что такое ракетное топливо
Виды ракетного топлива военного назначения
Исторический экскурс
После изобретения в конце XIX века бездымного пороха на его основе было разработано однокомпонентное баллиститное топливо, состоящее из твердого раствора нитроцеллюлозы (горючего) в нитроглицерине (окислителе). Баллиститное топливо обладает кратно большей энергетикой по сравнению с дымным порохом, имеет высокую механическую прочность, хорошо формуется, длительно сохраняет химическую стабильность при хранении, обладает низкой себестоимостью. Эти качества предопределили широкое использование баллиститного топлива в наиболее массовых боеприпасах, оснащенных РДТТ – реактивных снарядах и гранатах.
Одновременно с баллиститным и жидким ракетным топливом развивались многокомпонентные смесевые твердые топлива, как наиболее приспособленные к применению в военных целях в связи с их широким температурным диапазоном эксплуатации, устранением опасности разлива компонентов, меньшей стоимости твердотопливных ракетных двигателей за счет отсутствия в их конструкции трубопроводов, клапанов и насосов, большей тягой на единицу веса.
Основные характеристики ракетных топлив
Кроме агрегатного состояния своих компонентов, ракетные топлива характеризуются следующими показателями:
— удельный импульс тяги;
— термическая стабильность;
— химическая стабильность;
— биологическая токсичность;
— плотность;
— дымность.
Удельный импульс тяги ракетных топлив зависит от давления и температуры в камере сгорания двигателя, а также молекулярного состава продуктов сгорания. Кроме того, удельный импульс зависит от степени расширения сопла двигателя, но это больше относится к внешней среде применения ракетной техники (воздушная атмосфера или космическое пространство).
Повышенное давление обеспечивается с помощью использования конструкционных материалов с высокой прочностью (стальных сплавов для ЖРД и органопластиков для РДТТ). В этом аспекте ЖРД опережают РДТТ по причине компактности своего двигательного агрегата по сравнению с корпусом твердотопливного двигателя, являющегося одной большой камерой сгорания.
Высокая температура продуктов сгорания достигается с помощью добавления в твердое топливо металлического алюминия или химического соединения – гидрида алюминия. Жидкое топливо может использовать подобные добавки только в случае его загущения специальными добавками. Теплозащита ЖРД обеспечивается с помощью охлаждения топливом, теплозащита РДТТ – с помощью прочного скрепления топливной шашки со стенками двигателя и применения выгорающих вкладышей из углерод-углеродного композита в критическом сечении сопла.
Молекулярный состав продуктов сгорания/разложения топлива влияет на скорость истечения и их агрегатное состояние на срезе сопла. Чем меньше вес молекул, тем больше скорость истечения: наиболее предпочтительными продуктами сгорания являются молекулы воды, за ними следуют молекулы азота, углекислого газа, окислы хлора и других галогенов; наименее предпочтительным является окисел алюминия, который конденсируется в сопле двигателя до твердого состояния, снижая тем самым объем расширяющихся газов. Кроме того, фракция окисла алюминия вынуждает применять сопла конической формы из-за абразивного износа наиболее эффективных сопел Лаваля с параболической поверхностью.
В настоящее время в военной сфере применяется исключительно высококипящее жидкое топливо на основе тетраоксида азота (АТ, окислитель) и несимметричного диметилгидразина (НДМГ, горючее). Термическая стабильность этой топливной пары определяется температурой кипения АТ (+21°C), что ограничивает применение данного топлива ракетами, находящимися в термостатированных условиях ракетных шахт МБР и БРПЛ. В связи с агрессивностью компонентов технологией их производства и эксплуатации баков ракет владела/владеет только одна страна в мире — СССР/РФ (МБР «Воевода» и «Сармат», БРПЛ «Синева» и «Лайнер»). В порядке исключения АТ+НДМГ применяется в качестве топлива авиационных крылатых ракет Х-22 «Буря», но из-за проблем с наземной эксплуатацией Х-22 и их следующее поколение Х-32 планируется заменить крылатыми ракетами «Циркон» с реактивным двигателем, использующими керосин в качестве горючего.
Термическая стабильность твердых топлив в основном определяется соответствующим свойством растворителя и полимерного связующего. В составе баллиститных топлив растворителем является нитроглицерин, который в твердом растворе с нитроцеллюлозой имеет температурный диапазон эксплуатации от минус до плюс 50°C. В смесевых топливах в качестве полимерного связующего используются различные синтетические каучуки с тем же температурным диапазоном эксплуатации. Однако термическая стабильность основных компонентов твердого топлива (динитрамид аммония +97°C, гидрид алюминия +105°C, нитроцеллюлоза +160°C, перхлорат аммония и октоген +200°C) значительно превышает аналогичное свойство известных связующих, в связи с чем актуальным является поиск их новых составов.
Наиболее химически стабильной является топливная пара АТ+НДМГ, поскольку для неё разработана уникальная отечественная технология ампулизированного хранения в алюминиевых баках под небольшим избыточным давлением азота в течение практически неограниченного времени. Все твердые топлива со временем химически деградируют из-за самопроизвольного разложения полимеров и их технологических растворителей, после чего олигомеры вступают в химические реакции с другими, более стойкими компонентами топлива. Поэтому шашки РДТТ нуждаются в регулярной замене.
Биологически токсичным компонентом ракетных топлив является НДМГ, который поражает центральную нервную систему, слизистые оболочки глаз и пищеварительного тракта человека, провоцирует раковые заболевания. В связи с этим работа с НДМГ ведется в изолирующих костюмах химзащиты с применением автономных дыхательных аппаратов.
Величина плотности топлива прямо влияет на массу топливных баков ЖРД и корпуса РДТТ: чем больше плотность, тем меньше паразитная масса ракеты. Наименьшая плотность у топливной пары водород+кислород — 0,34 г/куб. см, у пары керосин+кислород плотность составляет 1,09 г/куб. см, АТ+НДМГ – 1,19 г/куб. см, нитроцеллюлоза+нитроглицерин – 1,62 г/куб. см, алюминий/гидрид алюминия + перхлорат/динитрамид аммония – 1,7 г/куб.см, октоген+перхлорат аммония – 1,9 г/куб. см. При этом надо учитывать, что у РДТТ осевого горения плотность топливного заряда примерно в два раза меньше плотности топлива из-за звездообразного сечения канала горения, применяемого с целью поддержания постоянного давления в камере сгорания вне зависимости от степени выгорания топлива. То же самое относится к баллиститным топливам, которые формируются в виде набора лент или шашек для сокращения времени горения и дистанции разгона реактивных снарядов и ракет. В отличии от них плотность топливного заряда в РДТТ торцевого горения на основе октогена совпадает с указанной для него максимальной плотностью.
Последним из основных характеристик ракетных топлив является дымность продуктов сгорания, визуально демаскирующих полет ракет и реактивных снарядов. Указанный признак присущ твердым топливам, содержащим в своем составе алюминий, окислы которого конденсируются до твердого состояния в процессе расширения в сопле ракетного двигателя. Поэтому указанные топлива применяются в РДТТ баллистических ракет, активный участок траектории которых находится вне зоны прямой видимости противника. Авиационные ракеты снаряжаются топливом на основе октогена и перхлората аммония, реактивные снаряды, гранаты и противотанковые ракеты – баллиститным топливом.
Энергетика ракетных топлив
Для сравнения энергетических возможностей различных видов ракетного топлива необходимо задать для них сопоставимые условия горения в виде давления в камере сгорания и степени расширения сопла ракетного двигателя – например, 150 атмосфер и 300-кратное расширение. Тогда для топливных пар/троек удельный импульс составит:
кислород+водород – 4,4 км/с;
кислород+керосин – 3,4 км/с;
АТ+НДМГ – 3,3 км/с;
динитрамид аммония + гидрид водорода + октоген – 3,2 км/с;
перхлорат аммония + алюминий + октоген – 3,1 км/с;
перхлорат аммония + октоген – 2,9 км/с;
нитроцеллюлоза + нитроглицерин – 2,5 км/с.
