что такое радиоактивность в химии

Справочник автора/Радиоактивность и радиация

О радиации посредством Garry’s Mod

Радиация (в переводе с латинского — излучение) — общий (и немного корявый) термин для различных видов ионизирующего излучения, т. е. излучения, способного выбивать электроны из атомов или взаимодействовать с атомными ядрами. Именно ионизация приводит к тем, полезным или вредным, химическим превращениям (образование свободных радикалов, разрушение или «сшивание» молекул), которые в итоге и считаются «эффектом радиации». Радиоактивность — способность изотопов химических элементов самопроизвольно распадаться и излучать ионизирующие частицы, один из видов ядерной реакции. Радиоактивные вещества являются наиболее известным, но не единственным источником радиации.

Содержание

Виды радиации [ править ]

Широко известные [ править ]

Более экзотические [ править ]

Что НЕ ЯВЛЯЕТСЯ радиацией? [ править ]

Как радиация получается [ править ]

Что от неё бывает [ править ]

Если кратко — ничего хорошего. От радиации нельзя стать супергероем, суперзлодеем или существом, превращающим людей в супергероев с помощью укуса. Также от неё не вырастает щупалец, третьих ног и шестых пальцев. А что же от нее можно схватить?

В чём измеряется облучение? [ править ]

Есть единицы для измерения экспозиционной, поглощённой дозы и эквивалентной дозы. Разница между ними заключается в способе измерения, вкратце так: эквивалентная доза измеряется по последствиям для организма, которые сравниваются с последствиями от некой эталонной дозы облучения. Поглощённая доза измеряется по замерам энергии излучения и массы вещества, которое его поглотило. Экспозиционная — по подсчёту ионов в сухом воздухе. Какие единицы чему соответствуют?

Рентген — единица экспозиционной дозы. В эквивалентной дозе рентгену соответствует бэр, в поглощённой дозе — рад. Для обывателя рентген, бэр и рад — примерно одно и то же. Зиверт — единица эквивалентной дозы. В поглощённой дозе зиверту соответствует грэй. Для обывателя между зивертом и грэем также разницы особой нет.

1 Зв = 100 бэр. 1 Гр = 100 рад.

В общем, вторые две единицы в сто раз больше первых трёх.

Какая доза чем грозит? Вот несколько примерных доз и их последствия:

Пациенту, схватившему от 500 до 1000 рентген, плохо становится далеко не сразу. Он может ещё около недельки гулять, веселиться, радоваться, что его досрочно демобилизовали. А уже на вторую-третью недельку начинают проявляться последствия отказа костного мозга, и пациент начинает умирать от малокровия.

Чем измеряется облучение [ править ]

Наиболее известный прибор — дозиметр; он предназначен для измерения полученной человеком эквивалентной дозы, и проградуирован в зивертах или бэрах (устаревшие модели могут быть проградуированы в рентгенах). Дозиметров существует много и разных, в нашей стране широко известны маленькие дозиметры в виде ручки.

Более сложный прибор — дозиметр-радиометр, у него есть и ещё один режим — замерять активность образца в распадах в минуту или секунду.

Счётчик Гейгера — простой и давно известный детектор радиации, один щелчок которого — это пролёт через камеру счётчика одной частицы. Когда он делает вот так: тик-так! тик-так! — это значит, что пора уносить ноги и глотать антирадин на всякий случай. В случае превышения некоторого значения интенсивности зашкаливает, и в этом случае чиселке, которую он показывает, уже нельзя верить. Некоторые современные дозиметры представляют собой улучшенные счётчики Гейгера с прикрученной к ним электроникой для перевода попугаев в зиверты.

Плёночный значок — по принципу действия похож на старинную фотопластинку, но покрыт менее чувствительными солями, которым пофиг на свет. А на радиацию не пофиг, от неё они чернеют. Если значок из белого стал чёрным, значит, носитель значка схватил опасную дозу и ему пора лечиться.

Источник

В чем заключается явление радиоактивности и кто его открыл

Радиоактивность — что это за явление

Радиоактивность — это явление, при котором ядра одного химического элемента самопроизвольно превращаются в ядра другого элемента или изотопы того же элемента. Процесс сопровождается испусканием частиц и электромагнитного излучения. При этом происходит изменение состава ядра атома: его заряда и массового числа.

Понятие «радиоактивность» было введено Марией Склодовской-Кюри. Оно тождественно понятию радиоактивный распад.

В определении присутствует термин изотоп. Прежде чем рассмотреть его, вспомним определение нуклида.

