что такое сдвиг тектонических плит
Все это время мы имели неправильное представление о движении тектонических плит
Как бы тверда не была земля под нашими ногами, на глубине циркулирует целое «море», формирующее жидкую часть земного ядра. Если не вдаваться в более точное описание строения земной коры, то можно сказать, что поверх этого «моря» находятся тектонические плиты, которые, как мы знаем еще с курса школьной географии, постоянно находятся в движении. Но, как недавно удалось выяснить объединенной группе ученых из США и Франции, все это время мы могли иметь неверное представление о том, почему тектонические плиты сдвигаются друг относительно друга.
Даже, казалось бы, широко известные факты могут быть совсем не точными
Как двигаются тектонические плиты
Как передает редакция издания Science Advances, для того, чтобы лучше разобраться в процессах перемещения тектонических плит, международная команда из Гренобльского университета во Франции, а также Техасского университета в Остине (США) разработала новые, основанные на всей имеющейся информации о строении Земли, высокоточные 3D-модели земного шара.
За развитием этих моделей было предложено наблюдать специальному компьютерному алгоритму в течение виртуальных 1,5 миллиарда лет. При этом в реальном времени на это ушло порядка 9 месяцев. Результаты моделирования показывают, что человечество имело ошибочное представление о процессах, происходящих под поверхностью нашей планеты.
На протяжении очень долгого времени мы думали, что внешний покров Земли «скользит», над поверхностью мантии. А тектонические плиты — это, своего рода, пластины, которые наслаиваются друг о друга в одних частях и раздвигаются в других. — говорят ученые.
Ранние попытки описать теорию движения плит предполагали, что это движение может быть в значительной степени результатом конвекционных течений в жидкой части ядра планеты, находящейся под давлением (называется эта часть манития). Благодаря перепадам температур, мантия поднимается и опускается, что вызывает завихрение потоков и смещает тектонические плиты.
При этом модели, пытающиеся описать этот процесс, неизбежно сталкивались с проблемами, пытаясь сопоставить силы сопротивления и трения тектонических плит с динамикой текучей мантии. Наши же результаты указывают на преобладание силы притяжения плит над сопротивлением у их основания, что говорит о том, что не мантия управляет перемещением плит, а, напротив, тектонические плиты управляют мантийным потоком, — объясняют исследователи в своем докладе. Новые полученные модели предполагают, что движение тектонических плит создает токи в мантии. От 20 до 40% поверхности плит оказались связаны с глубинными потоками мантии. Движения оставшихся 80-60% объясняется в основном поверхностным сопротивлением мантии.
Из-за смещения тектонических плит через много тысячелетий расположение континентов может быть примерно таким
Новые данные помогут пролить свет на ряд процессов, которые мы регулярно наблюдаем на нашей планете — от землетрясений и извержений вулканов, до формирования магнитосферы, которая защищает нас от воздействия космической радиации. А что вы думаете по поводу нового предположения? расскажите об этом в нашем чате в Телеграм.
Кроме того, если новая модель действительно окажется точной (сейчас ученые перепроверяют полученные данные), может оказаться, что смещение тектонических плит (а вместе с ними и континентов), рассчитанное ранее, может быть ошибочным. И, основываясь на новой информации, можно будет лучше понять, как будет выглядеть наша планета в будущем.
Новости, статьи и анонсы публикаций
Свободное общение и обсуждение материалов
Недавнее исследование указывает на то, что вода может не являться уникальным веществом лишь для Земли. Вполне возможно, она являлась одним из основных вещест…
Многие из нас могут долго любоваться поверхностью моря или реки, по которой перекатываются волны. Рожденные ветром, затем они распространяются за счет силы т…
Космос — это страшно. И трудно. Несмотря на то, что в космосе побывало уже больше пятисот человек, не все они вернулись живыми. Отправиться на высоту в четыр…
Теория тектоники плит: выяснилось, как на самом деле устроена поверхность Земли
Ранее считалось, что поверхность Земли статичная и жесткая. Однако появившаяся теория тектоники плит изменила все понимание почвенного образования. Она указывает на постоянное движение поверхности планеты. И доказательством тому служат землетрясения, извержения вулканов, образование гор и вулканических бассейнов. Что об этом известно?
Читайте «Хайтек» в
Из чего состоит поверхность Земли?