Твердое топливо на основе динитрамида аммония является отечественной разработкой конца 1980-х годов, применялось в качестве топлива второй и третьей ступеней ракет РТ-23 УТТХ и Р-39 и до сих пор не превзойдено по энергетическим характеристикам лучшими образцами зарубежного топлива на основе перхлората аммония, применяемыми в ракетах Minuteman-3 и Trident-2. Динитрамид аммония является взрывчатым веществом, детонирующим даже от светового излучения, поэтому его производство ведется в помещениях, освещаемых маломощными лампами красного света. Технологические сложности не позволили освоить процесс изготовления ракетного топлива на его основе нигде в мире, кроме как в СССР. Другое дело, что советская технология в плановом порядке была реализована только на Павлоградском химическом заводе, расположенном в Днепропетровской области УССР, и была потеряна в 1990-е годы после перепрофилирования завода на выпуск бытовой химии. Однако, судя по тактико-техническим характеристикам перспективных образцов вооружения типа РС-26 «Рубеж», технология была восстановлена в России в 2010-х годах.
В качестве примера высокоэффективной композиции можно привести состав твердого ракетного топлива из российского патента № 2241693, принадлежащего ФГУП «Пермский завод им. С.М. Кирова»:
окислитель – динитрамид аммония, 58%;
горючее – гидрид алюминия, 27%;
пластификатор – нитроизобутилтринитратглицерин, 11,25%;
связующее — полибутадиеннитрильный каучук, 2,25%;
отвердитель – сера, 1,49%;
стабилизатор горения — ультрадисперсный алюминий, 0,01%;
добавки – сажа, лецитин и т.д.
Перспективы развития ракетных топлив
Основными направлениями развития жидких ракетных топлив являются (в порядке очередности реализации):
— использование переохлажденного кислорода с целью увеличения плотности окислителя;
— переход к топливной паре кислород+метан, горючий компонент которой обладает на 15% большей энергетикой и в 6 раз лучшей теплоемкостью, чем керосин с учетом того, что алюминиевые баки при температуре жидкого метана упрочняются;
— добавление озона в состав кислорода на уровне 24% с целью повышения температуры кипения и энергетики окислителя (большая доля озона является взрывоопасной);
— использование тиксотропного (загущенного) топлива, компоненты которого содержат взвеси из пентаборана, пентафторида, металлов или их гидридов.
Переохлажденный кислород уже используется в ракете-носителе Falcon 9, ЖРД на топливной паре кислород+метан разрабатываются в России и США.
Главным направлением развития твердых ракетных топлив является переход на активные связующие, содержащие в составе своих молекул кислород, улучшающий окислительный баланс твердого топлива в целом. Современным отечественным образцом такого связующего является полимерный состав «Ника-М», включающий циклические группы из двуокиси динитрила и бутилендиола полиэфируретана, разработки ГосНИИ «Кристалл» (г. Дзержинск).
Другим перспективным направлением является расширение номенклатуры используемых нитраминных взрывчатых веществ, обладающих большим кислородным балансом по сравнению с октогеном (минус 22%). В первую очередь это гексанитрогексаазаизовюрцитан (Cl-20, кислородный баланс минус 10%) и октанитрокубан (нулевой кислородный баланс), перспективы применения которых зависят от снижения стоимости их производства – в настоящее время Cl-20 на порядок дороже октогена, октонитрокубан на порядок дороже Cl-20.
Кроме совершенствования известных типов компонентов, исследования также ведутся в направлении создания полимерных соединений, молекулы которых состоят исключительно из атомов азота, соединенных между собой одинарными связями. В результате разложения полимерного соединения под действием нагрева азот образует простые молекулы из двух атомов, соединенных тройной связью. Выделяемая при этом энергия двукратно превышает энергию нитраминных ВВ. Впервые азотные соединения с алмазоподобной кристаллической решеткой были получены российскими и немецкими учеными в 2009 году в ходе экспериментов на совместной опытной установке под действием давления в 1 млн. атмосфер и температуры в 1725°C. В настоящее время ведутся работы по достижению метастабильного состояния азотных полимеров при обычных давлении и температуре.
Перспективными кислородсодержащими химическими соединениями являются высшие окислы азота. Известный оксид азота V (плоская молекула которого состоит из двух атомов азота и пяти атомов кислорода) не представляет практической ценности в виде компонента твердого топлива в связи с низкой температурой его плавления (32°C). Исследования в этом направлении ведутся путем поиска метода синтеза оксида азота VI (гексаоксид тетраазота), каркасная молекула которого имеет форму тетраэдра, в вершинах которого расположены четыре атома азота, связанных с шестью атомами кислорода, расположенными на ребрах тетраэдра. Полная замкнутость межатомных связей в молекуле оксида азота VI дает возможность прогнозировать для него повышенную термическую стабильность, сходную с уротропином. Кислородный баланс оксида азота VI (плюс 63%) позволяет существенно повысить удельный вес в составе твердого ракетного топлива таких высокоэнергетических компонентов, как металлы, гидриды металлов, нитрамины и углеводородные полимеры.
/мысли пилота Петра Хрумова-Ника Римера в романе С.Лукьяненко «Звездная Тень»
При обсуждении статьи «Сага о ракетных топливах» был затронут довольно болезненный вопрос о безопасности жидких ракетных топлив, а также продуктов их сгорания, ну и немного про заправку РН. Однозначно не являюсь специалистом в этой области, но «за экологию» обидно.
Вместо предисловия предлагаю ознакомиться с публикацией «Плата за доступ в космическое пространство».
Экологическая безопасность ракетных пусков, испытаний и отработки двигательных установок (ДУ) летательных аппаратов (ЛА) в основном определяется применяемыми компонентами ракетного топлива (КРТ). Многие КРТ отличаются высокой химической активностью, токсичностью, взрыво- и пожароопасностью.
С учетом токсичности КРТ делятся на четыре класса опасности (по мере убывания опасности):
Водород жидкий, СПГ (метан СН4) и кислород жидкий не токсичны, но при эксплуатации систем с указанными КРТ необходимо учитывать их пожаро- и взрывоопасность (особенно водорода в смесях с кислородом и воздухом).
Санитарно-гигиенические нормы КРТ приведены в таблице:
Большинство горючих взрывоопасны и по ГОСТ 12.1.011 они отнесены к категории взрывоопасности IIА.
Продукты полного и частичного окисления КРТ в элементах двигателя и продукты их сгорания, как правило, содержат вредные соединения: окись углерода, углекислый газ, окислы азота (NOx) и др.
В двигателях и энергоустановках ракет большая часть подводимого к рабочему телу тепла (60. 70 %) выбрасывается в окружающую среду с реактивной струёй РД или охладителем (в случаях работы РД на испытательных стендах применяется вода). Выброс в атмосферу нагретых отработавших газов может влиять на местный микроклимат.
Фильм об РД-170, его производстве и испытаниях.
Недавний репортаж с НПО «Энергомаш»: видны две огромные вытяжные трубы испытательных стендов, сопутствующие строения и окрестности Химок:
На другой стороне крыши: можно увидеть сферические емкости для кислорода, цилиндрические — для азота, керосиновые цистерны чуть правее, в кадр не попали. В советское время на этих стендах испытывали двигатели для «Протона».
Совсем рядом с Москвой.
В настоящее время множество «гражданских» ЖРД используют углеводородные горючие. Их продукты полного сгорания (водяные пары Н2О и диоксид углерода СО2) условно не считаются химическими загрязнителями окружающей среды.
Все остальные компоненты являются либо дымообразующими, либо токсичными веществами, оказывающими вредное влияние на человека и окружающую среду.
По сравнению с тепловыми двигателями других типов, токсичность ракетных двигателей имеет свои особенности, обусловленные специфическими условиями их эксплуатации, применяемыми топливами и уровнем их массовых расходов, более высокими значениями температур в реакционной зоне, эффектами догорания выхлопных газов в атмосфере, спецификой конструкций двигателей.
Отработавшие ступени ракет-носителей (РН), падая на землю, разрушаются и оставшиеся в баках гарантированные запасы стабильных компонентов топлива загрязняют и отравляют прилегающий к месту падения участок земли или водоем.
С целью повышения энергетических характеристик ЖРД компоненты топлива подаются в камеру сгорания при соотношении, соответствующем коэффициенту избытка окислителя αдв 0,99 при доверительной вероятности 0,95 необходимо провести n = 300 безотказных испытаний, а для Рн > 0,999 – n =1000 безотказных испытаний.
Если рассматривать ЖРД, то процесс отработки проводится в следующей последовательности:
В практике создания двигателей известны 2 метода стендовой доводки: последовательный (консервативный) и параллельный (ускоренный).
Испытательный стенд – это техническое устройство для установки объекта испытания в заданное положение, создания воздействий, съема информации и осуществления управления процессом испытаний и объектом испытаний.
Испытательные стенды различного назначения обычно состоят из двух частей, соединенных коммуникациями:
— исполнительной, состоящей из объекта испытания и систем, обеспечивающих воздействие различных эксплуатационных факторов;
— командной в виде пульта управления и систем информации (преобразование, анализ и отображение информации о параметрах объекта испытания).
Схемы и фото дадут понимания больше, чем мои словесные конструкции:
В настоящее время для вывода тяжелых грузов (орбитальных станций с массой до 20 тонн) в РФ применяется РН “Протон” с использованием высокотоксичных компонентов топлива НДМГ и АТ. Для уменьшения вредного влияния РН на окружающую среду была проведена модернизация ступеней и двигателей ракеты (“Протон-М”) с целью значительного уменьшения остатков компонента в баках и магистралях питания ДУ:
Ещё для вывода полезных нагрузок в России используются (или использовались) относительно дешевые конверсионные ракетные системы “Днепр”, “Стрела”, “Рокот”, “Циклон” и “Космос-3М”, работающие на токсичных топливах.
Была идея (расскажу отдельно про ОКР) перевести эти двигатели с компонентов топлива АТ+НДМГ на экологически чистые. Например, на кислород и керосин. Много занимались этим вопросом в КБХА. Задача оказалась далеко не простая. Совместно с КМЗ /Красноярск/ более 10 лет продолжаются работы по переводу двигателя 3Д-37. Фактически получается почти новый двигатель, хотя там оставалась «кислая» схема и не было вопросов по охлаждающей способности КС. Этот двигатель получил индекс РД-0155 и РКЦ Макеева рассматривает его возможное применение в «Воздушном старте».
Водород и испытательные стенды ЖРД для такого топлива имеют свои «примочки». В начальной стадии работ с водородом ввиду его значительной взрыво– и пожароопасности в США не было единого мнения о целесообразности дожигания всех видов выбросов водорода. Так, фирма «Пратт-Уитни» (США) придерживалась мнения, что сжигание всего количества выбрасываемого водорода гарантирует полную безопасность испытаний, поэтому над всеми вентиляционными трубами сброса водорода испытательных стендов поддерживается пламя газообразного пропана.
Фирма «Дуглас-Эркрафт» (США) считала достаточным выпускать газообразный водород в малых количествах через вертикальную трубу, находящуюся на значительном удалении от мест проведения испытаний, без его дожигания.
В Российских стендах в процессе подготовки и проведения испытаний дожигаются выбросы водорода с расходами более 0,5 кг/с. При меньших расходах водород не дожигается, а отводится из технологических систем испытательного стенда и сбрасывается в атмосферу через дренажные выводы с азотными поддувами.
С токсичными компонентами РТ («вонючими») дело обстоит значительно хуже. Как при испытаниях ЖРД:
Так и при пусках (и аварийных, и частично при успешных):
Вопрос ущерба, наносимого окружающей среде, при возможных авариях на участке вывода и при падении отделяющихся частей ракет очень важен, так как эти аварии практически непрогнозируемы.
«Вернёмся к нашим баранам». Китайские пусть сами разбираются, тем более, их очень уж много.
В западной части Алтае-Саянского региона расположены шесть районов (полей) падения вторых ступеней РН, запускаемых с космодрома Байконур. Четыре из них, входящие в зону Ю-30 (№№ 306, 307, 309, 310), расположены в крайней западной части региона, на границе Алтайского края и Восточно-Казахстанской области. Входящие в зону Ю-32 районы падения №№ 326, 327 расположены в восточной части республики, в непосредственной близости от оз. Телецкое.
Районы падения №№ 306, 307, 309 используются с середины 60-х годов (по официальным данным) для приземления вторых ступеней РН «Союз» и ее модификаций (на углеводородных топливах); остальные районы – с начала 70-х годов для приземления фрагментов вторых ступеней РН «Протон» (на гидразинном топливе).
В случае использования ракет с экологически чистыми компонентами топлива мероприятия по ликвидации последствий в местах падения отделяющихся частей сводятся к механическим способам сбора остатков металлоконструкций.
Особые мероприятия должны проводиться по ликвидации последствий падения ступеней, содержащих тонны невыработанного НДМГ, который проникает в почву и, хорошо растворяясь в воде, может распространяться на большие расстояния. Азотный тетроксид быстро рассеивается в атмосфере и не является определяющим фактором заражения местности. По проведенным оценкам, требуется не менее 40 лет для полной рекультивации земли, используемой в качестве зоны падения ступеней с НДМГ в течение 10 лет. При этом должны быть проведены работы по выемке и перевозке значительного количества грунта из мест падения. Исследования в местах падения первых ступеней РН «Протона» показали, что зона заражения грунта при падении одной ступени занимает площадь
50 тыс. м2 с поверхностной концентрацией в центре 320-1150 мг/кг, что в тысячи раз превышает предельно допустимую концентрацию.
В настоящее время не существует эффективных способов нейтрализации зараженных зон горючим НДМГ.
Всемирной организацией здравоохранения НДМГ внесен в список особо опасных химических соединений. Справка: Гептил в 6 раз токсичнее синильной кислоты! И где вы видели 100 тон синильной кислоты СРАЗУ?
Продукты сгорания гептила и амила (окисления) при испытании ракетных двигателей или запуске ракет носителей.
В «вики» всё просто и безобидно:
На «выхлопе»: водичка, азот и углекислый газ.
А в жизни всё сложнее: Км и альфа, соответственно, массовое соотношение окислитель/горючее 1,6:1 или 2,6:1 = совершенно дикий избыток окислителя (пример: N2O4: НДМГ = 2.6:1 (260 г. и 100 г.- как пример):
Когда этот букетик встречается с другим замесом-нашим воздухом+органика(пыльца)+пыль+оксиды серы+ метан+пропан+и тд, то результаты окисления/горения выглядят так:
Нитрозодиметиламин (химическое название: N-метил-N-нитрозометанамин). Образуется при окислении гептила амилом. Хорошо растворим в воде. Вступает в реакции окисления и восстановления, с образованием гептила, диметилгидразина, диметиламина, аммиака, формальдегида и других веществ. Является высоко токсичным веществом 1-го класса опасности. Канцероген, обладает кумулятивными свойствами. ПДК: в воздухе рабочей зоны – 0,01 мг/м3, то есть в 10 раз более опасный по сравнению с гептилом, в атмосферном воздухе населенных пунктов — 0,0001 мг/м3 (среднесуточная), в воде водоемов-0,01 мг/л.
Тетраметилтетразен (4,4,4,4-тетраметил-2-тетразен)-продукт разложения гептила. Ограниченно растворим в воде. Стабилен в абиотической среде, в воде очень стабилен. Разлагается с образованием диметиламина и ряда неидентифицированных веществ. По токсичности имеет 3-й класс опасности. ПДК: в атмосферном воздухе населенных пунктов – 0,005 мг/м3, в воде водоемов–0,1 мг/л.
Диоксид азота NO2-сильный окислитель, органические соединения загораются в смеси с ним. В обычных условиях диоксид азота существует в равновесии с амилом (тет-раоксидом азота). Оказывает раздражающее действие на зев, может быть одышка, отеки легких, слизистых оболочек дыхательных путей, дегенерация и некроз тканей в печени, почках, головном мозге человека. ПДК: в воздухе рабочей зоны-2 мг/м3, в атмосферном воздухе населенных мест-0,085 мг/м3(максимально разовая) и 0,04 мг/м3 (среднесуточная), класс опасности–2.
Оксид углерода (угарный газ)-продукт неполного сгорания органических (углеродсодержащих) видов топлива. Монооксид углерода может длительно (до 2 месяцев) находиться в воздухе без изменения. Оксид углерода-яд. Связывает гемоглобин крови в карбоксигемоглобин, нарушая способность к переносу кислорода к органам и тканям человека. ПДК: в атмосферном воздухе населенных мест — 5,0 мг/м3 (максимально разовая) и 3,0 мг/м3 (среднесуточная). При наличии в воздухе одновременно оксида углерода и соединений азота токсическое действие оксида углерода на людей усиливается.
Формальдегид (муравьиный альдегид)-токсин. Формальдегид обладает резким запахом, он сильно раздражает слизистые оболочки глаз и носоглотки даже при незначительных концентрациях. Оказывает общетоксическое действие (поражение центральной нервной системы, органов зрения, печени, почек), оказывает раздражающее, аллергенное, канцерогенное, мутагенное действие. ПДК в атмосферном воздухе: среднесуточная — 0,012 мг/м3, максимально разовая — 0,035 мг/м3.
Интенсивная ракетно-космическая деятельность на территории России в последние годы породила огромное количество проблем: загрязнение окружающей среды отделяющимися частями ракет-носителей, токсическими компонентами ракетного топлива (гептил и его производные, азотный тетраоксид и др.) Кто-то («партнёры») тихо сопя и хихикая над журналистом-экономистом и мифическими батутами, спокойненько и не сильно напрягаясь заменил все первые (и вторые) ступени (Delta-IV, Arian-IV, Atlas-V) на высококипящих компонентах на безопасные, а кто-то усиленно осуществлял пуски РН «Протон», «Рокот», «космос» и т.д. гробя себя и природу. При этом, за труды праведные, платилось аккуратно нарезанной бумагой из типографии ФРС США, да и бумаг-то оставалась «там».
Кратко о военном применении гептила:
Ступени противоракет систем ПРО, морские баллистические ракеты подводных лодок (БРПЛ), космические ракеты, разумеется ракеты ПВО, а также оперативно-тактические ракеты (средней дальности).
Армия и Флот оставили «гептиловый» след во Владивостоке и на Дальнем Востоке, Северодвинске, Кировской области и ряде окрестностей, Плесецке, Капустином Яру, Байконуре, Перми, Башкирии и т.д. Нельзя забывать, что ракеты перевозили, ремонтировали, переснаряжали и т.д., и все это на суше, вблизи промышленных мощностей, где этот гептил и производили. Про аварии с этими высокотоксичными компонентами и про информирование органов гражданской власти, ГО (МЧС) и населения — кто знает, тот расскажет больше.
Необходимо помнить места производства и испытания двигателей находятся не в пустыне: Воронеж, Москва (Тушино), завод «Нефтеоргсинтез» в Салавате (Башкирия) и т.д.
На боевом дежурстве в РФ находится несколько десятков МБР Р-36М, УТТХ/Р-36М2.
И много ещё УР-100Н УТТХ с гептильной заправкой.
Совсем плохо поддаются анализу результаты деятельности войск ПВО, оперировавших ракетами С-75, С-100, С-200.
По утверждению экспертов Всемирной организации здравоохранения, срок нейтрализации гептила, являющегося токсичным веществом I класса опасности, на наших широтах составляет: в почве — более 20 лет, в водоемах — 2-3 года, в растительности — 15-20 лет.
С одной стороны: отсутствие затрат на утилизацию боевых РН (МБР, БРПЛ, ЗУР, ОТР) и даже получение прибыли и экономия затрат на вывод ПН на орбиту;
С другой стороны: вредное воздействие на окружающую среду, население в зоне пуска и падения отработанных ступеней конверсионных РН;
А с третьей стороны: без РН на высококипящих компонентах РФ сейчас обойтись не может.
ЖЦИ Р-36М2/РС-20В Воевода (SS-18 mod.5-6 SATAN) по некоторым политическим аспектам (ПО Южный Машиностроительный Завод (г. Днепропетровск), да и просто по временной деградации не может быть продлён.
Перспективная тяжелая межконтинентальная баллистическая ракета РС-28 / ОКР Сармат, ракета 15А28 — SS-X-30(проект) будет на высококипящих токсичных компонентах.
Отстаём мы несколько в РДТТ и особенно в БРПЛ:
Хроника мучений «Булавы» до 2010.
Поэтому для ПЛАРБ будет использоваться лучшая в мире (по энергетическому совершенству, и вообще шедевр) БРПЛ Р-29РМУ2.1 /ОКР Лайнер: на АТ+НДМГ.
Кратко: системы заправки стартовых комплексов РН с применением токсичных компонентов.
Стартовые комплексы РН “Космос-1” и “Космос-3М” создавались на базе комплексов баллистических ракет Р-12 и Р-14 без существенных доработок по ее связям с наземным оборудованием. Это обусловило наличие на стартовом комплексе множества ручных операций, в том числе на заправленной компонентами топлива РН. В последующем многие операции были автоматизированы и уровень автоматизации работ на комплексе РН “Космос-3М” уже составляет более 70%.
Однако некоторые операции, в том числе повторное подсоединение заправочных коммуникаций для слива топлива в случае отмены пуска, выполняются вручную. Основными системами СК являются системы заправки компонентами топлива, сжатыми газами и система дистанционного управления заправкой. Кроме того, в составе СК имеются агрегаты, уничтожающие последствия работы с токсичными компонентами топлива (дренируемые пары КРТ, водные растворы, образующиеся при различного рода смывах, промывках оборудования).
Основное оборудование систем заправки – емкости, насосы, пневмогидросистемы – размещаются в железобетонных сооружениях, заглубленных в землю. Хранилища КРТ, сооружение для сжатых газов, система дистанционного управления заправкой располагаются на значительных расстояниях друг от друга и стартовых устройств в целях обеспечения их сохранности в аварийных случаях.
На стартовом комплексе РН “Циклон” автоматизированы все основные и многие вспомогательные операции.
Уровень автоматизации по циклу предстартовой подготовки и пуска РН составляет 100 %.
Дезинтоксикация гептила:
Сущность способа уменьшения токсичности НДМГ заключается в подаче в топливные баки ракет 20 % раствора формалина:
(CH3)2NNH2 + CH2O = (CH3)2NN=CH2 + H2O + Q
Данная операция в избытке формалина приводит к полному (100 %) уничтожению НДМГ путем его превращения в диметилгидразон формальдегида за один цикл обработки за время 1-5 секунд. При этом исключается образование диметилнитрозоамина (CH3)2NN=О.
Следующей фазой процесса является уничтожение диметилгидразона формальдегида (ДМГФ) путем добавления в баки уксусной кислоты, вызывающей димеризацию ДМГФ в бис-диметилгидразон глиоксаля и полимерную массу. Время проведения реакции — около 1 минуты:
(CH3)2NN=CH2+Н+ → (CH3)2NN=CHНС=NN(CH3)2+полимеры+Q
Образующаяся масса умеренно токсична, хорошо растворима в воде.
Пора закругляться, в послесловии не удержусь и опять процитирую С.Лукьяненко:
/Председатель правительственной комиссии Л.И. Брежнев