что такое волокна в химии

Волокна химические

Волокна, получаемые из органических природных и синтетических полимеров. В зависимости от вида исходного сырья В. х. подразделяются на синтетические (из синтетических полимеров) и искусственные (из природных полимеров). Иногда к В. х. относят также волокна, получаемые из неорганических соединений (стеклянные, металлические, базальтовые, кварцевые). В. х. выпускают в промышленности в виде: 1) моноволокна (См. Моноволокно) (одиночное волокно большой длины); 2) штапельного волокна (См. Штапельное волокно) (короткие отрезки тонких волокон); 3) филаментных нитей (пучок, состоящий из большого числа тонких и очень длинных волокон, соединённых посредством крутки), филаментные нити в зависимости от назначения разделяются на текстильные и технические, или кордные нити (более толстые нити повышенной прочности и крутки).

Историческая справка. Возможность получения В. х. из различных веществ (клей, смолы) предсказывалась ещё в 17 и 18 вв., но только в 1853 англичанин Аудемарс впервые предложил формовать бесконечные тонкие нити из раствора нитроцеллюлозы в смеси спирта с эфиром, а в 1891 французский инженер И. де Шардонне впервые организовал выпуск подобных нитей в производственном масштабе. С этого времени началось быстрое развитие производства химического волокон. В 1896 освоено производство медноаммиачного волокна из растворов целлюлозы в смеси водного аммиака и гидроокиси меди. В 1893 англичанами Кроссом, Бивеном и Бидлом предложен способ получения вискозных волокон из водно-щелочных растворов ксантогената целлюлозы, осуществлённый в промышленном масштабе в 1905. В 1918—20 разработан способ производства ацетатного волокна из раствора частично омыленной ацетилцеллюлозы в ацетоне, а в 1935 организовано производство белковых волокон из молочного казеина. Производство синтетических волокон началось с выпуска в 1932 поливинилхлоридного волокна (Германия). В 1940 в промышленном масштабе выпущено наиболее известное синтетическое волокно — полиамидное (США). Производство в промышленном масштабе полиэфирных, полиакрилонитрильных и полиолефиновых синтетических волокон осуществлено в 1954—60.

Свойства. Волокна химические часто обладают высокой разрывной прочностью [до 1200 Мн/м 2 (120 кгс/мм 2 )], значительным разрывным удлинением, хорошей формоустойчивостью, несминаемостью, высокой устойчивостью к многократным и знакопеременным нагружениям, стойкостью к действиям света, влаги, плесени, бактерий, хемо- и термостойкостью. Физико-механические и физико-химические свойства В. х. можно изменять в процессах формования, вытягивания, отделки и тепловой обработки, а также путём модификации как исходного сырья (полимера), так и самого волокна. Это позволяет создавать даже из одного исходного волокнообразующего полимера В. х., обладающие разнообразными текстильными и другими свойствами (табл.). В. х. можно использовать в смесях с природными волокнами при изготовлении новых ассортиментов текстильных изделий, значительно улучшая качество и внешний вид последних.

Производство. Для производства В. х. из большого числа существующих полимеров применяют лишь те, которые состоят из гибких и длинных макромолекул, линейных или слаборазветвлённых, имеют достаточно высокую молекулярную массу и обладают способностью плавиться без разложения или растворяться в доступных растворителях. Такие полимеры принято называть волокнообразующими. Процесс складывается из следующих операций: 1) приготовления прядильных растворов или расплавов; 2) формования волокна; 3) отделки сформованного волокна.

Приготовление прядильных растворов (расплавов) начинают с перевода исходного полимера в вязкотекучее состояние (раствор или расплав). Затем раствор (расплав) очищают от механических примесей и пузырьков воздуха и вводят в него различные добавки для термо- или светостабилизации волокон, их матировки и т.п. Подготовленный таким образом раствор или расплав подаётся на прядильную машину для формования волокон.

