что такое пузырьковая сортировка
Как работает пузырьковая сортировка
Самый простой, но не самый эффективный алгоритм.
Контекст: мы начали говорить об алгоритмах сортировки — смысл в том, что есть алгоритмы, которые помогают упорядочить разные неорганизованные данные. И данные, и алгоритмы могут быть разными, поэтому разработчики разбираются в этих алгоритмах, чтобы подобрать лучшее.
Что разбираем: пузырьковую сортировку — самый простой способ отсортировать массив, написав всего 6 строк кода. Она самая простая, но не самая эффективная.
Зачем это нужно: пузырьковая сортировка проще остальных, поэтому изучение всех сортировок лучше начинать именно с неё — так будет легче понять, что происходит в остальных алгоритмах. А ещё пузырьковая сортировка применяется внутри других, более эффективных алгоритмов.
Принцип работы
На каждом шаге мы находим наибольший элемент из двух соседних и ставим этот элемент в конец пары. Получается, что при каждом прогоне цикла большие элементы будут всплывать к концу массива, как пузырьки воздуха — отсюда и название.
Алгоритм выглядит так:
Пример
Возьмём массив из шести чисел и сделаем первый прогон:
После первого прогона у нас «всплыл» самый большой элемент массива (число 11) и отправился в конец. После второго прогона на предпоследнем месте будет стоять число 9 — оно «всплывёт» наверх как самое большое число из оставшихся, потому что последние элементы мы не проверяем.
Так, шаг за шагом, мы пройдём все прогоны, каждый раз отправляя ближе к концу массива самый большой на этом этапе элемент. В итоге на последнем прогоне мы сравним первый и второй элементы, найдём из них наибольший и так получим полностью отсортированный массив.
Работает это примерно так:
Эффективность работы
Этот алгоритм считается учебным и в чистом виде на практике почти не применяется. Дело в том, что среднее количество проверок и перестановок в массиве — это количество элементов в квадрате. Например, для массива из 10 элементов потребуется 100 проверок, а для массива из 100 элементов — уже в сто раз больше, 10 000 проверок.
Получается, что если у нас в массиве будет 10 тысяч элементов (а это не слишком большой массив с точки зрения реальных ИТ-задач), то для его сортировки понадобится 100 миллионов проверок — на это уйдёт какое-то время. А что, если сортировать нужно несколько раз в секунду?
👉 В программировании эффективность работы алгоритма в зависимости от количества элементов n обозначают так: O(n). В нашем случае эффективность работы пузырьковой сортировки равна O(n²). По сравнению с другими алгоритмами это очень большой показатель (чем он больше — тем больше времени нужно на сортировку).
Реализация в коде
Запустите этот код в консоли браузера, чтобы посмотреть на работу алгоритма целиком:
Что дальше
В следующей статье сделаем красивую визуализацию этого алгоритма на HTML и CSS — покажем, как числа всплывают как пузырьки наверх.
Сортировка пузырьком — это самый простой алгоритм сортировки, который работает путем многократной замены соседних элементов, если они находятся в неправильном порядке.
( 5 1 4 2 8) ( 1 5 4 2 8), здесь алгоритм сравнивает два первых элемента и меняет их местами, так как (5>1).
(1 5 4 2 8) (1 4 5 2 8), меняет элементы местами, так как
(1 4 5 2 8) (1 4 2 5 8), меняет элементы местами, так как
(1 4 2 5 8 ) (1 4 2 5 8 ), ввиду того, что элементы стоят на своих местах (
( 1 4 2 5 8) ( 1 4 2 5 8)
(1 4 2 5 8) (1 2 4 5 8), меняет элементы местами, так как (4>2)
(1 2 4 5 8) (1 2 4 5 8)
Теперь массив полностью отсортирован, но алгоритму это неизвестно. Поэтому ему необходимо осуществить полный проход и определить, что перестановок элементов не было.
Теперь массив отсортирован, и алгоритм может быть завершён.
Ниже в качестве примера приведена сортировка пузырьком С :
Сортировка пузырьком Java
Сортировка пузырьком Python
Приведенная выше сортировка методом пузырька всегда выполняется, даже если массив отсортирован. Ее можно оптимизировать путем остановки алгоритма, применяемой в том случае, если внутренний цикл не произвел никакой замены.
