что такое параметр числа
Что такое параметр? Простые задачи с параметрами
Одна из сложных задач Профильного ЕГЭ по математике — задача с параметрами. В ЕГЭ 2022 года это №17. И даже в вариантах ОГЭ они есть. Что же означает это слово — параметр?
Толковый словарь (в который полезно время от времени заглядывать) дает ответ: «Параметр — это величина, характеризующая какое-нибудь основное свойство устройства, системы, явления или процесса».
Хорошо, параметр — это какая-либо характеристика, свойство системы или процесса.
Вот, например, ракета выводит космический аппарат в околоземное пространство. Как вы думаете — какие параметры влияют на его полет?
Если корабль запустить с первой космической скоростью, приближенно равной 7,9 км/с, он выйдет на круговую орбиту.
Вторая космическая скорость, приближенно равная 11,2 км/с, позволяет космическому кораблю преодолеть поле тяжести Земли. Третья космическая скорость, приближенно равная 16,7 км/с, дает возможность преодолеть гравитационное притяжение Земли и Солнца и покинуть пределы Солнечной системы.
А если скорость меньше первой космической? Значит, тонны металла, топлива и дорогостоящей аппаратуры рухнут на землю, сопровождаемые репликой растерянного комментатора: «Кажется, что-то пошло не так».
Скорость космического корабля можно — параметр, от которого зависит его дальнейшая траектория и судьба. Конечно, это не единственный параметр. В реальных задачах науки и техники, задействованы уравнения, включающие функции многих переменных и параметров, а также производные этих функций.
1. Теперь пример из школьной математики.
Количество корней квадратного уравнения зависит от знака выражения, которое называется дискриминант.
Дискриминант квадратного уравнения:
Если , квадратное уравнение имеет два корня: и
Если , то есть с > 1, корней нет.
В нашем уравнении с — параметр, величина, которая принимать любые значения. Но от этого параметра с зависит количество корней данного уравнения.
Для того чтобы уверенно решать задачи с параметрами, необходимо отличное знание и алгебры, и планиметрии.
И еще две простые задачи с параметром.
2. Найдите значение параметра p, при котором уравнение имеет 2 различных корня.
Квадратное уравнение имеет два различных корня, когда .
Найдем дискриминант уравнения
Вспомним, как решаются квадратичные неравенства (вы проходили это в 9 классе).
Разложим левую часть неравенства на множители:
Рисуем параболу с ветвями вверх. Она пересекает ось р в точках и
3. При каких значениях параметра k система уравнений не имеет решений?
Оба уравнения системы — линейные. График линейного уравнения — прямая. Запишем уравнения системы в привычном для нас виде, выразив у через х:
Что такое параметр
Анна Малкова (автор книги для подготовки к ЕГЭ, ведущая годового Онлайн-курса подготовки к ЕГЭ на 100 баллов, руководитель компании «ЕГЭ-студия» (Курсы ЕГЭ))
Приветствую будущих студентов!
Я заметила, что на своем YouTube- канале я разбирала несколько задач с параметрами, но так и не рассказала, что такое параметр.
Толковый словарь русского языка, куда полезно иногда заглядывать, дает следующее определение: «Параметр – это величина, характеризующая какое-нибудь основное свойство устройства, системы, явления или процесса». Что же это значит? Давайте разберемся.
Вот ракете выводит космический корабль в околоземное пространство. Если спутник запустить с первой космической скоростью, приближенно равной 7,9 км/с, он выйдет на круговую орбиту. Первый искусственный спутник Земли, СССР, 1957 год. Вторая космическая скорость, приближенно равная 11,2 км/с, и космический корабль преодолевает поле тяжести Земли. Третья космическая скорость, приближенно 16,7 км/с, дает космическому кораблю возможность выйти за пределы Солнечной системы и преодолеть гравитационное притяжение Земли и Солнца. Например, такой космический корабль, который назывался «Вояджер-1», был запущен в 1977 году, и в 2012 году вышел за пределы Солнечной системы, и теперь будет вечно бороздить просторы космоса. Этот корабль передал на Землю сигналы и снимки отдаленных планет. Кроме аппаратуры, он несет на своем борту золотой диск. На этом диске записаны звуковые и видеосигналы. Например, схема излучения атома водорода, местоположение Солнца, человек и его строение, земные пейзажи, шум моря, звук шагов, песни птиц, приветствие на разных языках, музыка, даже грузинский хор; плач ребенка, голос мамы, которая его успокаивает. Это подарок неизвестным существам от маленького, затерянного во Вселенной, мира нашей планеты. И может быть когда-нибудь они обнаружат этот корабль, расшифруют наше послание и узнают о нас.
Значит скорость космического корабля – это параметр, от которого зависит его дальнейшая траектория и судьба, и конечно, это не единственный параметр. При запуске космического корабля таких параметров десятки и сотни.
Реальные задачи науки и техники используют функции не одной, а многих переменных: и первые-вторые, и энные производные этих функций.
А что же будет если какой-то параметр рассчитан неправильно?
Помните, как появилось выражение «Кажется, что-то пошло не так»? Эти слова вырвались у комментатора, который вел прямую трансляцию о запуске космического корабля, и через несколько секунд после старта увидел, что ракета, вместо того, чтобы устремиться к звездам, по параболе направилась к Земле.
Но, конечно, мы начнем не со сложных функций многих переменных, а с чего-то очень-очень простого.
На картинке мы видим параболу и ее формулу, С – это параметр. На что он влияет? Посмотрите, здесь С равно 0, и парабола проходит через начало координат. С равно 2, и парабола поднимается на 2 вверх по вертикале. С равно – 3, и парабола опускается по вертикале на 3 единицы.
Значит параметр – это такая переменная в уравнении, которая может принимать разные значения, и при разных значениях этой переменной мы получаем разные уравнения.
В заданиях ЕГЭ у вас есть задачи с параметром. Это задача №18 профильного раздела.
И сейчас я покажу самую простую иллюстративную задачу. Проще тех, которые будут на ЕГЭ, но зато ее можно красиво нарисовать.
При каком значении параметра с уравнение, которое вы видите на экране имеет ровно 6 корней?
Давайте нарисуем график левой части этого уравнения. Начнем с графика функции. Сначала сдвигаем его на 2 вправо. Затем вычитаем 3, график сдвигается на 3 единицы вниз. Снова берем модуль от получившегося выражения. Все, что было ниже оси абсцисс, переворачивается вверх. Далее все, что получилось, мы сдвигаем на 1 единицу вниз. И снова берем модуль. Все, что было ниже абсцисс, переворачивается вверх. И получаем график функции, похожий на Кавказские горы.
При каком же значении параметра с это уравнение имеет ровно 6 корней? Проведем горизонтальную прямую. Следовательно, с равно 1.
Это была самая простая задача с параметром. Чтобы научиться решать такие задачи, нужно отлично знать графики основных элементарных функций, преобразование графиков, базовые элементы для решения задач с параметрами и еще множество приемов и секретов.
Подписывайтесь на мой канал и переходите по ссылкам в описании!
Значение слова «параметр»
1. Мат. Величина, входящая в математическую формулу и сохраняющая свое постоянное значение лишь в условиях данной задачи.
2. Физ., тех. Величина или величины, характеризующие основные свойства какого-л. предмета, явления. Параметр электронной лампы.
3. перен. Размеры, границы проявления чего-л. Параметры развития производства. Отклонение от заданных параметров в выпуске продукции.
[От греч. παραμετρέω — соразмеряю]
Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека
задаёт множество прямых на плоскости,
в данном случае — параметры прямой, то есть, если положить, допустим,
, мы получим конкретную прямую
: один из элементов множества.
ПАРА’МЕТР, а, м. [от греч. parametreō — меряю, сопоставляя]. 1. Величина, входящая в математическую формулу и сохраняющая постоянное значение в пределах одного явления или для данной частной задачи, но при переходе к другому явлению, к другой задаче меняющая свое значение (мат.). 2. Величина, характеризующая то или иное свойство какого-н. явления, напр. теплопроводность, электропроводность тела, коэфициент его расширения или преломления и т. п. (физ. и тех.). П. катодной лампы.
Источник: «Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940); (электронная версия): Фундаментальная электронная библиотека
пара́метр
1. матем. величина, входящая в формулы и выражения, значение которой является постоянным в пределах рассматриваемой задачи
2. физ. техн. величина, характеризующая какое-либо свойство устройства, процесса, вещества; показатель
3. перен. признак, критерий, характеризующий какое-либо явление, определяющий его оценку ◆ Выбор тактики блеснения обуславливается местом стоянки рыбы, особенностями выбранного водоема и многими другими параметрами. Павел Моcин, «Большая иллюстрированная энциклопедия рыбалки», 2015 г.
Делаем Карту слов лучше вместе
Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!
Спасибо! Я стал чуточку лучше понимать мир эмоций.
Вопрос: головомойка — это что-то нейтральное, положительное или отрицательное?
ПАРАМЕТР (в математике)
Смотреть что такое «ПАРАМЕТР (в математике)» в других словарях:
ПАРАМЕТР — (от греч. parametron отмеривающий) в математике величина, числовые значения которой позволяют выделить определенный элемент (напр., кривую) из множества элементов (кривых) того же рода. Напр., в уравнении x2 + y2 = r2 величина r является… … Большой Энциклопедический словарь
ПАРАМЕТР — (от греч. parametnm отмеривать) англ. parameter; нем. Parameter. 1. В математике величина, значение к рой является постоянным в пределах рассматриваемой задачи. 2. Величина, характеризующая к. л. свойство устройства, процесса, вещества; то же,… … Энциклопедия социологии
параметр — 1. В математике величина, входящая в формулы и выражения, значение коей в рамках рассматриваемой задачи является постоянным. 2. Величина, характеризующая некое свойство процесса, устройства, вещества, то же, что и показатель. Словарь… … Большая психологическая энциклопедия
Параметр — У этого термина существуют и другие значения, см. Параметр (значения). В Викисловаре есть статья «параметр» Параметр (от др. греч. παραμετρέω&# … Википедия
параметр — а; м. [от греч. parametrōn отмеривающий] 1. Матем. Величина, входящая в математическую формулу и сохраняющая своё постоянное значение лишь в условиях данной задачи. 2. Физ., техн. Величина или величины, характеризующие какие л. свойства процесса … Энциклопедический словарь
ПАРАМЕТР — (от греч. parametron отмеривающий) в математике, величина, числовые значения к рой позволяют выделить определ. элемент (напр., кривую) из множества элементов (кривых) того же рода. Напр., в ур нии х2 + у2 = r2 величина r является П. окружности … Естествознание. Энциклопедический словарь
параметр — сущ., м., употр. сравн. часто Морфология: (нет) чего? параметра, чему? параметру, (вижу) что? параметр, чем? параметром, о чём? о параметре; мн. что? параметры, (нет) чего? параметров, чему? параметрам, (вижу) что? параметры, чем? параметрами, о… … Толковый словарь Дмитриева
Параметр — (от греч. parametron отмеривающий) 1) (в математике) величина, входящая в формулы и выражения, значение которой является постоянной в пределах рассматриваемой задачи, но изменяется при переходе к другой задаче; 2) (в технике) величина,… … Начала современного естествознания
Параметр — (греч. parametron – отмеривающий) – 1. признак, критерий, характеризующий какое то явление и определяющий его оценку; 2. в математике – некая константа в формуле или выражении; 3. в статистике – значение, которое вводится в математическую функцию … Энциклопедический словарь по психологии и педагогике
ПАРАМЕТР — (от греч. parametnm отмеривать) англ. parameter; нем. Parameter. 1. В математике величина, значение к рой является постоянным в пределах рассматриваемой задачи. 2. Величина, характеризующая к. л. свойство устройства, процесса, вещества; то же,… … Толковый словарь по социологии
Графический метод решения задач с параметрами
Теперь вы узнали, что такое параметр, и увидели решение самых простых задач.
Но подождите — рано успокаиваться и говорить, что вы все знаете. Есть множество типов задач с параметрами и приемов их решения. Чтобы чувствовать себя уверенно, мало посмотреть решения трех незатейливых задач.
Вот список тем, которые стоит повторить:
1. Элементарные функции и их графики. Парабола, синус, логарифм, арктангенс и все остальные — всех их надо знать «в лицо».
Только после этого можно переходить к самому простому и наглядному способу решения задач с параметрами — графическому. Конечно, он не единственный. Но начинать лучше всего именно с него.
Мы разберем несколько самых простых задач, решаемых графическим методом. Больше задач — в видеокурсе «Графический метод решения задач с параметрами» (бесплатно).
1. При каких значениях параметра a уравнение имеет ровно 2 различных решения?
Дробь равна нулю тогда и только тогда, когда ее числитель равен нулю, а знаменатель не равен нулю.
В первом уравнении выделим полный квадрат:
Это уравнение окружности с центром в точке и радиусом равным 2. Обратите внимание — графики будем строить в координатах х; а.
Уравнение задает прямую, проходящую через начало координат. Нам нужны ординаты точек, лежащих на окружности и не лежащих на этой прямой.
Для того чтобы точка лежала на окружности, ее ордината а должна быть не меньше 0 и не больше 4.
Точка С также не подходит нам, поскольку при мы получим единственную точку, лежащую на окружности, и единственное решение уравнения.
2. Найдите все значения a, при которых уравнение имеет единственное решение.
Уравнение равносильно системе:
Мы возвели обе части уравнения в квадрат при условии, что (смотри тему «Иррациональные уравнения»).
Раскроем скобки в правой части уравнения, применяя формулу квадрата трехчлена. Получаем систему.
Приводим подобные слагаемые в уравнении.
Заметим, что при прибавлении к правой и левой части числа 49 можно выделить полные квадраты:
Решим систему графически:
Исходное уравнение имеет единственное решение, если окружность имеет единственную общую точку с полуплоскостью. Другими словами, окружность касается прямой, заданной уравнением
Пусть С — точка касания.
Рассмотрим треугольник ABP. Он прямоугольный, и радиус окружности PC является медианой этого треугольника. Значит по свойству медианы прямоугольного треугольника, проведенной к гипотенузе.
Из треугольника ABP найдем длину гипотенузы AB по теореме Пифагора.
Решая это уравнение, получаем, что
3. Найдите все положительные значения параметра а, при каждом из которых система имеет единственное решение.
Второе уравнение при задает окружность с центром в точке и радиусом a.
Вот такая картинка, похожая на злую птицу. Или на хрюшку. Кому что нравится.
, (как гипотенуза прямоугольного треугольника МNР с катетами 3 и 4),
В — точка касания окружности и окружности
длину MQ найдем как гипотенузу прямоугольного треугольника KMQ с катетами 7 и 4; Тогда для точки В получим:
Есть еще точки С и D, в которых окружность касается окружности или окружности соответственно. Однако эти точки нам не подходят. В самом деле, для точки С:
, но и это значит, что окружность с центром в точке М, проходящая через точку С, будет пересекать левую окружность и система будет иметь не одно, а три решения.
Аналогично, для точки D:
и значит, окружность с центром М, проходящая через точку D, будет пересекать правую окружность и система будет иметь три решения.
4. При каких значениях a система уравнений имеет 4 решения?
И в первом, и во втором уравнении системы уже можно разглядеть известные «базовые элементы» (ссылка) — в первом ромбик, во втором окружность. Видите их? Как, еще нет? — Сейчас увидите!
Просто выделили полный квадрат во втором уравнении.
Сделаем замену Система примет вид:
Вот теперь все видно! Рисовать будем в координатах
Графиком первого уравнения является ромб, проходящий через точки с координатами и
Графиком второго уравнения является окружность с радиусом и центром в начале координат.
Когда же система имеет ровно 4 решения?
1) В случае, когда окружность вписана в ромб, то есть касается всех сторон ромба.
Запишем площадь ромба двумя способами — как произведение диагоналей пополам и как произведение стороны на высоту, проведенную к этой стороне.
Диагонали нашего ромба равны 8 и 6. Значит,
Сторону ромба найдем по теореме Пифагора. Видите на рисунке прямоугольный треугольник со катетами 3 и 4? Да, это египетский треугольник, и его гипотенуза, то есть сторона ромба, равна 5. Если h — высота ромба, то
При этом Мы помним, что если окружность вписана в ромб, то диаметр этой окружности равен высоте ромба. Отсюда
2) Есть второй случай, и мы его найдем.
Пусть радиус окружности равен 3. Тогда система имеет 6 решений.
Значит, Объединим случаи и запишем ответ:
Больше задач и методов решения — на онлайн-курсе Анны Малковой. И на интенсивах ЕГЭ-Студии в Москве.