Формование волокон заключается в продавливании прядильного раствора (расплава) через мелкие отверстия фильеры (См. Фильера) в среду, вызывающую затвердевание полимера в виде тонких волокон. В зависимости от назначения и толщины формуемого волокна количество отверстий в фильере и их диаметр могут быть различными. При формовании В. х. из расплава полимера (например, полиамидных волокон (См. Полиамидные волокна)) средой, вызывающей затвердевание полимера, служит холодный воздух. Если формование проводят из раствора полимера в летучем растворителе (например, для ацетатных волокон (См. Ацетатные волокна)), такой средой является горячий воздух, в котором растворитель испаряется (так называемый «сухой» способ формования). При формовании волокна из раствора полимера в нелетучем растворителе (например, вискозного волокна (См. Вискозные волокна)) нити затвердевают, попадая после фильеры в специальный раствор, содержащий различные реагенты, так называемую осадительную ванну («мокрый» способ формования). Скорость формования зависит от толщины и назначения волокон, а также от метода формования. При формовании из расплава скорость достигает 600—1200 м/мин, из раствора по «сухому» способу — 300—600 м/мин, по «мокрому» способу — 30—130 м/мин. Прядильный раствор (расплав) в процессе превращения струек вязкой жидкости в тонкие волокна одновременно вытягивается (фильерная вытяжка). В некоторых случаях волокно дополнительно вытягивается непосредственно после выхода с прядильной машины (пластификационная вытяжка), что приводит к увеличению прочности В. х. и улучшению их текстильных свойств.

Отделка В. х. заключается в обработке свежесформованных волокон различными реагентами. Характер отделочных операций зависит от условий формования и вида волокна. При этом из волокон удаляются низкомолекулярные соединения (например, из полиамидных волокон), растворители (например, из полиакрилонитрильных волокон), отмываются кислоты, соли и другие вещества, увлекаемые волокнами из осадительной ванны (например, вискозными волокнами). Для придания волокнам таких свойств, как мягкость, повышенное скольжение, поверхностная склеиваемость одиночных волокон и др., их после промывки и очистки подвергают авиважной обработке или замасливанию. Затем волокна сушат на сушильных роликах, цилиндрах или в сушильных камерах. После отделки и сушки некоторые В. х. подвергают дополнительной тепловой обработке — термофиксации (обычно в натянутом состоянии при 100—180°С), в результате которой стабилизируется форма пряжи, а также снижается последующая усадка как самих волокон, так и изделий из них во время сухих и мокрых обработок при повышенных температурах.

Мировое производство В. х. развивается быстрыми темпами. Это объясняется, в первую очередь, экономическими причинами (меньшие затраты труда и капитальных вложений) и высоким качеством В. х. по сравнению с природными волокнами. В 1968 мировое производство В. х. достигало 36% (7,287 млн. т) от объёма производства всех видов волокон.

В. х. в различных отраслях в значительной степени вытесняют натуральный шёлк, лён и даже шерсть. Предполагается, что к 1980 производство В. х. достигнет 9 млн. т, а в 2000 — 20 млн. т в год и сравняется с объёмом производства природных волокон. В СССР в 1966 было выпущено около 467 тыс. т, а в 1970 623 тыс. т.

Основные свойства волокон химических

ПрочностьУдлинение, %
Влагопогло-
Плотность,мокроговолокнаНабуханиещение при
Вид волокнаг/см 3сухого во- локна, кгс/мм 2волокнав петлесухого волокнамокрого волокнав воде, %20°С и 65% относит.
влажности, %
% от прочности сухого
Искусственные волокна
Ацетатное (текст. нить)1,3216—18658525—3535—4520—256,5
Триацетатное штапельное волокно1,3014—23708522—2830—4012—184,0
Вискозные волокна:
штапельное обычное1,5232—37553515—2319—2895—12013,0
штапельное высокопрочное1,5250—60754019—2825—2962—6512,0
штапельное высокомодульное1,5250—8265255—157—2055—9012,0
текст. нить обычная1,5232—37554515—2319—2895—12013,0
то же, высокопрочная1,5245—82803512—1620—2765—7013,0
Медноаммиачные волокна:
штапельное волокно1,5221—26657030—4035—5010012,5
текст. нить1,5223—32657510—1715—3010012,5
Синтетические волокна
Полиамидное (капрон):
текстильная нить обычная1,1446—6485—908530—4532—4710—124,5
то же, высокопрочная1,1474—8685—908015—2016—219—104,5
штапельное волокно1,1441—6280—907545—7510—124,5
Полиэфирное (лавсан):
текст. нить обычная1,3852—621009018—3018—303—50,35
то же, высокопрочная1,3880—100100808—158—153—50,35
штапельное волокно1,3840—5810040—8020—3020—303—50,35
Полиакрилонитрильное (нитрон):
технич. нить1,1746—56957216—1716—1720,9
штапельное волокно1,1721—32907020—6020—605—61,0
Поливинилспиртовое штапельное волокно1,3047—70803520—2520—25253,4
Поливинилхлоридное штапельное волокно1,3811—1610060—9023—18023—18000
Полипропиленовое волокно:
текстильная нить0,9030—651008015—3015—3000
штапельное волокно0,9030—491009020—4020—4000
Полиуретановая нить (спандекс)1,05—10100100500—1000500—10001,0