Пузырьковая сортировка Python 3
Метод пузырька C — результат сортировки:
Худшая и средняя сложность времени: O (n * n). Наихудший случай возникает, когда массив отсортирован по обратному адресу.
Сложность наилучшего случая: O (n). Наилучший случай возникает, когда массив уже отсортирован.
Пограничные случаи: сортировка занимает минимальное время (порядок n), когда элементы уже отсортированы.
Сортировка на месте: Да.
В компьютерной графике пузырьковая сортировка популярна благодаря возможности обнаруживать мелкие ошибки ( например, обмен всего двух элементов ) в почти отсортированных массивах и исправлять ее только с линейной сложностью ( 2n ). Например, она используется в алгоритме заполнения полигонов, где ограничивающие линии сортируются по их координате x на определенной линии сканирования ( линия, параллельная оси X ), и с увеличением Y их порядок меняется ( два элемента меняются местами ) только на пересечениях двух линий.
Пожалуйста, оставьте свои комментарии по текущей теме статьи. За комментарии, лайки, дизлайки, отклики, подписки огромное вам спасибо!
Пожалуйста, опубликуйте ваши мнения по текущей теме статьи. За комментарии, лайки, подписки, дизлайки, отклики низкий вам поклон!
Что такое пузырьковая сортировка
Сортировка пузырьком (обменная сортировка) – простой в реализации и малоэффективный алгоритм сортировки. Метод изучается одним из первых на курсе теории алгоритмов, в то время как на практике используется очень редко.
Алгоритм состоит из повторяющихся проходов по сортируемому массиву. За каждый проход элементы последовательно сравниваются попарно и, если порядок в паре неверный, выполняется обмен элементов. Проходы по массиву повторяются раз или до тех пор, пока на очередном проходе не окажется, что обмены больше не нужны, что означает — массив отсортирован. При каждом проходе алгоритма по внутреннему циклу, очередной наибольший элемент массива ставится на своё место в конце массива рядом с предыдущим «наибольшим элементом», а наименьший элемент перемещается на одну позицию к началу массива («всплывает» до нужной позиции как пузырёк в воде, отсюда и название алгоритма).
Пример работы алгоритма
Возьмём массив с числами «5 1 4 2 8» и отсортируем значения по возрастанию, используя сортировку пузырьком. Выделены те элементы, которые сравниваются на данном этапе.
(5 1 4 2 8) (1 5 4 2 8), Здесь алгоритм сравнивает два первых элемента и меняет их местами. (1 5 4 2 8) (1 4 5 2 8), Меняет местами, так как 4″ /> (1 4 5 2 8) (1 4 2 5 8), Меняет местами, так как
2″ /> (1 4 2 5 8) (1 4 2 5 8), Теперь, ввиду того, что элементы стоят на своих местах (
5″ />), алгоритм не меняет их местами.
(1 4 2 5 8) (1 4 2 5 8) (1 4 2 5 8) (1 2 4 5 8), Меняет местами, так как 2″ /> (1 2 4 5 8) (1 2 4 5 8) (1 2 4 5 8) (1 2 4 5 8)
Теперь массив полностью отсортирован, но алгоритм не знает так ли это. Поэтому ему необходимо сделать полный проход и определить, что перестановок элементов не было.
(1 2 4 5 8) (1 2 4 5 8) (1 2 4 5 8) (1 2 4 5 8) (1 2 4 5 8) (1 2 4 5 8) (1 2 4 5 8) (1 2 4 5 8)
Теперь массив отсортирован и алгоритм может быть завершён.
Реализация алгоритма на различных языках программирования:
Алгоритмы и структуры данных для начинающих: сортировка
Авторизуйтесь
Алгоритмы и структуры данных для начинающих: сортировка
В этой части мы посмотрим на пять основных алгоритмов сортировки данных в массиве. Начнем с самого простого — сортировки пузырьком — и закончим «быстрой сортировкой» (quicksort).
Для каждого алгоритма, кроме объяснения его работы, мы также укажем его сложность по памяти и времени в наихудшем, наилучшем и среднем случае.
Метод Swap
Пузырьковая сортировка
Сложность | Наилучший случай | В среднем | Наихудший случай |
Время | O(n) | O(n 2 ) | O(n 2 ) |
Память | O(1) | O(1) | O(1) |
Сортировка пузырьком — это самый простой алгоритм сортировки. Он проходит по массиву несколько раз, на каждом этапе перемещая самое большое значение из неотсортированных в конец массива.