Нуклид — это отдельный вид атома химического элемента с определенными значениями массового и протонного чисел.

Для обозначения определенного нуклида используют запись вида

где X — символ химического элемента, A — массовое (нуклонное) число, Z — зарядовое (протонное) число.

Количество нейтронов в ядре N = A − Z

Изотоп — это разновидность атома определенного элемента с таким же атомным номером, но другим массовым числом.

Это значит, что в изотопах одинаковое число протонов, но разное число нейтронов.

Всего известно более двух тысяч радиоактивных изотопов. Для сравнения, стабильных открыто около 280.

Ученые разделяют нуклиды на стабильные и нестабильные. Нестабильные, также известные как радионуклиды, со временем распадаются. Стабильные же способны существовать в неизменном виде неопределенно долгий промежуток времени.

Суть явления радиоактивности заключается в том, что при распаде ядра нестабильного атома из него с большой скоростью вылетает целое число частиц с высокой энергией. Вещества, которые содержат радиоактивные ядра, называют радиоактивными.

Радиация (радиоактивное излучение) — это поток частиц высокой энергии, вылетающих из нестабильного ядра.

В современной химии выделяют естественную и искусственную радиоактивность.

Естественная радиоактивность — это явление самопроизвольного распада атомных ядер в природе.

Примером естественной радиоактивности служит солнечная радиация. В ядре солнца постоянно происходят термоядерные реакции, в ходе которых водород превращается в гелий.

Искусственная радиоактивность — это явление самопроизвольного распада атомных ядер, полученных искусственным путем через соответствующие ядерные реакции.

Техногенная радиоактивность применяется людьми. Например, на атомных электростанциях электрическую энергию получают за счет искусственно созданных ядерных реакций.

В результате экспериментов было установлено, что в периодической системе Менделеева радиоактивны все элементы, начиная с висмута. Их порядковый номер больше 82.

Единицы измерения

В химии существует несколько единиц измерения радиоактивности:

В Международной системе единиц ( С И ) единицей измерения активности радионуклида является беккерель. На русском языке он обозначается как Бк, в международном формате — Bq.

Эту единицу назвали в честь Антуана Беккереля, одного из первооткрывателей радиоактивности. Один Беккерель равен одному распаду в секунду.

В Международной СИ секунде в минус первой степени равен не только беккерель, но и герц. Важно не путать их: беккерель используют для измерения случайных процессов распада, а герц — для периодических процессов. Их природа различна.

Один Беккерель — это маленькая единица измерения, так что на практике принято использовать кратные единицы.

Внесистемная, но широко распространенная единица — кюри. Ее используют для измерения активности радионуклидов. На русском обозначается как Ки, в международных исследованиях — Ci. Названа она в честь Пьера Кюри и Марии Склодовской-Кюри.

Точно установлена связь между значениями Ки и Бк:

Перевести значения из Бк в Ки сложнее, т.к. соотношение приблизительно:

Еще одна единица измерения, которой в современности пользуются редко — резерфорд. Его обозначают как Рд или Rd в русском и международном стандартах соответственно. Единица тоже названа в честь ученого — Эрнеста Резерфорда, также изучавшего природу радиоактивности.

Один резерфорд равен 10^6 распадам в 1 секунду. Точно равенство:

1 Р д = 1 ⋅ 10 6 Б к = 1 М Б к

Дозиметрия — это определение дозы радиоактивного излучения, поглощаемого объектом.

В дозиметрии используют свои единицы облучения:

Поглощенную дозу в Международной СИ измеряют в единицах грэй (Гр). Один грэй равен энергии излучения в 1 Дж, поглощенной 1 кг вещества.

Эквивалентную дозу, т.е. произведение поглощенной дозы на коэффициент качества излучения, в Си измеряют в зивертах. Один зиверт эквивалентен излучению, создающему такой же биологический эффект, как и поглощенная доза в 1 Гр гамма-излучения или рентгеновского излучения.

Внесистемная единица измерения эквивалентной дозы — бэр. Бэр расшифровывается как «биологический эквивалент рентгена».

За один бэр принято считать такое количество энергии излучения, поглощенного 1 кг вещества, при котором биологическое воздействие соответствует поглощенной дозе в 1 рад гамма-излучения или рентгеновского излучения. То есть:

Для измерения воздействия радиации используют также понятие мощность дозы. Это доза, полученная объектом за выбранную единицу времени.