Лит.: Характеристика химических волокон. Справочник, М., 1966; Роговин З. А., Основы химии и технологии производства химических волокон, 3 изд., т. 1—2, М. — Л., 1964; Технология производства химических волокон, М., 1965.

Источник

Химические волокна и нити

XIX век ознаменовался важными открытиями в науке и технике. Резкий технический бум коснулся практически всех сфер производств, многие процессы были автоматизированы и перешли на качественно новый уровень.

Техническая революция не обошла стороной и текстильное производство – в 1890 году во Франции впервые было получено волокно, изготовленное с применением химических реакций. С этого события началась история химических волокон.

Виды, классификация и свойства химических волокон

Согласно классификации все волокна подразделяются на две основные группы: органические и неорганические. К органическим относятся искусственные и синтетические волокна. Разница между ними состоит в том, что искусственные создаются из природных материалов (полимеров), но с помощью химических реакций.

Синтетические волокна в качестве сырья используют синтетические полимеры, процессы же получения тканей принципиально не отличаются. К неорганическим волокнам относят группу минеральных волокон, которые получают из неорганического сырья.

В качестве сырья для искусственных волокон используются гидратцеллюлозные, ацетилцеллюлозные и белковые полимеры, для синтетических – карбоцепные и гетероцепные полимеры.

Благодаря тому, что при производстве химических волокон используются химические процессы, свойства волокон, в первую очередь механические, можно изменять, если использовать разные параметры процесса производства.

Главными отличительными свойствами химических волокон, по сравнению с натуральными, являются:

Некоторые специальные виды обладают устойчивостью к высоким температурам и агрессивным средам.

ГОСТ химические нити

По Всероссийскому ГОСТу классификация химических волокон достаточно сложная.

Искусственные волокна и нити, согласно ГОСТу, делятся на:

Синтетические волокна и нити, в свою очередь, состоят из следующих групп: волокна синтетические, нити синтетические для кордной ткани, для технических изделий, пленочные и текстильные синтетические нити.

Каждая группа включает в себя один или несколько подвидов. Каждому подвиду присвоен свой код в каталоге.

Технология получения, производства химических волокон

Производство химических волокон имеет большие преимущества по сравнению с натуральными волокнами:

С технологической точки зрения, данные процессы сложные и всегда состоят из нескольких этапов. Сначала получают исходный материал, потом преобразовывают его в специальный прядильный раствор, далее происходит формирование волокон и их отделка.

Для формирования волокон используются разные методики:

Применение химических волокон

Химические волокна имеют очень широкое применение во многих отраслях. Главным их преимуществом является относительно низкая себестоимость и продолжительный срок службы. Ткани из химических волокон активно используются для пошива специальной одежды, в автомобильной промышленности – для укрепления шин. В технике разного рода чаще применяются нетканые материалы из синтетического или минерального волокна.

Текстильные химические волокна

В качестве сырья для производства текстильных волокон химического происхождения (в частности, для получения синтетического волокна) используются газообразные продукты переработки нефти и каменного угля. Таким образом, синтезируются волокна, которые различаются по составу, свойствам и способу горения.

Среди наиболее популярных:

Среди искусственных волокон самые распространенные – это вискозное и ацетатное. Вискозные волокна получают из целлюлозы – преимущественно еловых пород. С помощью химических процессов этому волокну можно придать визуальную схожесть с натуральным шелком, шерстью или хлопком. Ацетатное волокно производят из отходов от производства хлопка, поэтому они хорошо впитывают влагу.

Нетканые материалы из химических волокон

Нетканые материалы можно получать как из натуральных, так и из химических волокон. Часто нетканые материалы производят из вторсырья и отходов других производств.

Волокнистая основа, подготовленная механическим, аэродинамическим, гидравлическим, электростатическим или волокнообразующим способами, скрепляется.

Основной стадией получения нетканых материалов является стадия скрепления волокнистой основы, получаемой одним из способов:

Объекты промышленности химических волокон

Поскольку химическое производство охватывает несколько областей промышленности, все объекты химической промышленности делятся на 5 классов в зависимости от сырья и области применения:

По типу назначения объекты промышленности химических волокон разделяются на основные, общезаводские и вспомогательные.

Источник

Синтетические волокна – это нити из не натуральных, не встречающихся в природе полимерных материалов. Для получения волокнообразующего вещества, первоначальным сырьем служат нефть и сопутствующие газы, каменноугольные смолы.

Для химического производства исходной массы необходимы базовые компоненты: этилен, фенолы, бензол и подобные. Образуемые высокомолекулярные заготовки производятся в виде раствора или расплава. В отдельных случаях требуется защитная среда инертных газов.

что такое волокна в химии. Смотреть фото что такое волокна в химии. Смотреть картинку что такое волокна в химии. Картинка про что такое волокна в химии. Фото что такое волокна в химии

Для образования собственно волокна используется фильера. Станок представляет собой емкость с перфорированным днищем, откуда выдавливаются нити с нужным сечением.

Далее расплав охлаждается для затвердения. Из растворов может просто удаляться жидкая составляющая путем выпаривания (сухой способ). При мокром формировании заготовка помещается в среду отвердителей.

что такое волокна в химии. Смотреть фото что такое волокна в химии. Смотреть картинку что такое волокна в химии. Картинка про что такое волокна в химии. Фото что такое волокна в химии

Для получения правильной внутренней структуры процесс происходит с вытягиванием. Только в этом случае обеспечивается ориентация молекулярных цепочек по оси, что критично влияет на прочностные свойства продукта. В зависимости от требуемого товарного вида нити режутся или наматываются на катушки.

Классификация волокон

что такое волокна в химии. Смотреть фото что такое волокна в химии. Смотреть картинку что такое волокна в химии. Картинка про что такое волокна в химии. Фото что такое волокна в химии

Различаются по химическому составу:

Гетероцепные

В промышленных объемах изготавливаются описанные ниже полиамидные и полиэфирные волокна.

Полиуретановые волокна

Изготавливаются из диизоцианата и диамина. Торговые названия: спандекс, лайкра, неолан. По механическим свойствам напоминают резину. Держат нагрузки до 120°C.

что такое волокна в химии. Смотреть фото что такое волокна в химии. Смотреть картинку что такое волокна в химии. Картинка про что такое волокна в химии. Фото что такое волокна в химии

Применяются для изготовления эластичных тканей с возможным добавлением иных искусственных нитей.

эластичны, с высокой растяжимостью;

быстро восстанавливаются до первоначальных размеров;

высокая химическая стойкость.

при интенсивном освещении желтеют.

Полиэфирные волокна

Готовятся из расплава полиэтилентерефталата. Марки: лавсан (терилен), тесил, дакрон. Сохраняют ½ прочности при 180°C.

что такое волокна в химии. Смотреть фото что такое волокна в химии. Смотреть картинку что такое волокна в химии. Картинка про что такое волокна в химии. Фото что такое волокна в химии

Растворяются в сильных кислотах и феноле. Не переносят нагрева в щелочах.

устойчивы к растворителям;

не разрушаются бактериями, насекомыми, грибками.

плохо поддаются окраске;

склонны к образованию катышков;

Полиамидные волокна

Торговые марки: капрон (перлон), найлоны (аниды), этант. Работоспособны при температурах до 90. 160°C. С начала 70-х годов прошлого века производятся термостойкие (до 400…600°C) алифатические составы.

что такое волокна в химии. Смотреть фото что такое волокна в химии. Смотреть картинку что такое волокна в химии. Картинка про что такое волокна в химии. Фото что такое волокна в химии

Не стойки к минеральным кислотам, трихлорэтану, фенолу и подобным соединениям. Слабо гигроскопичны.

высокая механическая прочность;

стойкость к циклическому изгибу, истиранию и низким температурам;

хорошо переносят большинство химикатов и микрофлору.

плохо переносят солнечный свет (кроме специальных модификаций);

склонны к термоокислению;

Карбоцепные

Выделяются высокой стойкостью к кислотам и щелочам. Часто применяются как электрические изоляторы.

Полиакрилонитрильные волокна

Торговые наименования: нитрон, акрилан. Обладают свойствами, сходными с шерстью. Прочные, со средней износостойкостью.

что такое волокна в химии. Смотреть фото что такое волокна в химии. Смотреть картинку что такое волокна в химии. Картинка про что такое волокна в химии. Фото что такое волокна в химии

не теряют качеств под воздействием воды;

не разрушаются от радиации и света;

ценны, как теплоизолятор;

не боятся насекомых и бактерий.

Недостатки: высокая электризуемость.

Полиолефиновые волокна

Включают полиэтиленовые (спектра, текмилнон) и полипропиленовые (геркулон, мераклон). Последние имеют плотность меньше воды (до 920 кг/м 3 ), поэтому используются для плетения нетонущих веревок.

что такое волокна в химии. Смотреть фото что такое волокна в химии. Смотреть картинку что такое волокна в химии. Картинка про что такое волокна в химии. Фото что такое волокна в химии

высокие прочность и эластичность;

стойкие химически, не боятся микроорганизмов;

Недостатки: низкая термостойкость (до 110°C).

Поливинилхлоридные волокна

К списку торговых марок относятся хлорин, виньон, тевирон. Синтезируются и сухим, и мокрым способами.

что такое волокна в химии. Смотреть фото что такое волокна в химии. Смотреть картинку что такое волокна в химии. Картинка про что такое волокна в химии. Фото что такое волокна в химии

Обладают средними прочностью, износостойкостью, эластичностью.

хороший тепло- и электроизолятор;

не боятся микроорганизмов и грибков.

под воздействием влаги дают значительную усадку.

Поливинилспиртовые волокна

Марки: винол, мтилан, виналон. В зависимости от компонентов могут обладать бактерицидными качествами и повышенной гигроскопичностью.

что такое волокна в химии. Смотреть фото что такое волокна в химии. Смотреть картинку что такое волокна в химии. Картинка про что такое волокна в химии. Фото что такое волокна в химии

высокая прочность, стойкость к износу;

мало реагируют на химически активные вещества, растворители, яркий свет.

Недостатки: опаливаются под воздействием огня.

Заключение

Синтетические волокна выгодно отличаются от естественных и искусственных в части прочности, эластичности, стабильности в агрессивных средах, отсутствия склонности к гниению. Но уступают последним в гигроскопичности, что ограничивает их использование, например, в качестве материала для одежды.

Синтетика относительно дешева, что делает ее применение массовым.

Источник

Химия. 10 класс

Конспект урока

Урок № 17. Синтетические волокна

Перечень вопросов, рассматриваемых в теме: урок посвящён общим вопросам химии полимеров – синтетическим волокнам (лавсан и капрон).

Волокна – природные или химические высокомолекулярные вещества, отличающиеся от других полимеров более высокой степенью упорядоченности молекул и, как следствие особыми физическими свойствами, позволяющими использовать их для получения нитей.

Искусственное волокно – это волокно, которое является продуктом химической переработки высокомолекулярных природных веществ (целлюлозы, природного каучука, белков).

Макромолекула — молекула с высокой молекулярной массой, структура которой представляет собой многократные повторения звеньев, образованных из молекул малой молекулярной массы. Число атомов, входящих в состав макромолекул, может быть очень большим (сотни тысяч и миллионы).

Мономер — это низкомолекулярное вещество, образующее полимер в реакции полимеризации или поликонденсации.

Мономерное звено — повторяющийся структурный фрагмент, включающий несколько атомов.

Полиамидные волокна – синтетические волокна, формуемые из расплавов или растворов полиамидов.

Поликонденсация — процесс синтеза полимеров из полифункциональных (чаще всего бифункциональных) соединений, обычно сопровождающийся выделением низкомолекулярных побочных продуктов (воды, спиртов и т. п.) при взаимодействии функциональных групп.

Полимеризация — процесс образования высокомолекулярного вещества (полимера) путём многократного присоединения молекул низкомолекулярного вещества (мономера, олигомера) к активным центрам в растущей молекуле полимера.

Полимеры — неорганические и органические, аморфные и кристаллические вещества, состоящие из «мономерных звеньев», соединённых в длинные макромолекулы химическими или координационными связями.

Полимеры — вещества с молекулярной массой от нескольких тысяч до нескольких миллионов.

Полиэфирное волокно — синтетическое волокно, формируемое из расплава полиэтилентерефталата или его производных.

Синтетическое волокно – это волокно, вырабатываемое из синтетических полимеров (полиамидного, полиэфирного и других волокон).

Степень полимеризации – количество мономерных звеньев в полимере.

Основная литература: Рудзитис, Г. Е., Фельдман, Ф. Г. Химия. 10 класс. Базовый уровень; учебник/ Г. Е. Рудзитис, Ф. Г, Фельдман – М.: Просвещение, 2018. – 224 с.

1. Рябов, М.А. Сборник задач, упражнений и тесто по химии. К учебникам Г.Е. Рудзитис, Ф.Г. Фельдман «Химия. 10 класс» и «Химия. 11 класс»: учебное пособие / М.А. Рябов. – М.: Экзамен. – 2013. – 256 с.

2. Рудзитис, Г.Е. Химия. 10 класс : учебное пособие для общеобразовательных организаций. Углублённый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. – М. : Просвещение. – 2018. – 352 с.

Открытые электронные ресурсы:

Теоретический материал для самостоятельного изучения

Предпосылки создания синтетических волокон. С давних времен человек широко использовал природные волокнистые материалы. Долгое время это были натуральные материалы растительного и животного происхождения. За последние 150 лет население Земли резко возросло, что привело к возрастанию потребностей человеческого общества. Поэтому объёмов выработки природных полимеров (шерсти, льна, хлопка, конопли, шёлка) не хватало. Устранить несоответствие помогла органическая химия созданием химических волокон. Ежегодно производятся миллионы километров химических волокон.

Классификация волокон. В зависимости от происхождения и способа получения учёные делят волокна на 2 большие группы: природные (натуральные) и химические. Следовательно, волокнами называют природные или химические высокомолекулярные вещества, отличающиеся от других полимеров более высокой степенью упорядоченности молекул и, как следствие особыми физическими свойствами, позволяющими использовать их для получения нитей. Искусственное волокно – это волокно, которое является продуктом химической переработки высокомолекулярных природных веществ (целлюлозы, природного каучука, белков).

Синтетическое волокно – это волокно, вырабатываемое из синтетических полимеров (полиамидного, полиэфирного и других волокон).

Лавсан (полиэтилентерефталат) является представителем полиэфирных волокон. Лавсан является линейным жесткоцепным полимером.

Структурная формула лавсана что такое волокна в химии. Смотреть фото что такое волокна в химии. Смотреть картинку что такое волокна в химии. Картинка про что такое волокна в химии. Фото что такое волокна в химии. Способ получения. Лавсан получают реакцией поликонденсации терефталевой кислоты (1,4-бензолдикарбоновой) и этиленгликоля, которую можно выразить в общем виде:

Поскольку сложноэфирные связи –СОО– в макромолекуле повторяются многократно, то образуется полимер, который называют полиэфир. Полимер образуется ввиде смолы с упорядоченной ориентацией макромолекулы, которая достигается следующим образом: смола плавится без разложения при 80– 120 °С, затем пропускается через фильтры, обсушивается, проходя через шахту и вытягивается в нити, что усиливает их ориентацию.