25–26 ноября, Москва и онлайн, От 24 000 до 52 000 ₽
Например, у нас есть массив целых чисел:
При первом проходе по массиву мы сравниваем значения 3 и 7. Поскольку 7 больше 3, мы оставляем их как есть. После чего сравниваем 7 и 4. 4 меньше 7, поэтому мы меняем их местами, перемещая семерку на одну позицию ближе к концу массива. Теперь он выглядит так:
Этот процесс повторяется до тех пор, пока семерка не дойдет почти до конца массива. В конце она сравнивается с элементом 8, которое больше, а значит, обмена не происходит. После того, как мы обошли массив один раз, он выглядит так:
Поскольку был совершен по крайней мере один обмен значений, нам нужно пройти по массиву еще раз. В результате этого прохода мы перемещаем на место число 6.
И снова был произведен как минимум один обмен, а значит, проходим по массиву еще раз.
При следующем проходе обмена не производится, что означает, что наш массив отсортирован, и алгоритм закончил свою работу.
Сортировка вставками
Сложность | Наилучший случай | В среднем | Наихудший случай |
Время | O(n) | O(n 2 ) | O(n 2 ) |
Память | O(1) | O(1) | O(1) |
Сортировка вставками работает, проходя по массиву и перемещая нужное значение в начало массива. После того, как обработана очередная позиция, мы знаем, что все позиции до нее отсортированы, а после нее — нет.
Важный момент: сортировка вставками обрабатывает элементы массива по порядку. Поскольку алгоритм проходит по элементам слева направо, мы знаем, что все, что слева от текущего индекса — уже отсортировано. На этом рисунке показано, как увеличивается отсортированная часть массива с каждым проходом:
Постепенно отсортированная часть массива растет, и, в конце концов, массив окажется упорядоченным.
Давайте взглянем на конкретный пример. Вот наш неотсортированный массив, который мы будем использовать:
Алгоритм начинает работу с индекса 0 и значения 3. Поскольку это первый индекс, массив до него включительно считается отсортированным.
Далее мы переходим к числу 7. Поскольку 7 больше, чем любое значение в отсортированной части, мы переходим к следующему элементу.
На этом этапе элементы с индексами 0..1 отсортированы, а про элементы с индексами 2..n ничего не известно.
Итак, мы нашли индекс 1 (между значениями 3 и 7). Метод Insert осуществляет вставку, удаляя вставляемое значение из массива и сдвигая все значения, начиная с индекса для вставки, вправо. Теперь массив выглядит так:
Теперь часть массива, начиная от нулевого элемента и заканчивая элементом с индексом 2, отсортирована. Следующий проход начинается с индекса 3 и значения 4. По мере работы алгоритма мы продолжаем делать такие вставки.
Когда больше нет возможностей для вставок, массив считается полностью отсортированным, и работа алгоритма закончена.
Сортировка выбором
Сложность | Наилучший случай | В среднем | Наихудший случай |
Время | O(n) | O(n 2 ) | O(n 2 ) |
Память | O(1) | O(1) | O(1) |
Сортировка выбором — это некий гибрид между пузырьковой и сортировкой вставками. Как и сортировка пузырьком, этот алгоритм проходит по массиву раз за разом, перемещая одно значение на правильную позицию. Однако, в отличие от пузырьковой сортировки, он выбирает наименьшее неотсортированное значение вместо наибольшего. Как и при сортировке вставками, упорядоченная часть массива расположена в начале, в то время как в пузырьковой сортировке она находится в конце.
Давайте посмотрим на работу сортировки выбором на нашем неотсортированном массиве.
При первом проходе алгоритм с помощью метода FindIndexOfSmallestFromIndex пытается найти наименьшее значение в массиве и переместить его в начало.
Имея такой маленький массив, мы сразу можем сказать, что наименьшее значение — 3, и оно уже находится на правильной позиции. На этом этапе мы знаем, что на первой позиции в массиве (индекс 0) находится самое маленькое значение, следовательно, начало массива уже отсортировано. Поэтому мы начинаем второй проход — на этот раз по индексам от 1 до n — 1.
На втором проходе мы определяем, что наименьшее значение — 4. Мы меняем его местами со вторым элементом, семеркой, после чего 4 встает на свою правильную позицию.
Теперь неотсортированная часть массива начинается с индекса 2. Она растет на один элемент при каждом проходе алгоритма. Если на каком-либо проходе мы не сделали ни одного обмена, это означает, что массив отсортирован.
После еще двух проходов алгоритм завершает свою работу:
Сортировка слиянием
Сложность | Наилучший случай | В среднем | Наихудший случай |
Время | O(n·log n) | O(n·log n) | O(n·log n) |
Память | O(n) | O(n) | O(n) |
Разделяй и властвуй
До сих пор мы рассматривали линейные алгоритмы. Они используют мало дополнительной памяти, но имеют квадратичную сложность. На примере сортировки слиянием мы посмотрим на алгоритм типа «разделяй и властвуй» (divide and conquer).
Алгоритмы этого типа работают, разделяя крупную задачу на более мелкие, решаемые проще. Мы пользуемся ими каждый день. К примеру, поиск в телефонной книге — один из примеров такого алгоритма.
Если вы хотите найти человека по фамилии Петров, вы не станете искать, начиная с буквы А и переворачивая по одной странице. Вы, скорее всего, откроете книгу где-то посередине. Если попадете на букву Т, перелистнете несколько страниц назад, возможно, слишком много — до буквы О. Тогда вы пойдете вперед. Таким образом, перелистывая туда и обратно все меньшее количество страниц, вы, в конце концов, найдете нужную.
Насколько эффективны эти алгоритмы?
Предположим, что в телефонной книге 1000 страниц. Если вы открываете ее на середине, вы отбрасываете 500 страниц, в которых нет искомого человека. Если вы не попали на нужную страницу, вы выбираете правую или левую сторону и снова оставляете половину доступных вариантов. Теперь вам надо просмотреть 250 страниц. Таким образом мы делим нашу задачу пополам снова и снова и можем найти человека в телефонной книге всего за 10 просмотров. Это составляет 1% от всего количества страниц, которые нам пришлось бы просмотреть при линейном поиске.
Сортировка слиянием
При сортировке слиянием мы разделяем массив пополам до тех пор, пока каждый участок не станет длиной в один элемент. Затем эти участки возвращаются на место (сливаются) в правильном порядке.
Давайте посмотрим на такой массив:
Разделим его пополам:
И будем делить каждую часть пополам, пока не останутся части с одним элементом:
Теперь, когда мы разделили массив на максимально короткие участки, мы сливаем их в правильном порядке.
Сначала мы получаем группы по два отсортированных элемента, потом «собираем» их в группы по четыре элемента и в конце собираем все вместе в отсортированный массив.
Для работы алгоритма мы должны реализовать следующие операции:
Стоит отметить, что в отличие от линейных алгоритмов сортировки, сортировка слиянием будет делить и склеивать массив вне зависимости от того, был он отсортирован изначально или нет. Поэтому, несмотря на то, что в худшем случае он отработает быстрее, чем линейный, в лучшем случае его производительность будет ниже, чем у линейного. Поэтому сортировка слиянием — не самое лучшее решение, когда надо отсортировать частично упорядоченный массив.
Быстрая сортировка
Сложность | Наилучший случай | В среднем | Наихудший случай |
Время | O(n·log n) | O(n·log n) | O(n 2 ) |
Память | O(1) | O(1) | O(1) |
Быстрая сортировка — это еще один алгоритм типа «разделяй и властвуй». Он работает, рекурсивно повторяя следующие шаги:
Давайте посмотрим на работу алгоритма на следующем массиве:
Сначала мы случайным образом выбираем ключевой элемент:
Теперь, когда мы знаем ключевой индекс (4), мы берем значение, находящееся по этому индексу (6), и переносим значения в массиве так, чтобы все числа больше или равные ключевому были в правой части, а все числа меньше ключевого — в левой. Обратите внимание, что в процессе переноса значений индекс ключевого элемента может измениться (мы увидим это вскоре).
На этом этапе мы знаем, что значение 6 находится на правильной позиции. Теперь мы повторяем этот процесс для правой и левой частей массива.
Мы рекурсивно вызываем метод quicksort на каждой из частей. Ключевым элементом в левой части становится пятерка. При перемещении значений она изменит свой индекс. Главное — помнить, что нам важно именно ключевое значение, а не его индекс.