Недра Земли можно делить на слои по их механическим (в частности реологическим) или химическим свойствам. По механическим свойствам выделяют литосферу, астеносферу, мезосферу, внешнее ядро и внутреннее ядро. По химическим свойствам Землю можно разделить на земную кору, верхнюю мантию, нижнюю мантию, внешнее ядро и внутреннее ядро.
Центральная, наиболее глубокая часть планеты Земля, геосфера, находящаяся под мантией Земли и, предположительно, состоящая из железо-никелевого сплава с примесью других сидерофильных элементов. Глубина залегания — 2 900 км.
Мантия Земли простирается до глубины 2 890 км, что делает ее самым толстым слоем Земли. Давление в нижней мантии составляет около 140 ГПа (1,4·10 6 атм).
Мантия состоит из силикатных пород, богатых железом и магнием по отношению к вышележащей коре. Высокие температуры в мантии делают силикатный материал достаточно пластичным, чтобы могла существовать конвекция вещества в мантии, выходящего на поверхность через разломы в тектонических плитах.
Толщина земной коры может быть от 5 до 70 км в глубину от поверхности. Самые тонкие части океанической коры, которые лежат в основе океанических бассейнов (5–10 км), состоят из плотной железо-магниевой силикатной породы, такой как базальт.
В нашем материале речь пойдет в верхней части строения Земли: о литосферных плитах.
Как устроены литосферные плиты?
Существует два принципиально разных вида земной коры — кора континентальная и кора океаническая. Некоторые литосферные плиты сложены исключительно океанической корой, другие состоят из блока континентальной коры, впаянного в кору океаническую.
Суммарная мощность (толщина литосферы) океанической литосферы меняется в пределах от 2–3 км в районе рифтовых зон океанов до 80–90 км вблизи континентальных окраин. Толщина континентальной литосферы достигает 200–220 км.
Литосферные плиты постоянно меняют свои очертания, они могут раскалываться в результате рифтинга и спаиваться, образуя единую плиту в результате коллизии. Литосферные плиты также могут тонуть в мантии планеты, достигая глубины внешнего ядра.
С другой стороны, разделение земной коры на плиты неоднозначно, и по мере накопления геологических знаний выделяются новые плиты, а некоторые границы плит признаются несуществующими. Поэтому очертания меняются со временем и в этом смысле. Особенно это касается малых плит, в отношении которых геологами предложено множество кинематических реконструкций, зачастую взаимно исключающих друг друга.
Скорость горизонтального движения литосферных плит в наше время варьируется от 1 до 6 см в год (скорость раздвигания плит — от 2 до 12 см в год). Скорость раздвигания плит от Срединно-Атлантического хребта в северной части его составляет 2,3 см в год, а в южной части — 4 см в год.
Наиболее быстро раздвигаются плиты вблизи Восточно-Тихоокеанского хребта у острова Пасхи — их скорость 18 см в год. Медленнее всего раздвигаются плиты в Аденском заливе и Красном море — со скоростью 1–1,5 см в год.
Типы столкновений литосферных плит:
Граница столкновения проходит между океанической и континентальной плитой. Плита с океанической корой подвигается под континентальную плиту. Примеры столкновения: плита Наска с Южноамериканской плитой и плита Кокос с Североамериканской плитой.
Одна из плит подвигается под другую — ту, на которой находится группа островов. Примеры столкновения: Североамериканская плита с Охотской плитой, с Амурской плитой, с Филиппинской плитой, с Индо-Австралийской плитой; Южноамериканская плита с Карибской плитой.
Тип столкновения, когда ни одна из плит не уступает другой и они обе образуют горы. Примеры: Индостанская плита с Евразийской плитой.
Как двигаются литосферные плиты?
Согласно современному научному подходу к движению плит, земная кора состоит из относительно целостных блоков — литосферных плит, которые находятся в постоянном движении относительно друг друга.
При этом в зонах расширения (срединно-океанических хребтах и континентальных рифтах) в результате спрединга (англ. seafloor spreading — растекание морского дна) образуется новая океаническая кора, а старая поглощается в зонах субдукции.
Тепловая конвекция в веществе мантии возникает как эффективный механизм передачи тепловой энергии из ядра Земли и представляет собой конвективные ячейки размером до нескольких тысяч километров. Над восходящими потоками мантийного вещества, то есть горячими и менее плотными, располагаются зоны спрединга океанского дна.
Нисходящие струи остывшего и более плотного мантийного вещества увлекают за собой литосферные плиты в зонах субдукции. Движение плит осуществляется за счет вязкого сцепления вещества верхней мантии, находящегося в конвективном движении, с неровной подошвой литосферы.
Современные движения литосферных плит фиксируются несколькими методами, самыми распространенными из которых являются методы космической геодезии. Современные GPS-приемники способны фиксировать перемещения плит с точностью до долей миллиметра в год.
Последствия движения литосферных плит также можно наблюдать в сейсмодислокациях — нарушениях сплошности горных пород, возникающих в результате землетрясений, которые, в свою очередь, являются следствием мгновенного снятия напряжений в земной коре.
Известный пример сейсмодислокации — забор на ферме в Калифорнии, неподалеку от Сан-Франциско, разделенный на две части, сдвинутые вдоль разлома Сан-Андреас относительно друг друга на несколько метров.
Модель тектоники плит на поверхности вулканического лавового озера
Более 90% поверхности Земли в современную эпоху покрыто восьмью крупнейшими литосферными плитами:
Что ученые узнали о теории тектоники плит?
Ученый Брэдфорд Фоули из Пенсильванского университета США уверен, что поверхность Земли нельзя считать статичной, ведь она постоянно взволнована. Более того, по мнению специалиста, тектоника действует правильно, расставляя все на свои места. Разломы земной коры также являются результатом взаимодействия подземных плит.
На протяжении веков наука считала, что поверхность Земли, ее крайний слой статичен и жесток. Он не движется и не изменяется. Однако появившаяся теория тектоники плит изменила все понимание почвенного образования. Она явно указывает на постоянное движение поверхности планеты. И доказательством тому служат землетрясения, извержения вулканов, образование гор и вулканических бассейнов.
Все эти события так или иначе связаны с горячими недрами Земли. Все знакомые нам пейзажи, которые есть на планете, являются продуктами эонного цикла, в которого планета занята постоянным усовершенствованием себя.
Тектоника плит сегодня описывает весь внешний слой Земли. Он занимает толщину около 100 км и разбивается на своеобразные паззлы из плит породы, несущей континенты и морское дно. При этом пластины, образующиеся в процессе этого движения, опускаются вглубь планеты. Этот цикл, как заявляют ученые, создает многие геологические чудеса, но он же является и причиной многих стихийных бедствий на нашей планете.
Он связывает между собой многие несовместимые вещи: спрединг морского дна и магнитные полосы в местах формирования землетрясений и горных хребтов. Геодинамик Брэдфорд Фоули из Пенсильванского университета считает, что тектоника плит действует правильным образом, поскольку она все расставляет на свои места.
А потому теория кажется не просто убедительной, а реальной. Поверхность Земли нельзя считать неподвижной. Она постоянно взволнованная и беспокойная. Образуемые разломы — это тоже результат взаимодействия тектонических плит. Они подтверждают идею дрейфующих континентов, которая считается необычной.
Какое будущее у науки тектоники?
Несмотря на кажущуюся простоту и изящность, по мере накопления новых данных концепция тектоники литосферных плит непрерывно развивается.
Одним из актуальных вопросов современной тектоники и геодинамики остается объяснение причин внутриплитного магматизма и магматизма горячих точек, в результате которого возникают цепочки океанических островов, например, Гавайи или супервулканы вроде Йеллоустонского, а также крупные магматические провинции, скажем, Сибирские траппы и траппы плато Декан в Индии.
Одной из наиболее распространенных гипотез, объясняющих причины внутриплитного магматизма, является концепция мантийных плюмов — струй горячего мантийного вещества, поднимающихся с границы ядро — мантия и являющихся источником избыточного (по сравнению со средним для мантии значением) тепла, которое инициирует выплавление огромных объемов магмы.
В случае излияния на поверхность континента или океанского дна эти расплавы, по составу соответствующие базальтам, формируют крупные изверженные провинции.
Если при подъеме к поверхности земли плюм упирается в океанскую кору, то он прожигает ее, в результате чего формируются вулканические острова — подводные вулканы, вершины которых возвышаются над поверхностью океана, или крупные океанские базальтовые плато вроде плато Онтонг-Джава в Тихом океане.
Россия наедет на Японию. Тектонические сдвиги меняют континенты
На прошлой неделе публику всколыхнула новость, что полуостров Крым движется в сторону России не только благодаря политической воле населения, но и согласно законам природы. Что такое литосферные плиты и на каких из них территориально расположена Россия? Что заставляет их двигаться и куда? Какие территории хотят ещё «присоединиться» к России, а какие угрожают «убежать» в США?