Кто открыл, как это произошло

Предпосылкой открытия радиоактивности послужило открытие Вильгельма Конрада Рентгена. В конце XIX века ученый обнаружил новый вид лучей, который назвал X-лучами. В России они более известны как «рентгеновские лучи».

Лучи Рентгена представляют собой электромагнитное излучение длиной волн от

Хотя рентгеновское излучение менее вредно, чем радиоактивное, оно все равно является ионизирующим и в больших объемах способно навредить живым организмам.

Вскоре после Рентгена новый вид лучей открыл французский физик Антуан Анри Беккерель. В 1896 году Беккерель посетил заседание Академии наук, на котором узнал о предполагаемой связи рентгеновского излучения и флуоресценции. Чтобы проверить эту гипотезу, Беккерель провел эксперимент с фотопластинкой и солями урана. Он обнаружил, что лучи проходят через препятствия, оставляя изображение на фотопластинке.

Сперва Беккерель предположил, что открыл новый, более простой способ делать рентгеновские снимки. Но после многочисленных экспериментов он не мог дать объяснения, откуда уран получает свою энергию. К тому же, вопреки его данным, уран фосфоресцировал даже без солнечного света, что никак не согласовывалось с его гипотезой.

Так Беккерель понял, что открыл новый вид лучей. Но из-за неспособности разрешить найденное противоречие ученый временно отказался от изучения, как известно теперь, радиоактивности.

В 1898 году Мария и Пьер Кюри обнаружили, что новые лучи свойственны не только урану, но и торию. Позднее пара ученых открыла радиоактивность полония и радия. От названия последнего и было дано название явлению — радиоактивность.

К тому же, Беккерель и Кюри совместно обнаружили биологическое действие радиоактивности. На одной из лекций Беккерель держал в пробирке в жилетном кармане радиоактивное вещество. На следующий день на теле под карманом он обнаружил покраснение в форме пробирки. Пьер Кюри после этого 10 часов носил на себе пробирку с радием, и спустя несколько дней у него тоже появилось покраснение. Это покраснение впоследствии перешло в тяжелую язву, с которой Пьер боролся еще два месяца.

Пагубное влияние радиоактивных веществ не остановило ученых. В 1934 году Мария Склодовская-Кюри умерла от осложнений, вызванных долгой работой с радием.

В дальнейшем значительную роль в исследовании радиоактивности сыграл Эрнест Резерфорд. Ученый установил природу радиоактивных превращений и излучения, обнаружил сложный состав излучения.

Разновидности излучения, свойства и характеристики

Ученые выделили 3 вида излучения:

На основе излучения выделяют 3 основных типа радиоактивного распада:

Известны также распады с испусканием протонов (одного или двух), нейтрона и кластерная радиоактивность.

Процесс радиоактивного распада может быть продолжительным. Если дочернее ядро, полученное в результат радиоактивного распада, также является радиоактивным, то со временем и оно распадается. Так продолжается, пока не образуется стабильное нерадиоактивное ядро.

При этом некоторые изотопы могут одновременно испытывать более одного вида распада.

Альфа-распад

Альфа-распад — вид самопроизвольного распада атомного ядра на дочернее ядро, при котором происходит испускание альфа-частицы — ядра атома атома гелия. При этом массовое число дочернего ядра меньше на 4, а атомный номер — на 2.

Альфа-распад, т.е. поток положительно заряженных частиц, характерен для изотопов всех тяжелых элементов, начиная с висмута.

Альфа-частицы покидают ядро со скоростью от 9400 до 23700 км/с. При этом в воздухе при нормальных условиях альфа-излучение способно преодолеть лишь расстояние от 2,5 до 7,5 см.

Эффективно задержать радиоактивное излучение альфа-частиц можно несколькими десятками микрометров плотного вещества. К примеру, листом бумаги или даже ороговевшим слоем кожи — человеческим эпидермисом. Это делает его относительно безопасным для человека.

Однако если источник альфа-излучения все же попадет в организм (например, в виде пыли), это может привести к серьезным последствиям. Альфа-частицы наносят примерно в 20 раз больше повреждений, чем бета- и гамма-частицы той же энергии.

Правило смещения Содди, также закон радиоактивных смещений — это правило, описывающее превращение элементов в процессе радиоактивного распада.

Пример
Как уже было описано ранее, процесс радиоактивного распада продолжается до тех пор, пока не образуется стабильное ядро. Рассмотрим такую цепочку на основе альфа-распада урана-238:

Бета-распад

Бета-распад — вид самопроизвольного распада атомного ядра на дочернее ядро, при котором происходит испускание потока электронов и антинейтрино. Массовое число при этом остается тем же, поскольку число нуклонов в ядре остается неизменным.

Бета-излучение как отрицательное излучение малой массы обладает большей проникающей способностью, нежели альфа-частицы. Задержать его можно алюминиевой фольгой.

Среди всех видов радиоактивного распада бета-распад является наиболее распространенным. Он особенно характерен для искусственных радионуклидов.

Выделяют несколько подвидов бета-распада:

Бета-минус распад представляет собой испускание из ядра электрона, образовавшегося в результате самопроизвольного превращения одного из нейтронов в протон и электрон. Такой электрон называют бета-минус частицей.

Рассмотрим бета-минус распад трития в гелий-3:

Бета-плюс распад, или позитронный распад сопровождается испусканием из ядра позитрона (античастицы электрона), образовавшегося в результате самопроизвольного превращения одного из протонов в нейтрон и позитрон. Получившуюся частицу называют бета-плюс частицей.

Рассмотрим бета-плюс распад углерода:

C 6 11 → B 5 11 + e + + ν e

Позитронный распад всегда сопровождается электронным захватом. Ядро захватывает электрон из атомной оболочки и испускает нейтрино. Заряд ядра также уменьшается на единицу.

Правило смещения Содди для электронного захвата:

Рассмотрим электронный захват на примере захвата бериллия в литий:

Гамма-распад

Гамма-распад чаще называют изомерным переходом. Такое название обосновано существованием изомерных состояний ядер. Большинство ядер способны существовать в возбужденном состоянии очень малое количество времени — менее наносекунды. Некоторые ядра способны существовать дольше — микросекунды, сутки или даже года. Такие долгоживущие состояния и называют изомерными.

При гамма-распаде изомерные состояния ядер переходят в основное состояние с излучением одного или нескольких гамма-квантов.

Гамма-излучение обладает намного большей проникающей способностью, чем альфа- и бета-излучение. Оно не имеет электрического заряда, обладает огромной энергией и может быть остановлено только толстым слоем железобетона, стали, свинца или другого серьезного препятствия.

Период полураспада, модели атомов и ядра, кратко

Рассмотрим общепринятую модель строения атома. В центре находится заряженное ядро, внутри которого — нейтральные нейтроны и положительно заряженные протоны. Почти вся масса атома приходится на тяжелое ядро. Вокруг положительно заряженного ядра движутся легкие отрицательно заряженные электроны. В невозбужденном состоянии и вне реакции количество протонов и электронов, как правило, равно, так что атом электронейтрален.

Наглядная схема представлена ниже.

Одной из главных характеристик радиоактивных атомов является его время жизни. Число ежесекундно происходящих распадов пропорционально количеству имеющихся атомов.

На основе периода полураспада некоторых радиоизотопов основан исторический метод радиоизотопного датирования. Для определения возраста некоторых объектов определяют, какая доля радиоактивного изотопа в составе успела распасться. Используют:

Любой радиоактивный распад происходит по закону радиоактивного распада. Математически данный закон выражается в следующем виде:

где N — число нераспавшихся атомов в любой момент времени, N_0 — число радиоактивных атомов в начальный момент времени, T — период полураспада, t — период времени.

Источник

База знаний студента. Реферат, курсовая, контрольная, диплом на заказ

Радиоактивность — Химия

1. Что такое радиоактивность и радиация?

Явление радиоактивности было открыто в 1896 году французским ученым Анри Беккерелем. В настоящее время оно широко используется в науке, технике, медицине, промышленности. Радиактивные элементы естественного происхождения присутствуют повсюду в окружающей человека среде. В больших объемах образуются искусственные радионуклиды, главным образом в качестве побочного продукта на предприятиях оборонной промышленности и атомной энергетики. Попадая в окружающую среду, они оказывают воздействия на живые организмы, в чем и заключается их опасность. Для правильной оценки этой опасности необходимо четкое представление о масштабах загрязнения окружающей среды, о выгодах, которые приносят производства, основным или побочным продуктом которых являются радионуклиды, и потерях, связанных с отказом от этих производств, о реальных механизмах действия радиации, последствиях и существующих мерах защиты.

2. Какая бывает радиация?

3. К чему может привести воздействие радиации на человека?