Лавсан – это практичная, удобная в применении, ткань, изделия из которой доступны и долговечны. Достоинства лавсана: прочность, износостойкость (отсутствие усадки и растяжения); свето– и термостойкость; хороший диэлектрик; устойчивость к действию растворов кислот и щелочей средней концентрации; высокая термостойкость (– 70 0 до + 170 0 ). Недостатки лавсана: негигроскопичность (не впитывает воду, т.к. не может образовывать водородные связи с молекулами воды). Применяется лавсан в производстве: волокон и нитей для изготовления трикотажных изделий, и несминаемых тканей (креп, твид, тюль, кружево и другие); заменителя шерсти; пленок, бутылей, упаковочного материала, контейнеров и др.; изделий технического назначения (транспортёрных лент, приводных ремней, канатов, парусов, рыболовных сетей и тралов, бензо- и нефтестойких шлангов и др.); материалов для медицины (хирургических нитей и материалов для имплантации в сердечно-сосудистой системе). Уход за изделиями из ткани лавсан: можно чистить, стирать вручную или с помощью машинки в горячей воде до 60°С (материал хорошо отстирывается); отбеливатели применять не нужно, т.к. красители могут быть неустойчивы; изделия из лавсана можно отжимать в режиме вращения барабана с минимальными скоростями, чтобы на ткани не образовались заломы; высушивать лучше в расправленном состоянии; гладить можно утюгом с максимальной температурой нагрева 140–150°С.

Капрон является представителем полиамидных волокон. Структурная формула капрона [–NH– (CH2)5– CO– ]n.

Способ получения. В промышленности капрон получают поэтапно. Сначала реакцией поликонденсации получают производное ε– аминокапроновой кислоты – капролактам. Во время синтеза молекулы капролактама превращаются в этиламинокапроновую кислоту, которая подвергается реакции поликонденсации. Таким образом молекула образовавшегося полимера состоит из многократно повторяющихся остатков этиламинокапроновой кислоты, содержащих пептидные связи. Процесс ведется в присутствии воды, играющей роль активатора, при температуре 240– 270° С и давлении 15– 20 кгс/см 2 в атмосфере азота.

что такое волокна в химии. Смотреть фото что такое волокна в химии. Смотреть картинку что такое волокна в химии. Картинка про что такое волокна в химии. Фото что такое волокна в химии

ε-аминокапроновая кислота полимер-смола

Полимер имеет вид смолы. Для получения волокон смолу плавят, пропускают через фильтры, затем подвергают специальной обработке, после которой скручивают нити.

Достоинства капрона: легкий и очень прочный материал; трудно растворимый высокоплавкий полимер с температурой плавления 180–250 °С; устойчивость к истиранию и деформации; стоек к действию разбавленных растворов кислот и щелочей; не впитывает влагу, следовательно, сохраняет прочность во влажном состоянии. Недостатки капрона: неустойчив к действию концентрированных растворов кислот– щелочей и высоких температур (нельзя изделия гладить горячим утюгом). Применяется капрон в производстве: прочных и износостойких деталей машин и механизмов; трикотажных изделий; для производства технических тканей, канатов, рыболовных сетей. Уход за изделиями из ткани капрон: изделия стирают в теплой воде с мягкими моющими средствами; не сушат в центрифуге; гладят при низкой температуре.

ПРИМЕР И РАЗБОР РЕШЕНИЯ ЗАДАНИЙ ТРЕНИРОВОЧНОГО МОДУЛЯ.

Решение задачи о способах получения и свойствах органических веществ.

Задача 1. Рассчитайте, какое количество исходного вещества потребуется для получения 702 кг терефталевой кислоты, если выход её составляет 90% от теоретического (ответ округлите до целого числа)?

2. Рассчитаем теоретическую массу терефталевой кислоты: mтеор.= mпракт. х 100%/η; mтеор. (C6H4(COOH)2) = 702 кг х 100% / 90% = 780 кг.

3. Рассчитаем количество вещества терефталевой кислоты:

4. Рассчитаем массу исходного вещества пара– ксилола.

Задача 2. Сколько килограмм этиленгликоля можно получить из 180 л (при н.у.) этилена, если выход 78% (ответ округлите до целого числа)?

2. Рассчитаем количество вещества этилена при н.у.:

3. Количественные отношения веществ по уравнению реакции 1:1, следовательно ν (этиленгликоль) = ν (C2H4) = 8 моль.

4. Рассчитаем теоретическую массу этиленгликоля:

m(теор) (элиленгликоль)= М х ν =8 моль х 62 г/моль = 496 г.

5. Рассчитаем практическую массу этиленгликоля, если теоретический выход составляет 78%:

m практ. = η (выход) х m теор. = 496 г х 0,78 = 378 г.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *