что такое поглощение рентгеновских лучей
ПОГЛОЩЕНИЕ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ В ВЕЩЕСТВЕ
ПОГЛОЩЕНИЕ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ В ВЕЩЕСТВЕ. При исследовании взаимодействия рентгеновских лучей с веществом (твердым, жидким или газообразным) регистрируется интенсивность прошедшего или дифрагированного излучения. Эта интенсивность интегральна и связана с различными процессами взаимодействия. Чтобы отделить друг от друга эти процессы, используют их зависимости от условий эксперимента и физических характеристик исследуемого объекта.
Эффект рассеяния рентгеновских лучей связан с тем, что силы переменного электромагнитного поля, создаваемого пучком рентгеновских лучей, приводят в колебательное движение электроны в исследуемом материале. Колеблющиеся электроны испускают рентгеновские лучи той же длины волны, что и первичные, при этом отношение мощности лучей, рассеянных 1 г вещества, к интенсивности падающего излучения приближенно составляет 0,2. Этот коэффициент несколько увеличивается для рентгеновских лучей с большой длиной волны (мягкое излучение) и уменьшается для лучей с малой длиной волны (жесткое излучение). При этом сильнее всего рассеиваются лучи в направлении падающего пучка рентгеновских лучей (и в обратном направлении) и слабее всего (в 2 раза) в направлении, перпендикулярном первичному.
Фотоэффект возникает, когда поглощение падающего рентгеновского излучения сопровождается выбросом электронов. После выброса внутреннего электрона происходит возврат к стационарному состоянию. Этот процесс может происходить либо без излучения с выбросом второго электрона (эффект Оже), либо сопровождаться характеристическим рентгеновским излучением атомов материала (см. РЕНТГЕНОВСКИЕ ЛУЧИ). По своей природе это явление аналогично флюоресценции. Рентгеновская флюоресценция может происходить только при воздействии характеристического рентгеновского излучения какого-либо элемента на преграду из более легкого элемента (с меньшим атомным номером).
Суммарное поглощение рентгеновских лучей определяется суммированием всеми видами взаимодействия, ослабляющими интенсивность рентгеновского излучения. Для оценки ослабления интенсивности рентгеновского излучения при прохождении через вещество используют линейный коэффициент ослабления, характеризующий уменьшение интенсивности излучения при прохождении через 1 см вещества и равный натуральному логарифму отношения интенсивностей падающего и прошедшего излучения. Кроме того, как характеристику способности вещества поглощать падающее излучение используют толщину слоя половинного поглощения, т.е. толщина слоя, при прохождении через который интенсивность излучения уменьшается вдвое.
Физические механизмы рассеяния рентгеновского излучения и возникновения вторичного характеристического излучения различны, но во всех случаях зависят от количества атомов вещества, взаимодействующих с рентгеновским излучением, т.е. от плотности вещества, поэтому универсальной характеристикой поглощения является массовый коэффициент поглощения – истинный коэффициент поглощения, отнесенный к плотности вещества.
Коэффициент поглощения в одном и том же веществе падает с уменьшением длины волны рентгеновского излучения, однако при некоторой длине волны происходит резкое увеличение (скачок) коэффициента поглощения, после чего продолжается его уменьшение (рис.). При скачке коэффициент поглощения увеличивается в несколько раз (иногда на порядок) и на разную величину для различных веществ. Возникновение скачка поглощения связано с тем, что при определенной длине волны возбуждается характеристическое рентгеновское излучение облучаемого вещества, что резко увеличивает потери энергии при прохождении излучения. В пределах каждого участка кривой зависимости коэффициента поглощения от длины волны (до и после скачка поглощения) массовый коэффициент поглощения меняется пропорционально кубу длины волны рентгеновского излучения и атомного номера химического элемента (материала преграды).
Когда через вещество проходит немонохроматическое рентгеновское излучение, например, излучение со сплошным спектром, возникает спектр коэффициентов поглощения, при этом коротковолновое излучение поглощается слабее длинноволнового и по мере увеличения толщины преграды результирующий коэффициент поглощения приближается к величине, характерной для коротковолнового излучения. Если вещество состоит из нескольких химических элементов, то суммарный коэффициент поглощения зависит от атомного номера каждого элемента и количества этого элемента в веществе.
Расчеты поглощения рентгеновского излучения в веществе имеют большое значение для рентгенодефектоскопии. При наличии дефекта (например, поры или раковины) в металлической пластине интенсивность прошедшего излучения увеличивается, а при включении из более тяжелого элемента – уменьшается. Зная величину коэффициента поглощения, можно рассчитать геометрические размеры внутреннего дефекта.
Рентгеновские фильтры.
При исследовании материалов с помощью рентгеновского излучения интерпретация результатов усложняется из-за наличия нескольких длин волн. Для выделения отдельных длин волн применяют рентгеновские фильтры, изготовленные из веществ с различным коэффициентом поглощения для различных длин волн, при этом используется тот факт, что рост длины волны излучения сопровождается увеличением коэффициента поглощения. Например, для алюминия коэффициент поглощения рентгеновского излучения К-серии от железного анода ( l = 1,932 А), больше, чем для излучения К-серии от молибденового анода ( l = 0,708 А) и при толщине алюминиевого фильтра 0,1 мм ослабление излучения от железного анода в 10 раз больше, чем для излучения молибдена.
При взаимодействии рентгеновского излучения с твердым телом могут возникать радиационные повреждения структуры, связанные с перемещением атомов. В ионных кристаллах возникают центры окраски, аналогичные явления наблюдаются в стеклах, в полимерах меняются механические свойства. Эти эффекты связаны с выбиванием атомов из равновесных положений в кристаллической решетке. В результате образуются вакансии – отсутствие атомов в равновесных положениях в кристаллической решетке и внедренные атомы, находящиеся в равновесном положении в решетке. Эффект окрашивания кристаллов и стекла под действием рентгеновского излучения является обратимым и в большинстве случаев исчезает при нагреве или длительной выдержке. Изменение механических свойств полимеров при рентгеновском облучении связано с разрывом межатомных связей.
Основным направлением изучения взаимодействия рентгеновского излучения с твердым телом является рентгеноструктурный анализ, с помощью которого исследуют расположение атомов в твердом теле и его изменения при внешних воздействиях.
Основы рентгенологии
8 ноября 1895 года профессор физики Вюрцбургского университета В.К. Рентген, проводя опыты по изучению прохождения тока высокого напряжения через трубку Крукса-Гитторфа, обнаружил неизвестные лучи, которые вызывали свечение экрана, покрытого платино-синеродистым барием. В течение семи недель Рентген интенсивно работал над изучением свойств этих лучей и только 28 декабря 1895 г. появилось первое сообщение о новом виде лучей, их назвали х-лучи. В дальнейшем по предложению анатома Келликера лучи были названы рентгеновыми.
Рентгеновское излучение относится к электромагнитным, возникает в результате торможения быстро движущихся электронов в момент их столкновения с анодом рентгеновской трубки. Применение рентгеновского излучения для клинической диагностики заболеваний основано на его способности проникать через различные органы и ткани, вызывать свечение некоторых химических соединений, а также оказывать фотохимическое действие на рентгеновскую пленку.
Рентгеновское изображение формируется в системе: рентгеновский излучатель (трубка)- объект исследования — приемник изображения (рентгенографическая пленка, экран, полупроводниковая пластина). В основе его получения лежит неравномерное поглощение рентгеновского излучения различными анатомическими структурами, органами и тканями обследуемого.
Как известно, интенсивность поглощения рентгеновского излучения зависит от атомного состава, плотности и толщины исследуемого объекта. Чем тяжелее входящие в ткани химические элементы и больше плотность и толщина слоя, тем интенсивнее поглощается рентгеновское излучение. И, наоборот, ткани, состоящие из элементов с низким атомным номером, обычно имеют небольшую плотность и поглощают рентгеновское излучение в меньшей степени. Другими словами, в наибольшей степени рентгеновское излучение поглощается костями, значительно в меньшей степени — мягкими тканями и меньше всего — тканями, содержащими воздух.
Неравномерное поглощение рентгеновского излучения в тканях исследуемой области обуславливает формирование в пространстве за объектом измененного или неоднородного пучка рентгеновских лучей (выходной дозы). По сути, этот пучок содержит в себе невидимые глазом изображения. Воздействуя на рентгенографическую пленку или экран, он создает привычно рентгеновское изображение.
Рентгенография относится к наиболее распространенным и весьма информативным методикам рентгенологического исследования. Эта методика позволяет получить изображение практически любой анатомической области. В основе получения рентгенографического изображения лежат процессы, происходящие в светочувствительном слое рентгенографической пленки.
Рентгенографическое изображение является негативным (обратным). На рентгенографической пленке наиболее черными (темными) являются участки изображения, соответствующие структурам, имеющим небольшую плотность и толщину, т.е. » прозрачными» для рентгеновского излучения. Это, прежде всего, воздушная легочная ткань, содержащий газ кишечник и придаточные пазухи носа, мягкие ткани (особенно жировая). Наоборот, кости, различные обызвествления, массивные образования и другие анатомические структуры, интенсивно поглощающие излучение, создают на пленке просветления. Так, например, при рентгенографии грудной клетки на фоне темной (черной) воздушной легочной ткани отчетливо контурируются светлые тени ребер, сердца, крупных сосудов, патологических образований легочной ткани.
При выполнении рентгенографии необходимо стремиться к стандартизации условии исследования, что достигается:
1. Стандартизацией укладок для каждой анатомической области.
2. Стандартизацией технических параметров съемки.
3. Стандартизацией процесса фотохимической обработки пленки.
Обычно исследование начинают с рентгенографии в типичных, или как принято говорить, в стандартных проекциях. Как правило, это съемка — в прямой и боковой проекциях при сагиттальном и фронтальном направлении пучка рентгеновского излучения, в положении стоя для определения уровня и количества жидкости в брюшной и грудной полостях.
Иногда снимки производят в условиях выполнения функциональных проб, при сгибании и разгибании исследуемого сустава.
Перед съемкой исследуемую зону располагают в центре кассеты, а ось (тела, конечности) параллельно пленке. Пучок рентгеновского излучения направляют в центр кассеты перпендикулярно ее плоскости, так как тень линейного предмета будет иметь наибольший размер, когда его продольная ось будет расположена перпендикулярно к ходу лучей, а если продольная ось совпадает с ходом лучей, то на снимке вместо линейного предмета можно увидеть только точку.
Рентгенограммы высокого качества могут быть получены, только при полной
неподвижности исследуемой области во время съемки.
Довольно трудным вопросом является разработка физико-технических условий для рентгенографии разных областей тела животных. Нужно соблюдать принятое для определенной области тела фокусное расстояние, его величина определяется требованиями получения максимально резких изображений, а также учитывать толщину исследуемой части тела.
Важным моментом при рентгенографии является выбор оптимального напряжения на полюсах трубки (жесткости). Измеряется в кВ. С увеличением напряжения получаются коротковолновые и более глубокопроникающие или жесткие рентгеновы лучи. С уменьшением напряжения получаются длинноволновые и менее глубокопроникающие или мягкие рентгеновы лучи.
Жесткость рентгеновского излучения приходится менять, учитывая неодинаковую толщину различных участков тела животных. Чем тоньше объект, тем мягче нужны лучи и чем толще — тем жестче.
При съемке объектов толщиной до 2см нужно пользоваться напряжением не более 60 кВ, толщиной 2-6 см — до 70 кВ, толщиной 6-10 см и более напряжением 70-100 кВ.
Правильность выбора жесткости рентгеновского излучения можно оценить по характерным деталям готовой рентгенограммы.
Мягкие снимки имеют бархатный черный фон. Костная структура хорошо видна лишь в тонких участках скелета. Изображение отделов костей, имеющих большую толщину, не проработано, лишено деталей.
При правильно выбранной жесткости рентгенограмма имеет темно-серый тон. Костная структура хорошо видна на всем протяжении исследуемого отдела скелета. Хорошо видны мягкие ткани, большое количество деталей изображения.
Для снимков, сделанных при завышенном напряжении на трубке, характерен серый фон. Теневых деталей много, но контрастность низкая, поэтому изображение мелких деталей нередко сливается с фоном.
Большое значение при рентгенографии имеет правильный выбор экспозиции, количество электрического тока, прошедшего через трубку за время съемки. Оно находится произведением силы тока мА. на выдержку в сек., выражают экспозицию в мАс.
Правильность выбора экспозиции может быть проверена при визуальном контроле над процессом проявления.
При недостаточной экспозиции изображение анатомических структур, особенно плотных или имеющих значительную толщину (поясничный отдел позвоночника, шея, череп) возникает медленно. Хорошо прорабатываются лишь тонкие участки тела животного, либо имеющие невысокую плотность.
При нормально экспозиции изображение возникает быстро через 40-60 с и завершается через 6-8 минут.
Для завышенной экспозиции характерно быстрое начало и очень быстрое завершение процесса проявления. К концу проявления на снимке имеется значительная вуаль, снижающая качество снимка. Следует помнить, что незначительные колебания экспозиции до 30% практически не отражаются на качестве рентгеновского изображения.
Главный врач ветеринарного центра «Зоовет», ветеринарный врач-рентгенолог Корнюшенкова Е.В.
2.2. Взаимодействие рентгеновского излучения с веществом
Для рентгеновских лучей с их малыми длинами волн поверхность любого тела оказывается шероховатой, поэтому обычное зеркальное отражение для них невозможно. Пронизывая шероховатости, рентгеновские лучи взаимодействуют с атомами вещества, испытывая не отражение, а диффузное рассеяние. При малых углах падения на поверхность преломляющей среды они испытывают полное внутреннее отражение. Угол падения должен при этом составлять менее 0,5.
2. Ослабление рентгеновских лучей при прохождении через вещество. При прохождении рентгеновских лучей через вещество протекают разнообразные и сложные явления взаимодействия их с атомами исследуемого вещества, вследствие чего интенсивность этих лучей уменьшается (рис.2.4).
Рис. 2.4. Ослабление рентгеновского пучка при прохождении через вещество.
Тогда уменьшение интенсивности на бесконечно малом пути dx определится уравнением:
Здесь - постоянная, характеризующая ослабление лучей с длиной волныв данном веществе на пути в 1 см. Эта постоянная называется линейным коэффициентом ослабления или полным линейным коэффициентом поглощения лучей.
Разделяя переменные и интегрируя уравнение (2.8), получим
Кроме линейного коэффициента ослабления на практике часто используют массовый коэффициент ослабления, который характеризует, насколько ослабляется поток рентгеновских лучей при прохождении через 1 грамм вещества. Массовый коэффициент ослабления связан с линейным
2.3. Поглощение и рассеяние рентгеновских лучей
Рассмотренные нами соотношения отражают количественную сторону процесса ослабления рентгеновского излучения. Остановимся кратко на качественной стороне процесса, или на тех физических процессах, которые вызывают ослабление. Это, во-первых, поглощение, т.е. превращение энергии рентгеновского излучения в другие виды энергии и, во-вторых, рассеяние, т.е. изменение направления распространения излучения без изменения длины волны (классическое рассеяние Томпсона) и с изменением длины волны (квантовое рассеяние или комптон-эффект).
1. Фотоэлектрическое поглощение. Рентгеновские кванты могут вырывать с электронных оболочек атомов вещества электроны. Их обычно называют фотоэлектронами. Если энергия падающих квантов невелика, то они выбивают электроны с наружных оболочек атома. Фотоэлектронам сообщается большая кинетическая энергия. С увеличением энергии рентгеновские кванты начинают взаимодействовать с электронами, находящимися на более глубоких оболочках атома, у которых энергия связи с ядром больше, чем электронов наружных оболочек. При таком взаимодействии почти вся энергия падающих рентгеновских квантов поглощается, и часть энергии, отдаваемой фотоэлектронам, меньше, чем в первом случае. Кроме появления фотоэлектронов в этом случае испускаются кванты характеристического излучения за счет перехода электронов с вышележащих уровней на уровни, расположенные ближе к ядру.
Рис. 2.5. Спектральное распределение коэффициента поглощения.
Зависимость коэффициента поглощения от иZпри фотоэффекте определяется как:
Эта зависимость описывает участки кривой рис.2.5 между скачками поглощения.
2. Классическое (когерентное) рассеяниеобъясняет волновая теория рассеяния. Оно имеет место в том случае, если квант рентгеновского излучения взаимодействует с электроном атома, и энергия кванта недостаточна для вырывания электрона с данного уровня. В этом случае, согласно классической теории рассеяния, рентгеновские лучи вызывают вынужденные колебания связанных электронов атомов. Колеблющиеся электроны, как и все колеблющиеся электрические заряды, становятся источником электромагнитных волн, которые распространяются во все стороны.
Интерференция этих сферических волн приводит к возникновению дифракционной картины, закономерно связанной со строением кристалла. Таким образом, именно когерентное рассеяние дает возможность получать картины дифракции, на основании которых можно судить о строении рассеивающего объекта. Классическое рассеяние имеет место при прохождении через среду мягкого рентгеновского излучения с длинами волн более 0,3 Å. Мощность рассеяния одним атомом равна:
p=
Z I0, (2.12)
а одним граммом вещества
Отсюда можно найти массовый коэффициент классического рассеяния кл/, поскольку он равен P/I0или кл/=
Z.
Подставив все значения, получим к,л/= 0,402.
Так как у большинства элементов Z/A0,5 (кроме водорода), то
т.е. массовый коэффициент классического рассеяния примерно одинаков для всех веществ и не зависит от длины волны падающего рентгеновского излучения.
3. Квантовое (некогерентное) рассеяние. При взаимодействии вещества с жестким рентгеновским излучением (длиной волны менее 0,3 Å) существенную роль начинает играть квантовое рассеяние, когда наблюдается изменение длины волны рассеянного излучения. Это явление нельзя объяснить волновой теорией, но оно объясняется квантовой теорией. Согласно квантовой теории такое взаимодействие можно рассматривать как результат упругого столкновения рентгеновских квантов со свободными электронами (электронами внешних оболочек). Этим электронам рентгеновские кванты отдают часть своей энергии и вызывают переход их на другие энергетические уровни. Электроны, получившие энергию, называются электронами отдачи. Рентгеновские кванты с энергией h0в результате такого столкновения отклоняются от первоначального направления на угол, и будут иметь энергию h1, меньшую, чем энергия падающего кванта. Уменьшение частоты рассеянного излучения определяется соотношением:
Теория и опыт показывают, что изменение частоты или длины волны при квантовом рассеянии не зависит от порядкового номера элемента Z, но зависит от угла рассеяния. При этом
где 0 и— длина волны рентгеновского кванта до и после рассеяния,
m0— масса покоящегося электрона,c— скорость света.
Ввиду того, что квантовое рассеяние некогерентно (различно , различен угол распространения отраженного кванта, нет строгой закономерности в распространении рассеянных волн по отношению к кристаллической решетке), порядок в расположении атомов не влияет на характер квантового рассеяния. Эти рассеянные рентгеновские лучи участвуют в создании общего фона на рентгенограмме. Зависимость интенсивности фона от угла рассеяния может быть теоретически вычислена, что практического применения в рентгеноструктурном анализе не имеет, т.к. причин возникновения фона несколько и общее его значение не поддается легкому расчету.
Рассмотренные нами процессы фотоэлектронного поглощения, когерентного и некогерентного рассеяния определяют, в основном ослабление рентгеновских лучей. Кроме них возможны и другие процессы, например, образование электронно-позитронных пар в результате взаимодействия рентгеновских лучей с ядрами атомов. Под воздействием первичных фотоэлектронов с большой кинетической энергией, а также первичной рентгеновской флюоресценции, возможно возникновение вторичного, третичного и т.д. характеристического излучения и соответствующих фотоэлектронов, но уже с меньшими энергиями. Наконец, часть фотоэлектронов (а частично и электронов отдачи) может преодолевать потенциальный барьер у поверхности вещества и вылетать за его пределы, т.е. может иметь место внешний фотоэффект.
Все отмеченные явления, однако, значительно меньше влияют на величину коэффициента ослабления рентгеновских лучей. Для рентгеновских лучей с длинами волн от десятых долей до единиц ангстрем, используемых обычно в структурном анализе, всеми этими побочными явлениями можно пренебречь и считать, что ослабление первичного рентгеновского пучка происходит с одной стороны за счет рассеяния и с другой – в результате процессов поглощения. Тогда коэффициент ослабления можно представить в виде суммы двух коэффициентов.
где /- массовый коэффициент рассеяния, учитывающий потери энергии за счет когерентного и некогерентного рассеяния;/- массовый коэффициент поглощения, учитывающий главным образом потери энергии за счет фотоэлектрического поглощения и возбуждения характеристических лучей.
Вклад поглощения и рассеяния в ослабление рентгеновского пучка неравнозначен. Для рентгеновских лучей, используемых в структурном анализе, некогерентным рассеянием можно пренебречь. Если учесть при этом, что величина когерентного рассеяния также невелика и примерно постоянна для всех элементов, то можно считать, что
т.е. что ослабление рентгеновского пучка определяется в основном поглощением. В связи с этим для массового коэффициента ослабления будут справедливы закономерности, рассмотренные нами выше для массового коэффициента поглощения при фотоэффекте.
Выбор излучения. Характер зависимости коэффициента поглощения (ослабления) от длины волны определяет в известной мере выбор излучения при структурных исследованиях. Сильное поглощение в кристалле значительно уменьшает интенсивность дифракционных пятен на рентгенограмме. Кроме того, возникающая при сильном поглощении флюоресценция засвечивает пленку. Поэтому работать при длинах волн, несколько меньших границы поглощения исследуемого вещества, невыгодно. Это можно легко понять из схемы рис. 2.6.
1. Если излучать будет анод, состоящий из тех же атомов, как и исследуемое вещество, то мы получим, что граница поглощения, например
Рис.2.6. Изменение интенсивности рентгеновского излучения при прохождении через вещество.
2. Если мы возьмем анод, атомный номер которого Zна 1 больше исследуемого кристалла, то излучение этого анода, согласно закону Мозли, несколько сместится в коротковолновую область и расположится относительно границы поглощения того же исследуемого вещества так, как это показано на рис. 2.6, кривая 2. Здесь поглощается K— линия, за счет чего появляется флюоресценция, которая может мешать при съемке.
3. Если разница в атомных номерах составляет 2-3 единицы Z, то спектр излучения такого анода еще дальше сместится в коротковолновую область (рис. 2.6, кривая 3). Этот случай еще более невыгоден, так как, во-первых, рентгеновские излучения сильно ослаблено и, во-вторых, сильная флюоресценция засвечивает пленку при съемке.
Наиболее подходящим, таким образом, является анод, характеристическое излучение которого лежит в области слабого поглощения исследуемым образцом.
Понятно, что фильтр должен быть расположен вне камеры, в которой производится съемка кристалла, чтобы не было засветки пленки лучами флюоресценции.