Воздействие радиации на человека называют облучением. Основу этого воздействия составляет передача энергии радиации клеткам организма.
Облучение может вызвать нарушения обмена веществ, инфекционные осложнения, лейкоз и злокачественные опухоли, лучевое бесплодие, лучевую катаракту, лучевой ожог, лучевую болезнь.
Последствия облучения сильнее сказываются на делящихся клетках, и поэтому для детей облучение гораздо опаснее, чем для взрослых

Следует помнить, что гораздо больший РЕАЛЬНЫЙ ущерб здоровью людей приносят выбросы предприятий химической и сталелитейной промышленности, не говоря уже о том, что науке пока неизвестен механизм злокачественного перерождения тканей от внешних воздействий.

4. Как радиация может попасть в организм?

Организм человека реагирует на радиацию, а не на ее источник. 3
Те источники радиации, которыми являются радиоактивные вещества, могут проникать в организм с пищей и водой (через кишечник), через легкие (при дыхании) и, в незначительной степени, через кожу, а также при медицинской радиоизотопной диагностике. В этом случае говорят о внутреннем облучении.
Кроме того, человек может подвергнуться внешнему облучению от источника радиации, который находится вне его тела.
Внутреннее облучение значительно опаснее внешнего.

5. Передается ли радиация как болезнь?

Радиацию создают радиоактивные вещества или специально сконструированное оборудование. Сама же радиация, воздействуя на организм, не образует в нем радиоактивных веществ, и не превращает его в новый источник радиации. Таким образом, человек не становится радиоактивным после рентгеновского или флюорографического обследования. Кстати, и рентгеновский снимок (пленка) также не несет в себе радиоактивности.

Исключением является ситуация, при которой в организм намеренно вводятся радиоактивные препараты (например, при радиоизотопном обследовании щитовидной железы), и человек на небольшое время становится источником радиации. Однако препараты такого рода специально выбираются так, чтобы быстро терять свою радиоактивность за счет распада, и интенсивность радиации быстро спадает.

6. В каких единицах измеряется радиоактивность?

7. Что такое изотопы?

Радиоактивные изотопы обычно называют радионуклидами 5

8. Что такое период полураспада?

Иногда встречаются утверждения, что радиоактивные отходы в хранилищах полностью распадутся за 300 лет. Это не так. Просто это время составит примерно 10 периодов полураспада цезия-137, одного из самых распространенных техногенных радионуклидов, и за 300 лет его радиоактивность в отходах снизится почти в 1000 раз, но, к сожалению, не исчезнет.

9. Что вокруг нас радиоактивно?
6

Воздействие на человека тех или иных источников радиации поможет оценить следующая диаграмма (по данным А.Г.Зеленкова, 1990).

10. Естественная радиоактивность

Естественная радиоактивность существует миллиарды лет, она присутствует буквально повсюду. Ионизирующие излучения существовали на Земле задолго до зарождения на ней жизни и присутствовали в космосе до возникновения самой Земли. Радиоактивные материалы вошли в состав Земли с самого ее рождения. Любой человек слегка радиоактивен: в тканях человеческого тела одним из главных источников природной радиации являются калий-40 и рубидий-87, причем не существует способа от них избавиться.

12. Техногенная радиоактивность

Техногенная радиоактивность возникает вследствие человеческой деятельности.
Осознанная хозяйственная деятельность, в процессе которой происходит перераспределение и концентрирование естественных радионуклидов, приводит к заметным изменениям естественного радиационного фона. Сюда относится добыча и сжигание каменного угля, нефти, газа, других горючих ископаемых, использование фосфатных удобрений, добыча и переработка руд.

13. Как защититься от радиации?

Делая этот реферат, я открыл для себя много нового. Я выбирал нужную информацию из многих источников. В ходе отбора информации я находил много интересного. Эта работа обьединяет в себе труды многих людей. В ней коротко изложен почти весь материал о главных аспектах радиоктивности, начиная от того, что такое радиоктивность и заканчивая методами защиты от неё.

Информация о радиоктивности получена из : 9

Э. Резерфорд “Радиоктивность”

И. Белоусова, Ю. Штуккенберг “Естественная радиоктивность”

Энциклопедия по физике “Радиоктивные излучения”

1. Что такое радиоактивность и радиация? Явление радиоактивности было открыто в 1896 году французским ученым Анри Беккерелем. В настоящее время оно широко используется в науке, технике, медицине, промышленности. Радиактивные элементы естественного

Источник

Радиоактивность

Известно 2500 атомных ядер, и 90 % из них являются нестабильными.

Радиоактивность – это способность нестабильных ядер превращаться в другие ядра с испусканием частиц.

В дальнейшем за изучение природы радиоактивных излучений принимались многие ученые, например, Э. Резерфорд со своими учениками. Было обнаружено, что радиоактивные ядра способны испускать три вида частиц: положительно заряженные, отрицательно заряженные и нейтральные.

что такое радиоактивность в химии. Смотреть фото что такое радиоактивность в химии. Смотреть картинку что такое радиоактивность в химии. Картинка про что такое радиоактивность в химии. Фото что такое радиоактивность в химии

Рассмотрим подробнее существующие виды радиоактивного распада.

Альфа-распад

Ra 88 226 → Rn 86 222 + He 2 4

что такое радиоактивность в химии. Смотреть фото что такое радиоактивность в химии. Смотреть картинку что такое радиоактивность в химии. Картинка про что такое радиоактивность в химии. Фото что такое радиоактивность в химии

Квантовая механика гласит, что существует неравная нулю вероятность прохождения частицы под потенциальным барьером. Явление туннелирования носит вероятностный характер.

что такое радиоактивность в химии. Смотреть фото что такое радиоактивность в химии. Смотреть картинку что такое радиоактивность в химии. Картинка про что такое радиоактивность в химии. Фото что такое радиоактивность в химии

Бета-распад

В результате измерений было выявлено, что при бета-распаде наблюдается кажущееся нарушение закона сохранения энергии, поскольку суммарно энергия протона и электрона, появившихся при распаде нейтрона, меньше энергии нейтрона. В 1931 году В. Паули предположил выделение при распаде нейтрона еще одной частицы с нулевыми значениями массы и заряда, уносящей с собой часть энергии.

Нейтрино (маленький нейтрон) – частица с нулевыми значениями массы и заряда, возникающая при распаде нейтрона. Была открыта в 1953 году.

Нейтрино плохо взаимодействует с атомами вещества, поскольку не обладает зарядом и массой, и вследствие этого ее обнаружение в ходе эксперимента очень затруднительно. Ионизирующая способность нейтрино является настолько малой, что один акт ионизации в воздухе приходится приблизительно на 500 к м пути. На данный момент известно, что существует несколько типов нейтрино.

Электронный антинейтрино – частица, возникающая вследствие распада нейтрона и обозначаемая v e

Запись реакции распада нейтрона выглядит так:

Позитрон является частицей-двойником электрона, отличающейся от него лишь знаком заряда.

Существование позитрона предсказывалось еще в 1928 г. великим физиком П. Дираком. Спустя несколько лет позитрон обнаружили, как составляющую космических лучей. Позитроны возникают в результате реакции преобразования протона в нейтрон по следующей схеме:

p 1 1 → n 0 1 + e 1 0 + v e 0 0

Гамма-распад

Закон радиоактивного распада

Любой образец радиоактивного вещества имеет в своем составе множество радиоактивных атомов. Поскольку для процесса радиоактивного распада характерна случайность, не зависящая от внешних условий, то закономерность в убывании количества N ( t ) нераспавшихся к данному моменту времени t ядер становится важнейшей статистической характеристикой процесса радиоактивного распада.

Это выражение означает, что скорость d N d t изменения функции N ( t ) прямо пропорциональна самой функции.

Такая зависимость имеет место во многих физических процессах (к примеру, при разряде конденсатора через резистор). Решение этого уравнения дает возможность записать экспоненциальный закон:

Величины τ и Т связаны друг с другом соотношением:

что такое радиоактивность в химии. Смотреть фото что такое радиоактивность в химии. Смотреть картинку что такое радиоактивность в химии. Картинка про что такое радиоактивность в химии. Фото что такое радиоактивность в химии

что такое радиоактивность в химии. Смотреть фото что такое радиоактивность в химии. Смотреть картинку что такое радиоактивность в химии. Картинка про что такое радиоактивность в химии. Фото что такое радиоактивность в химии

Радиоактивное излучение всех типов (альфа, бета, гамма, нейтроны), а также электромагнитная радиация (рентгеновское излучение) оказывают сильнейшее биологическое воздействие на живые организмы. Это воздействие включает в себя процессы возбуждения и ионизации атомов и молекул, составляющих живые клеток. Воздействуя на клетки, ионизирующая радиация разрушает сложные молекулы и клеточные структуры, следствием чего является лучевое поражение организма, а потому крайне важны меры радиационной защиты людей, работающих с неким источником радиации и имеющим шанс попасть в зону действия излучения.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *