что такое выбег в частотнике
При запуске преобразователя частоты (ПЧ) и при его останове происходят особые переходные процессы. Обычно эти отрезки работы ПЧ называют разгоном и торможением. Соответственно, при разгоне ПЧ набирает скорость (обычно от нулевой), а при торможении – замедляется, также обычно до нуля.
На первый взгляд кажется, что эти процессы похожи, и всего лишь имеют противоположный знак. Но не так всё просто.
Параметры разгона и торможения
Для начала рассмотрим параметры преобразователей частоты, которые влияют на процессы разгона и торможения.
Минимальная выходная частота. Это частота, с которой может начинаться вращение. Она не обязательно равно нулю. Установка минимальной частоты больше нуля уменьшает нагрев двигателя при разгоне.
Нижний предел выходной частоты. Этот параметр определяет минимальную рабочую частоту. Нижняя рабочая частота всегда равна или больше минимальной выходной частоты. Таким образом, исключается работа на пониженных частотах при неправильной настройке, что может привести к перегреву двигателя.
Номинальная частота. Фактически это номинальная частота двигателя, обычно равная 50 Гц. При этом на выходе преобразователя частоты действует максимальное напряжение. Если номинальную частоту установить меньше указанной на табличке двигателя, то двигатель будет перегружен. Если больше – возможно снижение рабочего момента двигателя
Максимальная выходная частота. Это значение ограничивает выходную частоту сверху. Причем, заданное (целевое, или номинальное) значение выходной частоты может быть меньше, либо равным максимальной выходной частоты. Данное значение используется для расчета теоретического времени разгона, а также привязывается к максимальному значению управляющих сигналов на аналоговых входах.
Время разгона. Это то время, за которое ПЧ разгонит двигатель от нуля до максимальной выходной частоты. Реальное время разгона, как правило, меньше. Поскольку двигатель может разгоняться не от нулевой частоты, а от нижнего предела выходной частоты. А номинальная выходная частота, как правило, меньше максимальной.
Время торможения. Это время, за которое выходная частота снизится от максимальной до нулевой. Реальное время торможения обычно меньше установленного.
Параметры преобразователя частоты, влияющие на разгон
Понятно, что двигатель не может разогнаться до нужной скорости мгновенно, ему нужно время. Это время зависит, кроме требований технологического процесса, от механических характеристик системы – например, от номинального момента двигателя и момента инерции системы.
При разгоне увеличивается выходная частота и напряжение на двигателе. При этом соответственно увеличивается и выходной ток, который также зависит от скорости разгона и момента нагрузки на двигателе (инерционности системы). ПЧ контролирует ток, не позволяя ему выйти за заданные пределы. Контроль состоит в том, чтобы защитить механический привод, двигатель и сам ПЧ от перегрева и повреждения.
Ограничение тока определяется и устанавливается в следующих параметрах:
Токоограничение при разгоне. Представляет собой некоторый уровень, после которого выходная частота перестает увеличиваться. Частота будет увеличиваться вновь лишь после того, как ток не снизится. Таким образом, время разгона может значительно увеличиться. Обычно значение номинального тока ПЧ принимается за 100%, а параметр токоограничения при разгоне может быть установлен от 20% до 250%.
Если эта функция отключена, или ее значение установлено слишком большим, то существует другая защита – Защита от превышения момента на валу двигателя. Она срабатывает тогда, когда выходной ток будет превышать уровень ограничения перегрузки в течение определенного времени. Обычно этот вид защиты называется OL2 и не зависит от частоты.
Электронное тепловое реле защиты двигателя (OL1). Данный параметр определяет время интегрирования выходного тока ПЧ. Он учитывает режим охлаждения, выходную частоту (скорость вращения) и номинальный ток двигателя.
Параметры и процессы, проходящие при торможении.
Для правильной настройки параметров торможения нужно изучить механическую часть привода с точки зрения его инерционности.
Самый щадящий режим остановки двигателя – остановка на выбеге, которая эквивалентна остановке со снятием питания контактором. Следует замерить время остановки на выбеге и принять решение о правильном выборе времени торможения. Под временем торможения здесь понимается не теоретическое время, устанавливаемое в соответствующем параметре, а реальное, с учетом фактических условий.
Если нужно по технологическим условиям, чтобы время торможения было больше, чем время выбега, то этот процесс можно назвать замедлением. При этом частота и напряжение понижаются плавно, в соответствии с заданным законом замедления (линейным или S-образным).
Остановку на свободном выбеге или с временем, бОльшим времени выбега, применяют при высокоинерционной нагрузке, где время остановки механизма не играет роли – вентиляторы, центрифуги, дробилки, и т.п.
Но, как правило, время торможения устанавливают меньше, чем время выбега, и тут нужно тщательно подойти к настройкам ПЧ.
При торможении с коротким временем проявляется такое явление, как рекуперация. При этом запасенная кинетическая энергия двигателя, обусловленная инерционностью нагрузки, отдается обратно в преобразователь.
Происходит это следующим образом. Частота и напряжение на выходе ПЧ понижаются в соответствии с заданием замедления. Однако, двигатель продолжает вращаться, и напряжение, которое он генерирует, через транзисторные ключи поступает на звено постоянного тока (конденсаторы фильтра). Результирующее напряжение при этом может достигнуть критического значения.
Чтобы понизить при торможении напряжение на звене постоянного тока, поглотить «лишнюю» энергию и обеспечить нужное торможение, применяют тормозные резисторы. Энергия торможения поступает на тормозной резистор через специальный тормозной модуль, который регулирует взаимодействие звена постоянного тока и резистора.
Если отсутствует тормозной резистор и функция ограничения перенапряжения, могут возникнуть ситуации, когда ПЧ выйдет в ошибку, а двигатель после этого будет останавливаться на выбеге.
Автоматический разгон и замедление
В некоторых ПЧ применяется функция автоматического разгона, при включении которой разгон происходит за максимально короткое время, с учетом выходного тока.
Существует также и функция автоматического торможения, при которой контролируется напряжение на звене постоянного тока для обеспечения минимального времени торможения без ошибки по перенапряжению.
Эти функции особенно удобна для быстрой настройки, а также в тех приводах, где инерция нагрузки может быть разной при каждом цикле работы.
Что такое выбег в частотнике
1. Под эффективностью имею ввиду с минимальным выбегом по инерции.
2. В РЭ на ПЧВ не объясняется суть торможение переменным током. Ну я как понимаю имеется ввиду торможение противовключением. Которое является наиболее эффективным из сих трех методов.
3. Так как же включить этот вид торможения на частотнике, кто знает?
Самый эффективный способ включает в себя тормозной резистор. При торможении выделяется энергия, которую нужно куда-то девать. Часть этой энергии расходуется на собственно торможение, аккумулируется в звене постоянного тока, а часть сливается в тормозной резистор.
Выбег по инерции возможен: 1. Если вы его явно включили; 2. Если выбранный режим торможения перегрузил преобразователь и системы защиты отключили управляемое торможение. В остальных случаях остановка происходит с учетом установленного времени замедления (DEC)
Самый эффективный способ включает в себя тормозной резистор. При торможении выделяется энергия, которую нужно куда-то девать. Часть этой энергии расходуется на собственно торможение, аккумулируется в звене постоянного тока, а часть сливается в тормозной резистор.
Нет, по крайней мере на относительно современных преобразователях с векторным управлением. Торможение происходит сдвигом (отставанием) прикладываемого поля относительно вращающегося поля ротора. При этом двигатель переходит в генераторный режим, выделяемая энергия частично расходуется на создание вращающегося тормозящего поля, остальное аккумулируется в конденсаторе постоянного звена. Соответственно, на нем растет напряжение. При превышении некоторого значения (500-600В), контроллер ПЧ уменьшает интенсивность торможения, чтобы уменьшить выделение энергии. При наличии в системе тормозного резистора, он подключается в этот момент и позволяет разряжать конденсатор через себя, не допуская перенапряжений и позволяет контроллеру удерживать значительный тормозящий момент.
В 21 веке никто не коротит обмотки через резисторы )))
Частотный регулятор это устройство, в первую очередь предназначенное для управления оборотами электродвигателя, а торможение- это уже второстепенная функция.
имелось в виду то, что для инерционного объекта регулирования применение механического тормоза куда более оправдано и менее энергозатратно. попробуйте ж/д локомотив остановить только электродвигателем.
Ребят, я знаю вас медом не корми, только дай про вечный двигатель пофилософствовать ))
Есть у кого опыт, знание работы с овеновским ПЧВ102-1К5-В?
Как на нем включить торможение переменным током??
А зачем утилизировать? Это обычное трение, далее тепло рассеивается. Да и в случае применения частотника при торможении электродвигателя также выделяется тепло- его то как утилизируете? Причем здесь рекуперация- отдача энергии обратно в сеть при переходе электродвигателя в генераторный режим? На инерционном объекте, как в примере с ж/д локомотивом, рекуперативным торможением вы оооочень долго будете останавливаться.
Изначально задача ведь стояла в нужный момент времени остановить электродвигатель (шнек) для точной дозировки, а о рекуперации ни «речи». Да и рекуперация в основном применяется на электротранспорте, где есть инерция и есть смысл полезно утилизировать (отдавать в сеть) энергию.
Тепло выделяется быстро и локально, что приводит к тепловому разрушению механических тормозных устройств. При использовании ПЧВ тепло собственно не выделяется, ибо идет торможение полем. Чуть увеличенный нагрев несоизмерим с гасимой энергией и обусловлен КПД преобразования. В случае ПЧВ идет не полная рекуперация в сеть, а накопление энергии на внутреннем конденсаторе, т.е. преобразователь вливает ток в двигатель, не забирая его из сети, так сказать сам себя кормит.
«Поезд» т.е. шнек мгновенно остановить невозможно )) речь идет о контроллируемом останове, за заранее заданное время, что собственно и даст точную дозировку.
Время рекуперативного торможения зависит от желания «машиниста», с двигателя можно снимать энергию в любых количествах, это определяется возможностью применяемой электроники. Современные преобразователи позволяют плоскую характеристику, вплоть до минимальных частот. Экспоненциальные остались в середине 20 века.
оно будет использоваться когда вы снимите сигнал «вперед» ну или «назад». В обычном случае при снятии сигнала вращения, ПЧ начинает подавать на двигатель уменьшающуюся частоту. Время замедления будет взято из настроек. Предполагается что энергия расходуется на полезную нагрузку и мотор остается в двигательном режиме все время. Если нагрузка инерциальная, то получается некий выбег.
При использовании динамического торможения, ПЧ подает на двигатель поле, отстающее по фазе от вращающегося поля ротора, и переводит двигатель в генераторный режим, выдерживая таким образом темп замедления нужный для точного соответствия времени остановки из настроек, независимо от инерции нагрузки.
При использовании динамического торможения, ПЧ подает на двигатель поле, отстающее по фазе от вращающегося поля ротора, и переводит двигатель в генераторный режим, выдерживая таким образом темп замедления нужный для точного соответствия времени остановки из настроек, независимо от инерции нагрузки.
Почему тогда для торможения постоянным током предоставлена выделенная функция, которую можно запускать сигналом на дискретном входе, либо по rs-485. А для динамического торможения такой отдельной «кнопки» нет. Где собака зарыта то.
Потому что в инструкции не совсем верный перевод понятия. Правильная трактовка звучит примерно как «удержание постоянным током». И применяется в основном для удержания вала от проворачивания после остановки, в стояночных режимах. При торможении его конечно тоже используется, но результат мало предсказуем, в смысле что время до остановки будет меняться в зависимости от нагрузки и многих других факторов, ну и выбег больше. Мне кажется что режим сохраняют как наследие от старых ПЧ, с U/f характеристикой, когда динамическое торможение было просто недоступно. Кстати, и его можно включать как автоматически, так и командой по интерфейсу.
Да есть там отдельная функция удержания постоянным током. Которая включается при запуске и также при остановке двигателя, когда частота становится ниже уставки. К всему этому есть отдельная функция торможения постоянным током, включаемая сразу при рабочем двигателе, которая означает одновременно стоп и торможение. Но на переменное торможение и торможение резистором такой функции нет. Будем надеяться, что она автоматически включиться при съеме сигнала пуск двигателя.
Электротехнический дайджест. Выпуск №1
Чем отличаются выбег, замедление и торможение двигателя?
Выбег – это процесс остановки двигателя, при котором действуют лишь силы трения и запасенная кинетическая энергия. Выбег происходит, когда электродвигатель выключается контактором.
Замедление двигателя происходит, когда частотный преобразователь плавно понижает частоту вплоть до нулевой, при этом энергия не генерируется. При замедлении время остановки больше, чем при выбеге.
При торможении появляется излишек энергии, который накапливается в звене постоянного тока и выделяется на тормозном резисторе. Время торможения обычно в несколько раз меньше времени выбега.
6 способов запуска двигателя от частотника
Все способы работают при соответствующих настройках частотного преобразователя.
Зачем нужна компенсация скольжения
Скольжение ротора – нормальное явление для асинхронного двигателя. Однако при большой нагрузке на вал скорость вращения ротора ощутимо снижается, при этом возрастает ток электродвигателя.
Данный эффект можно уменьшить с помощью преобразователя частоты, в котором реализована функция компенсации скольжения, основанная на измерении тока. Как только рабочий ток двигателя превышает установленный предел, частотный преобразователь увеличивает выходную частоту. Повышение частоты происходит в соответствии с заданной степенью компенсации.
Компенсация скольжения бывает полезна, когда необходимо обеспечить стабильность частоты вращения двигателя в скалярном режиме без датчика обратной связи.
3 способа затормозить электродвигатель
Определяем, может ли двигатель работать в схеме «звезда – треугольник»
Основное преимущество схемы «звезда — треугольник» заключается в обеспечении плавного разгона мощных двигателей. Но как узнать, подходит ли двигатель для работы в этой схеме?
Вся необходимая информация размещена на шильдике электродвигателя. Если на нем указаны напряжения 220 В и 380 В, то данный двигатель может включаться либо напрямую либо через преобразователь частоты по схеме «звезда» или «треугольник». Если указаны напряжения 380 В и 660 В, двигатель пригоден для работы в схеме «звезда – треугольник». Запуск и разгон будет производиться в «звезде» (660 В), нормальная работа – в «треугольнике» (380 В).
Большинство двигателей мощностью более 4 кВт рассчитаны на напряжение 380 / 660 В.
Как увеличить максимальный ток контактора
Контактор — это вид электромагнитного реле, который используется для управления электродвигателями большой мощности.
Как правило, у контактора имеется три группы силовых контактов (полюса). Однако не во всех схемах требуется коммутация трехфазного напряжения с помощью контактора. В некоторых случаях нужно коммутировать однофазное или постоянное напряжение, а значит, соединив параллельно три полюса, мы можем получить трехкратный выигрыш по току.
В характеристиках контактора указывается ток для одного полюса. Таким образом, например, имея контактор на ток 10 А (категория применения АС-3), через него можно пропускать ток до 30 А для той же категории.
Напомним, что при коммутации резистивной нагрузки (категория АС-1, например, ТЭН) контактор может пропускать ток в 1,5 раза больше.