«А мы куда-то едем»
Да, мы все куда-то едем. Пока вы читаете эти строки, вы медленно двигаетесь: если вы в Евразии, то на восток со скоростью примерно 2—3 сантиметра в год, если в Северной Америке, то с той же скоростью на запад, а если где-то на дне Тихого океана (как вас туда занесло?), то уносит на северо-запад на 10 сантиметров в год.
Если вы откинетесь в кресле и подождёте примерно 250 миллионов лет, то окажетесь на новом суперконтиненте, который объединит всю земную сушу, — на материке Пангея Ультима, названном так в память о древнем суперконтиненте Пангея, существовавшем как раз 250 миллионов лет назад.
Фото: © wikipedia.org
Поэтому известие о том, что «Крым движется», вряд ли можно назвать новостью. Во-первых, потому, что Крым вместе с Россией, Украиной, Сибирью и Евросоюзом является частью Евразийской литосферной плиты, и все они движутся вместе в одну сторону последнюю сотню миллионов лет. Однако Крым — это ещё и часть так называемого Средиземноморского подвижного пояса, он расположен на Скифской плите, а большая часть европейской части России (включая город Санкт-Петербург) — на Восточно-Европейской платформе.
И вот здесь часто возникает путаница. Дело в том, что помимо огромных участков литосферы, таких как Евразийская или Северо-Американская плиты, существуют и совершенно иные «плитки» поменьше. Если очень условно, то земная кора составлена из континентальных литосферных плит. Сами они состоят из древних и очень стабильных платформ и зон горообразования (древних и современных). А уже сами платформы делятся на плиты – более мелкие участки коры, состоящие из двух «слоёв» — фундамента и чехла, и щиты — «однослойные» обнажения.
Чехол у этих нелитосферных плит состоит из осадочных пород (например, известняка, сложенного из множества ракушек морских животных, обитавших в доисторическом океане над поверхностью Крыма) или магматических (выброшенных из вулканов и застывших масс лавы). А ф ундамент плит и щиты чаще всего состоят из очень старых горных пород, главным образом метаморфического происхождения. Так называют магматические и осадочные породы, погрузившиеся в глубины земной коры, где под воздействием высоких температур и огромного давления с ними происходят разнообразные изменения.
Фото: © wikimedia.org
Иными словами, большая часть России (за исключением Чукотки и Забайкалья) располагается на Евразийской литосферной плите. Однако её территория «поделена» между Западно-Сибирской плитой, Алданским щитом, Сибирской и Восточно-Европейской платформами и Скифской плитой.
Вероятно, о движении двух последних плит и заявил директор Института прикладной астрономии (ИПА РАН), доктор физико-математических наук Александр Ипатов в своём устном сообщении. А позднее, в интервью изданию Indicator, уточнил: «Мы занимаемся наблюдениями, которые позволяют определить направление движения плит земной коры. Плита, на которой расположена станция Симеиз, движется со скоростью 29 миллиметров в год на северо-восток, то есть туда, где Россия. А плита, где находится Питер, движется, можно сказать, к Ирану, к югу-юго-западу». Впрочем, и это не является таким уж открытием, потому что учёные знают об этом движении уже несколько десятков лет, а само оно началось ещё в кайнозойскую эру.
Это подтвердил изданию «Федеральное агентство новостей» и геолог Юрий Долотов: «Крымские горы являются продолжением Кавказских гор, но не составляют единой структуры, а разделены так называемой Скифской плитой — предгорным прогибом Крымско-Кавказской складчатой системы, которая также отделяет Крым от Восточно-Европейской платформы, что находится от полуострова в нескольких сотнях километров».
«Движущийся в движимом»
Впервые сдвинул материки с места немецкий метеоролог, геофизик и полярный исследователь Альфред Вегенер. Он исследовал берега обоих континентов по сторонам Атлантики, останки ископаемых организмов, их геологические особенности и в 1912 году выдвинул гипотезу континентального дрейфа, заявив, что континенты могут перемещаться и некогда Южная Америка и Африка были единым целым (хотя очень часто упоминают, что ещё Фрэнсис Бэкон заметил, что Южная Америка и Африка подходят друг другу как элементы мозаики, это, по всей видимости, неверно).
Теория Вегенера была принята со скепсисом — в основном потому, что он не мог предложить удовлетворительного механизма, объясняющего движение материков. Он считал, что континенты двигаются, проламывая земную кору, словно ледоколы лёд, благодаря центробежной силе от вращения Земли и приливных сил. Его оппоненты говорили, что континенты-«ледоколы» в процессе движения меняли бы свой облик до неузнаваемости, а центробежные и приливные силы слишком слабы, чтобы служить для них «мотором». Один из критиков подсчитал, что, будь приливное воздействие таким сильным, чтобы настолько быстро двигать континенты (Вегенер оценивал их скорость в 250 сантиметров в год), оно остановило бы вращение Земли меньше чем за год.
Альфред Вегенер. Фото: © wikipedia.org
К концу 1930-х годов теория дрейфа континента была отвергнута как антинаучная, но к середине XX века к ней пришлось вернуться: были открыты срединно-океанические хребты и оказалось, что в зоне этих хребтов непрерывно образуется новая кора, благодаря чему и «разъезжаются» континенты. Геофизики исследовали намагниченность пород вдоль срединно-океанических хребтов и обнаружили «полосы» с разнонаправленной намагниченностью.
Оказалось, что новая океаническая кора «записывает» состояние магнитного поля Земли в момент образования, и учёные получили отличную «линейку» для измерения скорости этого конвейера. Так, в 1960-е годы теория дрейфа континентов вернулась во второй раз, уже окончательно. И на этот раз учёные смогли понять, что же двигает континенты.
«Льдины» в кипящем океане
«Представьте себе океан, где плавают льдины, то есть в нём есть вода, есть лёд и, допустим, в некоторые льдины вморожены ещё деревянные плоты. Лёд — это литосферные плиты, плоты — это континенты, а плавают они в веществе мантии», — объясняет член-корреспондент РАН Валерий Трубицын, главный научный сотрудник Института физики Земли имени О.Ю. Шмидта.
Он ещё в 1960-е годы выдвинул теорию строения планет-гигантов, а в конце XX века начал создавать математически обоснованную теорию тектоники континентов.
Промежуточный слой между литосферой и горячим железным ядром в центре Земли — мантия — состоит из силикатных пород. Температура в ней меняется от 500 градусов Цельсия в верхней части до 4000 градусов Цельсия на границе ядра. Поэтому с глубины 100 километров, где температура уже более 1300 градусов, вещество мантии ведёт себя как очень густая смола и течёт со скоростью 5—10 сантиметров в год, рассказывает Трубицын.
В результате в мантии, как в кастрюле с кипятком, возникают конвективные ячейки — области, где с одного края горячее вещество поднимается вверх, а с другого — остывшее опускается вниз.
«В мантии есть примерно восемь таких больших ячеек и ещё много мелких», — говорит учёный. Срединно-океанические хребты (например, в центре Атлантики) — это место, где вещество мантии поднимается к поверхности и где рождается новая кора. Кроме того, есть зоны субдукции, места, где плита начинает «подползать» под соседнюю и опускается вниз, в мантию. Зоны субдукции — это, например, западное побережье Южной Америки. Здесь происходят самые мощные землетрясения.
«Таким образом плиты принимают участие в конвективном кругообороте вещества мантии, которое во время нахождения на поверхности временно становится твёрдым. Погружаясь в мантию, вещество плиты снова нагревается и размягчается», — объясняет геофизик.
Изображение предоставлено Валерием Трубицыным
Кроме того, из мантии к поверхности поднимаются отдельные струи вещества — плюмы, и у этих струй есть все шансы уничтожить человечество. Ведь именно мантийные плюмы являются причиной появления супервулканов (см. Йеллоустоунский кошмар: уничтожит ли супервулкан США? И пощадит ли Россию?) Такие точки никак не связаны с литосферными плитами и могут оставаться на месте даже при движении плит. При выходе плюма возникает гигантский вулкан. Таких вулканов много, они есть на Гавайях, в Исландии, сходным примером является Йеллоустоунская кальдера. Супервулканы могут порождать извержения в тысячи раз мощнее, чем большинство обычных вулканов типа Везувия или Этны.
Сошлись — разошлись
Литосферные плиты состоят из относительно тяжёлой и тонкой базальтовой океанической коры и более лёгких, но зато значительно более «толстых» континентов. Плита с континентом и «намороженной» вокруг него океанической корой может идти вперёд, при этом тяжёлая океаническая кора погружается под соседа. Но, когда сталкиваются континенты, они уже не могут погружаться друг под друга.
Например, примерно 60 миллионов лет назад Индийская плита оторвалась от того, что потом стало Африкой, и отправилась на север, а примерно 45 миллионов лет назад встретилась с Евразийской плитой, в месте столкновения выросли Гималаи — самые высокие горы на Земле.
Фото: © wikimedia.org
Движение плит рано или поздно сведёт все континенты в один, как сходятся в один остров листья в водовороте. В истории Земли континенты примерно четыре-шесть раз объединялись и распадались. Последний суперконтинент Пангея существовал 250 миллионов лет назад, до него был суперконтинент Родиния, 900 миллионов лет назад, до него — ещё два. «И уже, похоже, скоро начнётся объединение нового континента», — уточняет учёный.
Он объясняет, что континенты работают как тепловой изолятор, мантия под ними начинает разогреваться, возникают восходящие потоки и поэтому суперконтиненты через некоторое время снова распадаются.
Америка «унесёт» Чукотку
Крупные литосферные плиты рисуют в учебниках, их может назвать любой: Антарктическая плита, Евразийская, Северо-Американская, Южно-Американская, Индийская, Австралийская, Тихоокеанская. Но на границах между плитами возникает настоящий хаос из множества микроплит.
Фото: © wikimedia.org
Например, граница между Северо-Американской плитой и Евразийской проходит совсем не по Берингову проливу, а намного западнее, по хребту Черского. Чукотка, таким образом, оказывается частью Северо-Американской плиты. При этом Камчатка отчасти находится в зоне Охотской микроплиты, а отчасти — в зоне Беринговоморской микроплиты. А Приморье расположено на гипотетической Амурской плите, западный край которой упирается в Байкал.
Сейчас восточная окраина Евразийской плиты и западный край Северо-Американской «крутятся», как шестерёнки: Америка проворачивается против часовой стрелки, а Евразия по часовой. В результате Чукотка может окончательно оторваться «по шву», и в этом случае на Земле может появиться гигантский круговой шов, который будет проходить через Атлантику, Индийский, Тихий и Северный Ледовитый океан (где он пока закрыт). А сама Чукотка продолжит движение «в орбите» Северной Америки.
Спидометр для литосферы
Теория Вегенера возродилась не в последнюю очередь потому, что у учёных появилась возможность с высокой точностью измерять смещение континентов. Сейчас для этого используют спутниковые системы навигации, но есть и другие методы. Все они нужны для построения единой международной системы координат — International Terrestrial Reference Frame (ITRF).
Один из этих методов — радиоинтерферометрия со сверхдлинной базой (РСДБ). Суть её заключается в одновременных наблюдениях далёких квазаров с помощью нескольких радиотелескопов в разных точках Земли. Разница во времени получения сигналов позволяет с высокой точностью определять смещения. Два других способа измерить скорость — лазерные дальномерные наблюдения с помощью спутников и доплеровские измерения. Все эти наблюдения, в том числе с помощью GPS, проводятся на сотнях станций, все эти данные сводятся воедино, и в итоге мы получаем картину дрейфа континентов.
Фото: © wikipedia.org
Например, крымский Симеиз, где находится станция лазерного зондирования, а также спутниковая станция определения координат, «едет» на северо-восток (по азимуту около 65 градусов) со скоростью примерно 26,8 миллиметра в год. Подмосковный Звенигород движется примерно на миллиметр в год быстрее (27,8 миллиметра в год) и курс держит восточнее — около 77 градусов. А, скажем, гавайский вулкан Мауна-Лоа двигается на северо-запад в два раза быстрее — 72,3 миллиметра в год.
Литосферные плиты тоже могут деформироваться, и их части могут «жить своей жизнью», особенно на границах. Хотя масштабы их самостоятельности значительно скромнее. Например, Крым ещё самостоятельно двигается на северо-восток со скоростью 0,9 миллиметра в год (и при этом растёт на 1,8 миллиметра), а Звенигород с той же скоростью двигается куда-то на юго-восток (и вниз — на 0,2 миллиметра в год).
Трубицын говорит, что эта самостоятельность отчасти объясняется «личной историей» разных частей континентов: основные части континентов, платформы, могут быть фрагментами древних литосферных плит, которые «срослись» со своими соседями. Например, Уральский хребет — один из швов. Платформы относительно жёсткие, но части вокруг них могут деформироваться и ехать по своей воле.