ И МОДЕЛЬ АТОМА БОРА.
Что такое задерживающий потенциал
Фотоэффект принадлежит к числу явлений, в которых обнаруживаются корпускулярные свойства света. Столкновение фотонов с электронами приводит к выбиванию электронов из фотокатода. Энергетический баланс этого взаимодействия устанавливается уравнениями Эйнштейна.
где | — | максимальная кинетическая энергия |
освободившегося электрона. | ||
— | работа выхода электрона из фотокатода, | |
— | постоянная Планка, | |
— | частота света. |
Даже при монохроматическом освещении энергия электронов, вылетающих из катода, оказывается неодинаковой. Электроны в веществе обладают разными энергиями, располагаясь по разрешенным энергетическим уровням разрешенных зон. Под работой выхода A понимают энергию, необходимую для удаления электрона с самых верхних энергетических уровней. Энергия, которую необходимо затратить, чтобы удалить электрон с ниже расположенных уровней, превосходит A, и кинетическая энергия таких электронов оказывается меньше. Кроме того, электроны могут терять часть своей энергии на пути к поверхности фотокатода. Соотношение (1) определяет поэтому кинетическую энергию не всех, а только наиболее быстрых фотоэлектронов.
Подставляя (2) в (1), получаем
Из уравнения (3) видно, что величина запирающего потенциала линейно зависит от частоты света (рис. 1.2).
При экспериментальной проверке уравнения Эйнштейна следует убедиться в том, что величина потенциала запирания зависит только от частоты света и притом линейно (рис. 1.2). По тангенсу угла наклона прямой к оси частот можно определить постоянную Планка:
(При этом следует иметь в виду, что в этом случае имеет физический смысл, и следовательно, является размерной величиной. Таким образом при расчете по графику величины надо брать их в выбранных на графике единицах измерения.)
Значение запирающего потенциала становится несколько неопределенным. Такой ход кривой связан с наличием обратного фотоэффекта (т.е. фотоэффекта с анода) и с ионными токами в фотоэлементе из-за несовершенства вакуума. Поэтому следует проводить измерения несколько раз в каждой точке.