что такое резонанс условия его возникновения
Что такое резонанс токов и напряжений
Простое объяснение явления резонанса токов и напряжений. Условия возникновения резонанса и его применение на практике.
Реактивные сопротивления индуктивности и емкости
Индуктивностью называется способность тела накапливать энергию в магнитном поле. Для нее характерно отставание тока от напряжения по фазе. Характерные индуктивные элементы — дросселя, катушки, трансформаторы, электродвигатели.
Емкостью называются элементы, которые накапливают энергию с помощью электрического поля. Для емкостных элементов характерно отставание по фазе напряжения от тока. Емкостные элементы: конденсаторы, варикапы.
Приведены их основные свойства, нюансы в пределах этой статьи во внимание не берутся.
Кроме перечисленных элементов другие также имеют определенную индуктивность и емкость, например в электрических кабелях распределенные по его длине.
Емкость и индуктивность в цепи переменного тока
Если в цепях постоянного тока емкость в общем смысле представляет собой разорванный участок цепи, а индуктивность — проводник, то в переменном конденсаторы и катушки представляют собой реактивный аналог резистора.
Реактивное сопротивление катушки индуктивности определяется по формуле:
Реактивное сопротивление конденсатора:
Здесь w — угловая частота, f — частота в цепи синусоидального тока, L — индуктивность, C — емкость.
Стоит отметить, что при расчете соединенных последовательно реактивных элементов используют формулу:
Обратите внимание, что емкостная составляющая принимается со знаком минус. Если в цепи присутствует еще и активная составляющая (резистор), то складывают по формуле теоремы Пифагора (исходя из векторной диаграммы):
От чего зависит реактивное сопротивление? Реактивные характеристики зависят от величины емкости или индуктивности, а также от частоты переменного тока.
Если посмотреть на формулу реактивной составляющей, то можно заметить, что при определенных значениях емкостной или индуктивной составляющей их разность будет равна нулю, тогда в цепи останется только активное сопротивление. Но это не все особенности такой ситуации.
Резонанс напряжений
Если последовательно с генератором соединить конденсатор и катушку индуктивности, то, при условии равенства их реактивных сопротивлений, возникнет резонанс напряжений. При этом активная часть Z должно быть как можно меньшей.
Стоит отметить, что индуктивность и емкость обладает только реактивными качествами лишь в идеализированных примерах. В реальных же цепях и элементах всегда присутствует активное сопротивление проводников, хоть оно и крайне мало.
При резонансе происходит обмен энергией между дросселем и конденсатором. В идеальных примерах при первоначальном подключении источника энергии (генератора) энергия накапливается в конденсаторе (или дросселе) и после его отключения происходят незатухающие колебания за счет этого обмена.
Напряжения на индуктивности и емкости примерно одинаковы, согласно закону Ома:
Где X — это Xc емкостное или XL индуктивное сопротивление соответственно.
Цепь, состоящую из индуктивности и емкости, называют колебательным контуром. Его частота вычисляется по формуле:
Период колебаний определяется по формуле Томпсона:
Так как реактивное сопротивление зависит от частоты, то сопротивление индуктивности с ростом частоты увеличивается, а у ёмкости падает. Когда сопротивления равны, то общее сопротивление сильно снижается, что отражено на графике:
Основными характеристиками контура являются добротность (Q) и частота. Если рассмотреть контур в качестве четырехполюсника, то его коэффициент передачи после несложных вычислений сводится к добротности:
А напряжение на выводах цепи увеличивается пропорционально коэффициенту передачи (добротности) контура.
При резонансе напряжений, чем выше добротность, тем больше напряжение на элементах контура будет превышать напряжение подключенного генератора. Напряжение может повышаться в десятки и сотни раз. Это отображено на графике:
Потери мощности в контуре обусловлены только наличием активного сопротивления. Энергия из источника питания берется только для поддержания колебаний.
Коэффициент мощности будет равен:
Эта формула показывает, что потери происходят за счет активной мощности:
Резонанс токов
Резонанс токов наблюдается в цепях, где индуктивность и емкость соединены параллельно.
Явление заключается в протекании токов большой величины между конденсатором и катушкой, при нулевом токе в неразветвленной части цепи. Это объясняется тем, что при достижении резонансной частоты общее сопротивление Z возрастает. Или простым языком звучит так – в точке резонанса достигается максимальное общее значение сопротивления Z, после чего одно из сопротивлений увеличивается, а другое снижается в зависимости от того растет или снижается частота. Это наглядно отображено на графике:
В общем, всё аналогично предыдущему явлению, условия возникновения резонанса токов следующие:
Применение на практике
Рассмотрим, какая польза и вред резонанса токов и напряжений. Наибольшую пользу явления резонанса принесли в радиопередающей аппаратуре. Простыми словами, а схеме приемника установлены катушка и конденсатор, подключенные к антенне. С помощью изменения индуктивности (например, перемещая сердечник) или величины емкости (например, воздушным переменным конденсатором) вы настраиваете резонансную частоту. В результате чего напряжение на катушке повышается и приемник ловит определенную радиоволну.
Вред эти явления могут на нести в электротехнике, например, на кабельных линиях. Кабель представляет собой распределенную по длине индуктивность и емкость, если на длинную линию подать напряжение в режиме холостого хода (когда на противоположном от источника питания конце кабеля нагрузка не подключена). Поэтому есть опасность того, что произойдет пробой изоляции, во избежание этого подключается нагрузочный балласт. Также аналогичная ситуация может привести к выходу из строя электронных компонентов, измерительных приборов и другого электрооборудования – это опасные последствия возникновения этого явления.
Заключение
Резонанс напряжений и токов — интересное явление, о котором нужно знать. Он наблюдается только в индуктивно-емкостных цепях. В цепях с большим активным сопротивлениям он не может возникнуть. Подведем итоги, кратко ответив на основные вопросы по этой теме:
В индуктивно-емкостных цепях.
Возникает при условии равенства реактивных сопротивлений. В цепи должно быть минимальное активное сопротивление, а частота источника питания совпадать с резонансной частотой контура.
В обоих случаях по формуле: w=(1/LC)^(1/2)
Увеличив активное сопротивление в цепи или изменив частоту.
Теперь вы знаете, что такое резонанс токов и напряжений, каковы условия его возникновения и варианты применения на практике. Для закрепления материала рекомендуем просмотреть полезное видео по теме:
Резонанс в физике для «чайников»
Мы часто слышим слово резонанс: «общественный резонанс», «событие, вызвавшее резонанс», «резонансная частота». Вполне привычные и обыденные фразы. Но можете ли вы точно сказать, что такое резонанс?
Если ответ отскочил у вас от зубов, мы вами по-настоящему гордимся! Ну а если тема «резонанс в физике» вызывает вопросы, то советуем прочесть нашу статью, где мы подробно, понятно и кратко расскажем о таком явлении как резонанс.
Прежде, чем говорить о резонансе, нужно разобраться с тем, что такое колебания и их частота.
Колебания и частота
Колебания – процесс изменения состояний системы, повторяющийся во времени и происходящий вокруг точки равновесия.
Резонанс может наступить только там, где есть колебания. И не важно, какие это колебания – колебания электрического напряжения, звуковые колебания, или просто механические колебания.
На рисунке ниже опишем, какими могут быть колебания.
Виды колебаний
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Когда мы раскачиваем качели, периодически раскачивая систему с определенной силой (в данном случае качели – это колебательная система), она совершает вынужденные колебания. Увеличения амплитуды колебаний можно добиться, если воздействовать на эту систему определенным образом.
Толкая качели в определенный момент и с определенной периодичностью можно довольно сильно раскачать их, прилагая совсем немного усилий.Это и будет резонанс: частота наших воздействий совпадает с частотой колебаний качелей и амплитуда колебаний увеличивается.
Резонанс на качелях
Суть явления резонанса
Резонанс в физике – это частотно-избирательный отклик колебательной системы на периодическое внешнее воздействие, который проявляется в резком увеличении амплитуды стационарных колебаний при совпадении частоты внешнего воздействия с определёнными значениями, характерными для данной системы.
Суть явления резонанса в физике состоит в том, что амплитуда колебаний резко возрастает при совпадении частоты воздействия на систему с собственной частотой системы.
Египетский мост в Санкт-Петербурге, разрушившийся из-за резонанса.
Примеры резонанса
Явление резонанса наблюдается в самых разных физических процессах. Например, звуковой резонанс. Возьмём гитару. Само по себе звучание струн гитары будет тихим и почти неслышным. Однако струны неспроста устанавливают над корпусом – резонатором. Попав внутрь корпуса, звук от колебаний струны усиливается, а тот, кто держит гитару, может почувствовать, как она начинает слегка «трястись», вибрировать от ударов по струнам. Иными словами, резонировать.
Действие микроволновки также основано на резонансе. В данном случае резонанс происходит в молекулах воды, которые поглощают излучение СВЧ (2,450 ГГц). Как следствие, молекулы входят в резонанс, колеблются сильнее, а температура пищи повышается.
Резонатор гитары
Резонанс может быть как полезным, так и приносящим вред явлением. А прочтение статьи, как и помощь нашего студенческого сервиса в трудных учебных ситуациях, принесет вам только пользу. Если в ходе выполнения курсовой вам понадобится разобраться с физикой магнитного резонанса, можете смело обращаться в нашу компанию за быстрой и квалифицированной помощью.
Напоследок предлагаем посмотреть видео на тему «резонанс» и убедиться в том, что наука может быть увлекательной и интересной. Наш сервис поможет с любой работой: от реферата до курсовой по физике колебаний или эссе по литературе.
Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.
Что такое резонанс, в чем его польза и опасность
Резонансом физики называют особое явление, которое наблюдается во всех телах твердой, жидкой и газообразной формы, независимо от строения их кристаллической решетки. Существует также электромагнитный резонанс. В целом, резонанс это резкое и многократное увеличение частоты колебаний в случае совпадения их частоты с внешними воздействующими силами. Самый частый и яркий пример резонанс – разбивание бокала стакана с водой голосом. Подобное явление существует и в электродинамике и электромагнитных полях.
Подробнее об этом явлении будет рассказано в текущей статье, описано как он возникает и как это физическое явление можно использовать на практике, а чем оно может быть опасно. Резонанс – это сложное физическое явление, для объяснения которого, в статью добавлены несколько роликов.
Суть явления резонанса
Резонанс в физике – это частотно-избирательный отклик колебательной системы на периодическое внешнее воздействие, который проявляется в резком увеличении амплитуды стационарных колебаний при совпадении частоты внешнего воздействия с определёнными значениями, характерными для данной системы. Суть явления резонанса в физике состоит в том, что амплитуда колебаний резко возрастает при совпадении частоты воздействия на систему с собственной частотой системы.
Известны случаи, когда мост, по которому маршировали солдаты, входил в резонанс от строевого шага, раскачивался и разрушался. Кстати, именно поэтому сейчас при переходе через мост солдатам положено идти вольным шагом, а не в ногу.
Примеры резонанса
Явление резонанса наблюдается в самых разных физических процессах. Например, звуковой резонанс. Возьмём гитару. Само по себе звучание струн гитары будет тихим и почти неслышным. Однако струны неспроста устанавливают над корпусом – резонатором. Попав внутрь корпуса, звук от колебаний струны усиливается, а тот, кто держит гитару, может почувствовать, как она начинает слегка «трястись», вибрировать от ударов по струнам. Иными словами, резонировать. Еще один пример наблюдения резонанса, с которым мы сталкиваемся – круги на воде. Если кинуть в воду два камня, попутные волны от них встретятся и увеличатся.
Что такое ЭПР
Спектроскопия электронного парамагнитного резонанса (ЭПР) – широко используется в исследованиях физико-химических и биологических явлений. ЭПР позволяет изучать механизмы разнообразных биоэнергетических процессов, связанных с переносом электронов и энергии, биологические повреждения при облучении, решать некоторые структурные задачи. Даже кратко упомянуть все области применения ЭПР не представляется возможным, поскольку это один из универсальных спектральных методов.
Необходимым условием регистрации электронного парамагнитного резонанса является наличие у исследуемых молекул собственного магнитного момента, который складывается из спиновой и орбитальной компонент. Это означает, что такие (парамагнитные) молекулы должны содержать один или более неспаренных электронов. Помещение парамагнитной молекулы в постоянное магнитное поле вызывает появление дополнительных уровней энергии, переходы между которыми, как и в оптической спектроскопии, можно вызвать наложением второго – электромагнитного – поля.
В методе ЭПР измеряется поглощение мощности этого электромагнитного поля в образце. Регистрация изменения поглощения от величины наложенного магнитного поля дает в результате спектр ЭПР, характерный для исследуемых молекул, их динамики и взаимодействий.
Предлагаемая задача предусматривает подготовку образцов и самостоятельное измерение сигналов ЭПР растворов, содержащих молекулы т.н. спиновых меток (в данном случае стеариновой кислоты с пришитой к ней парамагнитной группой). Спин-метки широко используются в различных молекулярно-биологических исследованиях, в частности, для измерения микровязкости, поскольку форма их спектров ЭПР меняется в зависимости от вязкости молекулярного окружения. В задаче будет предложено измерение спектров спин-меток в условиях различной вязкости окружения и последующим простым расчетом, с использованием современного исследовательского спектрометра EMX-6 (Брукер, Гемания).
Какую информацию можно получить от EPR
Только метод электронного парамагнитного резонанса или ЭПР однозначно обнаруживает неспаренные электроны. Другие методы, такие как флуоресценция, могут служить косвенным свидетельством наличия свободных радикалов, но только один ЭПР дает неопровержимые доказательства их присутствия. Кроме того, ЭПР обладает уникальной способностью идентифицировать обнаруженные парамагнитные центры. Образцы EPR очень чувствительны к окружающей их среде, поэтому техника проливает свет на молекулярную структуру вблизи неспаренного электрона.
Иногда спектры ЭПР демонстрируют сильные изменения формы линий, дающие представление о динамических процессах, таких как движение молукул или текучесть. Метод ЭПР спин улавливания, который обнаруживает кратковременные реактивные свободные радикалы, очень хорошо иллюстрирует, как можно использовать обнаружение и идентификацию радикалов. Этот метод жизненно важен в биомедицинской области для выяснения роли свободных радикалов во многих патологиях, при определении токсичности.
ESEEM и ENDOR – это два метода ЭПР, которые измеряют взаимодействие электрона с окружающими ядрами. Они являются чрезвычайно мощными методами исследования структуры «активных сайтов» в металлопротеинах. Другими важным приложением для количественного ЭПР является радиационная дозиметрия, измерения дозы для стерилизации медицинских товаров и продуктов питания, обнаружение облученных продуктов и датировки ранних человеческих артефактов.
Как работает ЭПР?
ЭПР – метод магнитного резонанса, очень похожий на ЯМР (ядерный магнитный резонанс). Однако вместо измерения ядерных переходов в нашем образце мы обнаруживаем переходы неспаренных электронов в приложенном магнитном поле. Как и протон, электрон имеет «спин», что дает ему магнитное свойство, известное как магнитный момент. Магнитный момент заставляет электрон вести себя как крошечный магнит на стержне, подобный тому, который вы можете надеть на свой холодильник.
Когда мы подаем внешнее магнитное поле, парамагнитные электроны могут либо ориентироваться в направлении, параллельном, либо антипараллельном направлению магнитного поля. Это создает два разных уровня энергии для неспаренных электронов и позволяет измерять их, поскольку они движутся между двумя уровнями. Вначале на более низком энергетическом уровне (т.е. параллельно полю) будет больше электронов, чем на верхнем уровне (антипараллельный). Мы используем фиксированную частоту СВЧ-излучения для возбуждения и перехода некоторых электронов на нижнем энергетическом уровне на верхний энергетический уровень.
Для того чтобы этот переход произошел, мы должны также приложить внешнее магнитное поле с определенной силой (индукцией), так что разделение энергетического уровня между нижним и верхним состоянием точно соответствует нашей частоте СВЧ. На самом деле, чтобы достичь этого условия, мы «протягиваем» поле внешнего магнита, расположив исследуемый образец внутри спектрометра при фиксированной частоте СВЧ излучения. Условие, когда магнитное поле и частота СВЧ согласованы для создания резонанса (или поглощения энергии СВЧ излучения), известны как условие резонанса.
Суть явления электронного парамагнитного резонанса заключается в резонансном поглощении электромагнитного излучения неспаренными электронами. Наличие спинового момента у отрицательно заряженного электрона приводит к возникновению электронного магнитного момента µe, который пропорционален спину S и определяется выражением:
где g – безразмерная постоянная (так называемый g-фактор электрона) – отношение магнитного момента электрона к его механическому моменту, равное для свободного электрона 2,002, β — электронный магнетон Бора, β =9,27400915(26)·10-24 Дж/Тл.
Энергия взаимодействия между электронным магнитным моментом и внешним магнитным полем описывается следующим выражением:
где SB – проекция спина на направление магнитного поля.
Рассмотрим случай с одним неспаренным электроном. При наложении постоянного внешнего магнитного поля в соответствии с эффектом Зеемана возникнут два уровня с магнитными квантовыми числами ms=±½ с расщеплением ∆E=gβH между ними. Величина расщепления прямо пропорциональна напряженности приложенного магнитного поля и по абсолютной величине в 100-1000 раз меньше, чем энергия теплового движения kT. Математически отношение заселенностей уровней с ms=+½ и ms=-½, согласно распределению Больцмана, выражается следующей формулой:
N=1/2/N-1/2 = e-∆E/kT = e-gβH/kT (3)
Если на электрон, помещенный в постоянное магнитное поле воздействовать электромагнитным излучением СВЧ диапазона с плоскостью поляризации магнитного поля B1 перпендикулярной плоскости постоянного поля, то при выполнении условия:
индуцируются резонансные переходы между двумя уровнями, при которых электрон меняет свое спиновое состояние (иначе говоря, спин переворачивается). Поскольку уровни отличаются заселенностью, то суммарно этот эффект будет выражаться в виде поглощения энергии электромагнитного поля системой. Основной задачей опыта при наблюдении явления ЭПР является точная регистрация поглощаемой электромагнитной энергии.
Структура и свойства спектров ЭПР
Поведение магнитных моментов в магнитном поле зависит от различных взаимодействий неспаренных электронов, как между собой, так и с ближайшим окружением. Важнейшими из них считаются спин-спиновые и спин-орбитальные взаимодействия, взаимодействия между неспаренными электронами и ядрами, на которых они локализуются (сверхтонкие взаимодействия), взаимодействия с электростатическим потенциалом, создаваемым ионами ближайшего окружения в месте локализации неспаренных электронов и другие. Большинство перечисленных взаимодействий приводит к закономерному расщеплению линий. В общем случае спектр ЭПР парамагнитного центра является многокомпонентным.
Основными характеристиками ЭПР-спектра парамагнитного центра (ПЦ) являются:
Суперсверхтонкая структура (ССТС). Число линий ССТС зависит от числа nл эквивалентных лигандов, с которыми взаимодействует неспаренная спиновая плотность и величины ядерного спина Iл их изотопов. Характерным признаком таких линий также является распределение их интегральных интенсивностей, которое в случае Iл=1/2 подчиняется закону биномиального распределения с показателем степени nл. Расстояние между линиями ССТС зависит от величины магнитного момента ядер, константы сверхтонкого взаимодействия и степени локализации неспаренных электронов на этих ядрах.
Спектроскопические характеристики линии
Особенностью спектров ЭПР является форма их записи. По многим причинам спектр ЭПР записывается не в виде линий поглощения, а как производная от этих линий. Поэтому, в ЭПР-спектроскопии принята несколько иная, отличная от общепринятой, терминология для обозначения параметров линий.
Линия ЭПР поглощения и ее первая производная: 1 – гауссова форма; 2 – лоренцева форма.
Теоретическая и практическая значимость
Электронный парамагнитный резонанс (ЭПР), резонансное поглощение электромагнитной энергии в сантиметровом или миллиметровом диапазоне длин волн веществами, содержащими парамагнитные частицы. ЭПР — один из методов радиоспектроскопии. Парамагнитными частицами могут быть атомы и молекулы, как правило, с нечётным числом электронов (например, атомы азота и водорода, молекулы NO); радикалы свободные (например, CH3); ионы с частично заполненными внутренними электронными оболочками (например, ноны переходных элементов); центры окраски в кристаллах; примесные атомы (например, доноры в полупроводниках); электроны проводимости в металлах и полупроводниках.
ЭПР открыт Е. К. Завойским в 1944. Начиная с 1922 в ряде работ высказывались соображения о возможности существования ЭПР. Попытка экспериментально обнаружить ЭПР была предпринята в середине 30-х гг. нидерландским физиком К. Гортером с сотрудниками. Однако ЭПР удалось наблюдать только благодаря радиоспектроскопическим методам, разработанным Завойским. ЭПР — частный случай магнитного резонанса. Его описание в рамках классической физики состоит в следующем: во внешнем постоянном магнитном поле Н вектор магнитного момента m прецессирует вокруг направления магнитного поля Н с частотой v, определяемой соотношением
Здесь g — гиромагнитное отношение. Угол прецессии q (угол между векторами Н и m) при этом остаётся постоянным. Если систему поместить в магнитное поле H1^H, вращающееся вокруг Н с частотой v, то проекция вектора m на направление поля Н будет изменяться с частотой v1 = gH1/2p. Это изменение проекции m с частотой v1 под действием радиочастотного поля H1 (рис. 1) имеет резонансный характер и обусловливает ЭПР. При исследовании ЭПР обычно используют линейно поляризованное переменное магнитное поле, которое можно представить в виде суммы двух полей, вращающихся в противоположные стороны с частотой v. Одна из компонент, совпадающая по направлению вращения с прецессией, вызывает изменение проекции магнитного момента m на Н.
Приведённое классическое рассмотрение удобно для анализа релаксационных процессов (см. ниже). Для описания же спектров ЭПР необходим квантовый подход. Поглощение электромагнитной энергии происходит в том случае, когда квант электромагнитной энергии hv (h — Планка постоянная) равен разности энергий DE между магнитными (зеемановскими) подуровнями, образующимися в результате расщепления уровней энергии парамагнитной частицы в постоянном магнитном поле Н.
Если магнитный момент парамагнитной частицы обусловлен только спином электрона S = 1 /2, то m = gsbMs, где gs = 2,0023 — фактор спектроскопического расщепления для свободного электрона, b — магнетон Бора, a Ms — магнитное квантовое число, принимающее значения ± 1 /2. Во внешнем статическом магнитном поле Н эти электроны парамагнитных частиц разбиваются на 2 группы с энергиями — gsbH/2 и + gsbH/2. Между этими группами уровней возможны квантовые переходы, которые возбуждаются полем H1^H.
При переходе с нижнего уровня на верхний электромагнитная энергия поглощается, а при обратном переходе излучается. Вероятность этих процессов одинакова, но т. к. в условиях равновесия населённость нижнего уровня больше, чем верхнего, происходит поглощение энергии. Если каким-либо искусственным образом создать инверсию населённостей, то под действием электромагнитного поля система будет излучать энергию. Этот принцип положен в основу работы парамагнитных квантовых усилителей.
Обычно парамагнетизм частиц обусловлен суммарным вкладом орбитального и спинового моментов нескольких электронов; к тому же в кристаллах на эти электроны действуют сильные электрические поля окружающих ионов (лигандов). Поэтому описание строения спектров ЭПР в этом случае — сложная задача. Для расчёта спектров используют полуэмпирический метод, предложенный А. Абрахамом (Франция) и Х. М. Л. Прайсом (США) в 1951, называемый методом спинового гамильтониана. При ЭПР происходят переходы между близколежащими уровнями. Расчёт уровней энергии в магнитном поле упрощается, если ввести эффективный спин S, абсолютная величина которого определяется числом n близколежащих уровней: n =2S + 1.
Энергии вычисляют в предположении, что магнитный момент частицы обусловлен величиной S. Тогда энергия уровня E =gbMsH, где Ms принимает (2S + 1) значений: S, (S — 1),…… — (S — 1), — S. Величина g-фактора может существенно отличаться от величины g-фактора свободного электрона gs. Между уровнями, отличающимися по Ms на величину DMs = ± 1, возможны дипольные переходы, и условия резонанса по-прежнему будут описываться формулой с gs = g. Если S > 1 /2, то уровни энергии с разными |Ms| могут расщепиться при Н = 0, и в спектре ЭПР появляется несколько линий поглощения (тонкая структура спектра ЭПР).
Парамагнитная релаксация. Ширина линий. Релаксационные процессы, восстанавливающие равновесие в системе электронных спинов, нарушенное в результате поглощения электромагнитной энергии, характеризуются временами релаксации T1 и T2. Ширина линий поглощения Dv связана с временами релаксации соотношением:
В классическом рассмотрении времена T1 и T2 называются продольным и поперечным временами релаксации, т. к. они определяют время восстановления равновесного положения продольной и поперечной компонент вектора намагниченности. Т. к. восстановление равновесной величины поперечной компоненты намагниченности происходит благодаря взаимодействию между магнитными моментами парамагнитных частиц (спин-спиновое взаимодействие), то T1 называется также временем спин-спиновой релаксации.