Как увеличить мощность двигателя
Мощность электродвигателя в первую очередь ограничивается его температурой. Обеспечив дополнительный отвод тепла, можно увеличить не только мощность, но и ресурс работы привода. Данный совет особенно актуален при использовании частотного преобразователя, поскольку на низких оборотах крыльчатка двигателя малоэффективна.
Для охлаждения используют обдув дополнительным вентилятором, понижение температуры рабочего пространства, нагнетание охлажденного воздуха. Кроме того, важно регулярно проводить техобслуживание и чистку двигателя.
Определяем ток двигателя по мощности
Иногда возникает ситуация, когда известна мощность двигателя и требуется узнать его ток, чтобы выбрать правильную защиту. Можно обратиться к технической документации на двигатель, но это не всегда возможно.
Оценить номинальный ток двигателя можно простым способом — нужно мощность в киловаттах умножить на 2. Например, у двигателя мощностью 4 кВт номинальный ток будет равен примерно 8 А.
В силу того, что у маломощных двигателей низкий КПД, при мощности менее 1,5 кВт ток будет выше, и множитель нужно выбирать около 2,2. Для двигателей мощностью более 15 кВт множитель будет 1,9, более 55 кВт — 1,8.
Использование тормозных резисторов с частотниками
При работе преобразователя частоты для остановки электродвигателя используются два режима: режим выбега (двигатель останавливается по инерции) и режим торможения с управляемым временем замедления.
Режим остановки на выбеге
Остановка на свободном выбеге означает, что при подаче команды STOP выходы преобразователя отключаются от двигателя, и его ротор вращается по инерции. Время торможения при этом будет неопределенным, зависящим только от инерционных свойств нагрузки. Этот режим выбирается, когда нагрузка имеет большой момент инерции, а время торможения не критично.
Режимы остановки с замедлением
При остановке электродвигателя в режиме торможения время замедления задается пользователем в настройках частотного преобразователя, и может быть как больше, так и меньше времени остановки на выбеге.
В режиме с относительно большим временем замедления выходная частота преобразователя плавно уменьшается до заданной минимальной, затем напряжение с двигателя снимается. Фактически происходит не торможение, а плавное понижение оборотов двигателя.
При уменьшении времени замедления двигатель может переходить в генераторный режим с накоплением излишней энергии в звене постоянного тока ПЧ. Это происходит не только при замедлении, но и при отрицательном крутящем моменте, когда двигатель поддерживает заданную скорость, а нагрузка пытается ее увеличить.
Напряжение в звене постоянного тока может превышать допустимые значения в определенных пределах. В подобных случаях нужно либо увеличить время торможения, либо использовать тормозной резистор.
На тормозном резисторе выделяется мощность, которую нагрузка передает через двигатель в преобразователь частоты при быстром снижении скорости или остановке. Резистор используется вместе со специальной схемой управления – тормозным модулем. Модели ПЧ низкой мощности оснащаются встроенным модулем. В этом случае в преобразователе есть клеммы «+» и «PB», к которым непосредственно подключается тормозной резистор, как показано на схеме ниже.
При мощностях более 18,5 кВт и в дешевых моделях тормозной модуль, как правило, является выносным устройством и покупается отдельно. Подключение производится к клеммам преобразователя «+» и «-». Модуль содержит пороговое устройство и мощный ключевой транзистор. Когда напряжение превышает допустимое, транзистор открывается, и напряжение прикладывается к тормозному резистору.
Модель тормозного модуля и номинал резистора выбираются в соответствии с рекомендациями производителя, исходя из мощности ПЧ и условий его работы. Также при проектировании и эксплуатации оборудования нужно учитывать, что резистор может значительно нагреваться в процессе работы.
Частотник без тормозного резистора
В некоторых моделях частотных преобразователей предусмотрена функция ограничения перенапряжения на шине постоянного тока. Тормозной резистор в таком случае не используется, при этом автоматически поддерживается максимальный тормозной момент, а время замедления может быть минимальным для данной нагрузки.