Снова применяем быструю сортировку:
У нас осталось одно неотсортированное значение, а, поскольку мы знаем, что все остальное уже отсортировано, алгоритм завершает работу.
Заключение
На этом мы заканчиваем наш цикл статей по алгоритмам и структурам данных для начинающих. За это время мы рассмотрели связные списки, динамические массивы, двоичное дерево поиска и множества с примерами кода на C#.
О сортировках (пузырьковой, быстрой, расческой. )
Эта статья ориентирована в первую очередь на начинающих программистов. О сортировках вообще и об упомянутых в заголовке в интернете море статей, зачем нужно еще одна? Например, есть хорошая статья здесь, на хабре: Пузырьковая сортировка и все-все-все. Во-первых, хорошего много не бывает, во-вторых в этой статье я хочу ответь на вопросы «зачем, что, как, почему».Зачем нужны сортировки? В первую очередь, для поиска и представления данных. Некоторые задачи с неотсортированными данными решить очень трудно, а некоторые просто невозможно. Пример: орфографический словарь, в нем слова отсортированы по алфавиту. Если бы это было не так, то попробуйте найти в нем нужное слово. Телефонная книга, где абоненты отсортированы по алфавиту. Даже если сортировка не обязательна и не сильно нужна, все равно бывает удобнее работать с отсортированными данными.
Время сортировки 100001 элемента
Измерим время сортировки для массива, содержащего 100001 элемент на компьютере с процессором Intel i5 (3.3Ггц).Время указано в сек, через дробь указано количество проходов (для быстрой сортировки оно неизвестно).Как и ожидалось, шейкерная сортировка на проблемном массиве (который полностью упорядочен, только первый и последний элементы переставлены) абсолютный лидер . Она идеально «заточена» под эти данные. Но на случайных данных сортировки расческой и qsort не оставляют соперницам шанса. Пузырьковая сортировка на проблемном массиве показывает двукратное увеличение скорости по сравнению с случайным просто потому, что количество операций перестановки на порядки меньше.
Сортировка | Простая | Пузырьковая | Шейкерная | Расчёской | Быстрая (qsort) |
---|---|---|---|---|---|
Стабильная | + | + | + | — | — |
Случайный | 23.1/100000 | 29.1/99585 | 19.8/50074 | 0.020/49 | 0.055 |
Проблемный | 11.5/100000 | 12.9/100000 | 0.002/3 | 0.015/48 | 0.035 |
Обратный | 18.3/100000 | 21.1/100000 | 21.1/100001 | 0.026/48 | 0.037 |
А теперь вернемся к истокам, к пузырьковой сортировке и воочию посмотрим на процесс сортировки. Видите, как на первом проходе тяжелый элемент (50) переносится в конец?
Сравниваемые элементы показаны в зеленых рамках, а переставленные — в красных
Дополнение после публикации
Я ни коей мере не считаю qsort плохой или медленной — она достаточно быстра, функциональна и при возможности следует пользоваться именно ею. Да, ей приходится тратить время на вызов функции сравнения и она уступила «расческе», которая сравнивает «по месту». Это отставание несущественно (сравните с отставанием пузырька от qsort, которое будет увеличиваться при росте массива). Пусть теперь надо сравнивать не числа, а какую-то сложную структуру по определенному полю и пусть эта структура состоит из 1000 байтов. Поместим 100тыс элементов в массив (100мб — это кое-что) и вызовем qsort. Функция fcomp (функция-компаратор) сравнит нужные поля и в результате получится отсортированный массив. При этом при перестановке элементов qsort придется 3 раза копировать фрагменты по 1000 байтов. А теперь «маленькая хитрость» — создадим массив из 100тыс ссылок на исходные элементы и передадим в qsort начало этого массива ссылок. Поскольку ссылка занимает 4 байта (в 64 битных 8), а не 1000, то при обмене ссылок qsort надо поменять эти 4/8 байтов. Разумеется, нужно будет изменить fcomp, поскольку в качестве параметров она теперь получит не адреса элементов, а адреса адресов элементов (но это несложное изменение). Зато теперь можно сделать несколько функций сортировки (каждая сортирует по своему полю структуры). И даже, при необходимости, можно сделать несколько массивов ссылок. Вот сколько возможностей дает qsort!
Кстати: использование ссылок на объекты вместо самих объектов может быть полезно не только при вызове qsort, но и при применении таких контейнеров как vector, set или map.