Восстановление продольной компоненты обусловлено взаимодействием магнитных моментов парамагнитных частиц с колебаниями кристаллической решётки (спин-решёточное взаимодействие). Поэтому время T1 называется также временем спин-решёточной релаксации. Оно характеризует скорость восстановления равновесия между спиновой системой и колебаниями решетки.
Спин-спиновое взаимодействие состоит из двух составляющих: диполь-дипольного и обменного взаимодействий. Локальное поле, действующее на парамагнитную частицу, складывается из внешнего поля Н и поля НД, создаваемого диполями (магнитными моментами) соседних парамагнитных частиц. Поле НД изменяется от точки к точке, т. к. изменяется набор соседних парамагнитных частиц и направление их магнитных моментов, что приводит к уширению линии ЭПР. Обменное взаимодействие, наоборот, стремится упорядочить направления спинов и, следовательно, уменьшает «хаотичность» ориентаций магнитных моментов парамагнитных частиц. Поэтому оно приводит к «обменному сужению» линии ЭПР.
Движения ядер парамагнитных центров создают флуктуации электрического поля, влияющие на орбитальное движение электронов, что, в свою очередь, приводит к появлению флуктуаций локального магнитного поля, а следовательно, и к уширению линий ЭПР. Величина спин-решёточного взаимодействия уменьшается при понижении температуры, т. к. уменьшается амплитуда тепловых колебаний решётки ядер. Величина спин-спинового взаимодействия от температуры практически не зависит. Поэтому для ионов переходных металлов с большим вкладом орбитального момента линию ЭПР удаётся наблюдать только при низких температурах.
Для измерения поглощения используют радиоспектрометры (спектрометры ЭПР), в которых при постоянной частоте и медленном изменении внешнего магнитного поля регистрируется изменение поглощаемой в образце мощности. В спектрометрах ЭПР прямого усиления высокочастотные колебания от клистрона по волноводному тракту подаются в объёмный резонатор (полость размером
l), помещенный между полюсами электромагнита.
Прошедшие через резонатор или отражённые от него электромагнитные волны попадают на кристаллический детектор. Изменение поглощаемой в образце мощности регистрируется по изменению тока детектора. Для повышения чувствительности спектрометра внешнее магнитное поле модулируют с частотой 30 гц — 1 Мгц. При наличии в образце поглощения прошедшие или отражённые от резонатора СВЧ-волны также оказываются промодулированными. Промодулированный сигнал усиливается, детектируется и подаётся на регистрирующее устройство (осциллограф или самописец).
При этом записываемый сигнал имеет форму производной от кривой поглощения. Чувствительность спектрометра ЭПР определяется уровнем тепловых шумов усилителя. В супергетеродинных спектрометрах на детектор подаётся мощность от дополнительного клистрона. Частота колебаний, генерируемых этим клистроном, отличается от частоты сигнального клистрона. Сигнал с детектора усиливается на разностной частоте 30—100 Мгц.
Наиболее хорошо изучены спектры ЭПР ионов переходных металлов. Для того чтобы устранить уширение линии, обусловленное дипольным взаимодействием с соседними парамагнитными ионами, измерения проводят на монокристаллах, являющихся диамагнитными диэлектриками, куда в качестве примесей (0,001%—0,1%) вводят парамагнитные ионы. Влияние окружающих ионов на парамагнитный ион рассматривают как действие точечных электрических зарядов. ЭПР наблюдают на заселённых нижних энергетических уровнях парамагнитного иона, получающихся в результате расщепления основного уровня электрическим полем окружающих зарядов.
В случае ионов редкоземельных элементов кристаллическое поле оказывается слабым по сравнению с взаимодействием электронов иона, т. к. парамагнетизм этих ионов обусловлен глубоко лежащими 4 f-электронами. Момент количества движения иона определяется суммой орбитального и спинового моментов основного уровня. В кристаллическом поле уровни с разной абсолютной величиной проекции полного магнитного момента не эквивалентны по энергии.
Для ионов группы Fe, парамагнетизм которых обусловлен 3 d-электронами, кристаллическое поле оказывается сильнее спин-орбитального взаимодействия, определяющего энергетический спектр свободного иона. В результате максимальная величина проекции орбитального момента либо уменьшается, либо становится равной нулю. Принято говорить, что происходит частичное или полное «замораживание» орбитального момента.