Без тормозного резистора можно обойтись еще в одном случае. Если в оборудовании используется несколько преобразователей частоты с одинаковым напряжением шины постоянного тока, их шины можно объединять. В результате ПЧ могут взаимно поглощать излишнее напряжение при торможении.
В завершение упомянем о других режимах торможения:
Выбег и разгон электродвигатля(ЭД) при самозапуске (С)
Самозапуск(С) – это восстановление нормальной работы электропривода без вмешательства персонала после кратковременного перерыва электроснабжения или глубокого снижения U.
Весь процесс С можно разделить на 2 этапа:
I. Выбег ЭД (одиночный или групповой). Одиночный – это выбег, при котором ЭД оказывается отсоединенным о сети и других двигателей, либо, когда другие ДВ, электрически связанные с ним, не оказывают заметного влияния на процесс выбега. Обычно это происходит, если между рассматриваемым и другими двигателями включают реостат или тр-ор. Выбег одного двигателя, отключенного от сети называется свободным. Если взаимное влияние отсоединенных от источников двигателей велико, такой выбег наз –ся групповым. В основном процесс выбега определяется механическими характеристиками агрегатов При подпитке двигателями близкого КЗ выбег происходит по более крутой характеристике за счет возникновения дополнительного тормозного момента.
Всякий двигатель, отключенный от источника питания, развивает на выбеге ЭДС в обмотке статора. У АД ЭДС не велика, у СД значительна. Чем больше ЭДС, тем больше ток включения (бросок тока непосредственно в момент восстановления U на двигателе(ДВ)) при восстановлении напряжения (при небольшой фазе включения) с этой точки зрения желательно иметь достаточно большой промежуток времени до восстановления U, то есть увеличить время действия АВР или АПВ, с тем чтобы обеспечить достаточное снижение Ед и получить допустимое значение I«/
Uc-напряжение сети, Z-сумма эквивалентного соп-я, Ед-остаточная ЭДС на шинах подстанции.
Может быть несколько вариантов группового выбега:
1. Выбег одинаковых двигателей с одинаковыми механизмами(выбег проходит как при индивидуальном выбеге каждого агрегата)
2. Групповой выбег агрегатов с одинаковым характером механических характеристик, но различных по мощности, нагрузке и моменту инерции.
Процесс группового выбега зависит не только от типа ДВ и приводимых механизмов, но и от параметров сети. Например при линейных реакторах продолжительность выбега по общей характеристике резко сокращается.
II. Разгон и восстановление рабочего режима. Разгон происходит при сниженном напряжении, значение которого зависит от параметров сети, разгоняющихся двигателей и прочей присоединенной нагрузке.
Подключенный к сети АД будет разгоняться только в том случае, если развиваемый им момент будет больше момента сопротивления в соответствии с основным уравнением движения
mд – для АД понимается электромагнитный асинхронный момент mа, mс – момент сопротивления агрегата.
Если момент сопротивления определяется экспериментальным путем, то механические потери двигателя учитываются непосредственно в процессе измерений. Двигатель при самозапуске разгоняется медленнее чем при пуске. Более длительный разгон вызывает повышенный нагрев. Успешным считается такой самозапуск, когда ДВ может разогнаться до рабочей скорости и при этом температура его обмоток не превысит допустимого значения.
Разгон СД происходит в соответствии с общим для всех двигателей уравнением движения (1), однако развиваемый им момент определяется гораздо более сложным выражением чем для АД.
Аналогично АД, СД подключенный к сети будет разгоняться, если развиваемый им асинхронный момент окажется больше момента сопротивления. Подсинхронное скольжение, до которого разгоняется двигатель, определяется точкой пересечения характеристик асинхронного момента и момента сопротивления.
Самозапуск ЭД позволяет наиболее полно использовать средства автоматизации систем электроснабжения.