что такое однородный многочлен

однородный многочлен

Смотреть что такое «однородный многочлен» в других словарях:

ОДНОРОДНЫЙ МНОГОЧЛЕН — многочлен, у всех членов которого сумма показателей степеней входящих в него переменных (неизвестных) одинакова. Напр.: x5+4x3y2 3xy4 … Большой Энциклопедический словарь

Однородный многочлен — многочлен, все одночлены которого имеют одинаковую полную степень. Любая алгебраическая форма является однородным многочленом. Примеры однородный многочлен однородный многочлен однородный многочлен неоднородный многочлен … Википедия

ОДНОРОДНЫЙ МНОГОЧЛЕН — многочлен, у всех членов к рого сумма показателей степеней входящих в него переменных (неизвестных) одинакова. Напр.: х5+ 4х3у2 3ху4 … Естествознание. Энциклопедический словарь

Многочлен Лорана — В математике, многочлены или полиномы от одной переменной функции вида где ci фиксированные коэффициенты, а x переменная. Многочлены составляют один из важнейших классов элементарных функций. Изучение полиномиальных уравнений и их решений… … Википедия

Общий метод решета числового поля — (англ. general number field sieve, GNFS) метод факторизации натуральных чисел. Является наиболее эффективным алгоритмом факторизации чисел длиной более 110 десятичных знаков. Сложность алгоритма оценивается эвристической формулой[1] Метод… … Википедия

Двучлен — В математике, многочлены или полиномы от одной переменной функции вида где ci фиксированные коэффициенты, а x переменная. Многочлены составляют один из важнейших классов элементарных функций. Изучение полиномиальных уравнений и их решений… … Википедия

Моном — В математике, многочлены или полиномы от одной переменной функции вида где ci фиксированные коэффициенты, а x переменная. Многочлены составляют один из важнейших классов элементарных функций. Изучение полиномиальных уравнений и их решений… … Википедия

Полином — В математике, многочлены или полиномы от одной переменной функции вида где ci фиксированные коэффициенты, а x переменная. Многочлены составляют один из важнейших классов элементарных функций. Изучение полиномиальных уравнений и их решений… … Википедия

Источник

ОДНОРОДНЫЙ МНОГОЧЛЕН

Смотреть что такое «ОДНОРОДНЫЙ МНОГОЧЛЕН» в других словарях:

ОДНОРОДНЫЙ МНОГОЧЛЕН — многочлен, у всех членов которого сумма показателей степеней входящих в него переменных (неизвестных) одинакова. Напр.: x5+4x3y2 3xy4 … Большой Энциклопедический словарь

Однородный многочлен — многочлен, все одночлены которого имеют одинаковую полную степень. Любая алгебраическая форма является однородным многочленом. Примеры однородный многочлен однородный многочлен однородный многочлен неоднородный многочлен … Википедия

однородный многочлен — многочлен, у всех членов которого сумма показателей степеней входящих в него переменных (неизвестных) одинакова. Например: х5+4х3у2 3ху4. * * * ОДНОРОДНЫЙ МНОГОЧЛЕН ОДНОРОДНЫЙ МНОГОЧЛЕН, многочлен, у всех членов которого сумма показателей… … Энциклопедический словарь

Многочлен Лорана — В математике, многочлены или полиномы от одной переменной функции вида где ci фиксированные коэффициенты, а x переменная. Многочлены составляют один из важнейших классов элементарных функций. Изучение полиномиальных уравнений и их решений… … Википедия

Общий метод решета числового поля — (англ. general number field sieve, GNFS) метод факторизации натуральных чисел. Является наиболее эффективным алгоритмом факторизации чисел длиной более 110 десятичных знаков. Сложность алгоритма оценивается эвристической формулой[1] Метод… … Википедия

Двучлен — В математике, многочлены или полиномы от одной переменной функции вида где ci фиксированные коэффициенты, а x переменная. Многочлены составляют один из важнейших классов элементарных функций. Изучение полиномиальных уравнений и их решений… … Википедия

Моном — В математике, многочлены или полиномы от одной переменной функции вида где ci фиксированные коэффициенты, а x переменная. Многочлены составляют один из важнейших классов элементарных функций. Изучение полиномиальных уравнений и их решений… … Википедия

Полином — В математике, многочлены или полиномы от одной переменной функции вида где ci фиксированные коэффициенты, а x переменная. Многочлены составляют один из важнейших классов элементарных функций. Изучение полиномиальных уравнений и их решений… … Википедия

Источник

ОДНОРОДНЫЙ МНОГОЧЛЕН

Смотреть что такое «ОДНОРОДНЫЙ МНОГОЧЛЕН» в других словарях:

Однородный многочлен — многочлен, все одночлены которого имеют одинаковую полную степень. Любая алгебраическая форма является однородным многочленом. Примеры однородный многочлен однородный многочлен однородный многочлен неоднородный многочлен … Википедия

однородный многочлен — многочлен, у всех членов которого сумма показателей степеней входящих в него переменных (неизвестных) одинакова. Например: х5+4х3у2 3ху4. * * * ОДНОРОДНЫЙ МНОГОЧЛЕН ОДНОРОДНЫЙ МНОГОЧЛЕН, многочлен, у всех членов которого сумма показателей… … Энциклопедический словарь

ОДНОРОДНЫЙ МНОГОЧЛЕН — многочлен, у всех членов к рого сумма показателей степеней входящих в него переменных (неизвестных) одинакова. Напр.: х5+ 4х3у2 3ху4 … Естествознание. Энциклопедический словарь

Многочлен Лорана — В математике, многочлены или полиномы от одной переменной функции вида где ci фиксированные коэффициенты, а x переменная. Многочлены составляют один из важнейших классов элементарных функций. Изучение полиномиальных уравнений и их решений… … Википедия

Общий метод решета числового поля — (англ. general number field sieve, GNFS) метод факторизации натуральных чисел. Является наиболее эффективным алгоритмом факторизации чисел длиной более 110 десятичных знаков. Сложность алгоритма оценивается эвристической формулой[1] Метод… … Википедия

Двучлен — В математике, многочлены или полиномы от одной переменной функции вида где ci фиксированные коэффициенты, а x переменная. Многочлены составляют один из важнейших классов элементарных функций. Изучение полиномиальных уравнений и их решений… … Википедия

Моном — В математике, многочлены или полиномы от одной переменной функции вида где ci фиксированные коэффициенты, а x переменная. Многочлены составляют один из важнейших классов элементарных функций. Изучение полиномиальных уравнений и их решений… … Википедия

Полином — В математике, многочлены или полиномы от одной переменной функции вида где ci фиксированные коэффициенты, а x переменная. Многочлены составляют один из важнейших классов элементарных функций. Изучение полиномиальных уравнений и их решений… … Википедия

Источник

Алгебра и начала математического анализа. 10 класс

Конспект урока

Алгебра и начала математического анализа, 10 класс

Урок №13. Многочлены от нескольких переменных.

Перечень вопросов, рассматриваемых в теме

1) определение многочлена от нескольких переменных;

2) понятие симметрических многочленов;

3) формулы сокращенного умножения для старших степеней;

5) метод неопределенных коэффициентов.

Многочлен Р(х;у) называют однородным многочленом n-й степени, если сумма показателей степеней переменных в каждом члене многочлена равна n. Если Р(х;у) — однородный многочлен, то уравнение Р(х;у) = 0 называют однородным уравнением.

Многочлен Р(х;у) называют симметрическим, если он сохраняет свой вид при одновременной замене х на у и у на х.

Уравнение Р(x;y) = а, где что такое однородный многочлен. Смотреть фото что такое однородный многочлен. Смотреть картинку что такое однородный многочлен. Картинка про что такое однородный многочлен. Фото что такое однородный многочлен, называютсимметрическим, если Р(х;y) — симметрический многочлен.

Треугольник Паскаля —бесконечная таблица биномиальных коэффициентов, имеющая треугольную форму. В этом треугольнике на вершине и по бокам стоят единицы. Каждое число равно сумме двух расположенных над ним чисел. Строки треугольника симметричны относительно вертикальной оси. Назван в честь Блеза Паскаля.

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2014.

Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2017.

Теоретический материал для самостоятельного изучения

Многочлены от нескольких переменных можно складывать, вычитать, перемножать, возводить в натуральную степень, разлагать на множители — это вам известно из курса алгебры 7—9-го классов. Этот урок позволит нам несколько расширить знания о многочленах.

Воспользуемся методом группировки

(x+y+z+u) 2 =((x+y)+(z+u)) 2 = (x+y) 2 +2(x+y)(z+u)+(z+u) 2 = x 2 +y 2 +z 2 +u 2 +2(xy+xz+xu+yz+yu+zu).

Итак, мы получили (x+y+z+u) 2 = x 2 +y 2 +z 2 +u 2 +2(xy+xz+xu+yz+yu+zu).

Среди многочленов от двух переменных выделяют однородные и симметрические многочлены.

Многочлен Р(х;у) называют однородным многочленом n-й степени, если сумма показателей степеней переменных в каждом члене многочлена равна n. Если Р(х;у) — однородный многочлен, то уравнение Р(х;у) = 0 называют однородным уравнением.

1) р(х; у)=2х+3у – однородный многочлен первой степени; соответственно 2х+3у=0 – однородное уравнение первой степени.

2) р(х; у)=3х 2 +5ху-7у 2 — однородный многочлен второй степени; соответственно 3х 2 +5ху-7у 2 =0 — однородное уравнение второй степени.

4) p(x; y)= anx n +an-1x n-1 y+an-2x n-2 y 2 +…+a1xy n-1 +a0y n — общий вид однородного многочлена n-й степени.

Рассмотрим еще один метод разложения многочленов на множители-

метод неопределенных коэффициентов. Суть метода неопределённых коэффициентов состоит в том, что вид сомножителей, на которые разлагается данный многочлен, угадывается, а коэффициенты этих сомножителей (также многочленов) определятся путём перемножения сомножителей и приравнивания коэффициентов при одинаковых степенях переменной. Теоретической основой метода являются следующие утверждения

Пример 3. Разложить на множители многочлен

3 x 3 – x 2 – 3 x + 1.

что такое однородный многочлен. Смотреть фото что такое однородный многочлен. Смотреть картинку что такое однородный многочлен. Картинка про что такое однородный многочлен. Фото что такое однородный многочлен

Решая эту систему, получаем: a = 3, p = –1, b = 2, c = –1. Итак, многочлен 3 x 3 – x 2 – 3 x + 1 разлагается на множители: 3 x 3 – x 2 – 3 x + 1 = ( x – 1)(3 x 2 + 2 x – 1).

Стоит отметить, что существует достаточно изящный способ решения однородных уравнений. Поясним его суть на примере.

что такое однородный многочлен. Смотреть фото что такое однородный многочлен. Смотреть картинку что такое однородный многочлен. Картинка про что такое однородный многочлен. Фото что такое однородный многочлен

Далее последовательно находим:

Если z=1, то что такое однородный многочлен. Смотреть фото что такое однородный многочлен. Смотреть картинку что такое однородный многочлен. Картинка про что такое однородный многочлен. Фото что такое однородный многочлен, т.е. у=х. Это значит, что любая пара вида (t; t) является решением заданного однородного уравнения. Между прочим, и отмеченная нами ранее пара (0; 0) также входит в указанный перечень решений.

Ответ: (t; t), где t- любое действительное число.

Теорема. Любой симметрический многочлен Р(х;у) можно представить в виде многочлена от ху и х+у.

x 4 +y 4 = 2xy(x 2 +y 2 )-(x 4 +y 4 )+3(xy) 2 и т.д.

Уравнение Р(x;y) = а, где что такое однородный многочлен. Смотреть фото что такое однородный многочлен. Смотреть картинку что такое однородный многочлен. Картинка про что такое однородный многочлен. Фото что такое однородный многочлен, называют симметрическим, если Р(х;y) — симметрический многочлен. Мы с вами рассматривали его на предыдущем уроке.

А теперь перейдем к такому понятию как бином Ньютона.

Давайте вслед за Ньютоном попробуем ее вывести, чтобы затем применять.

Вы наверняка помните (или, по крайней мере, должны помнить), формулы сокращенного умножения для квадрата и куба суммы двух слагаемых (такая сумма называется «бином», по-русски – двучлен.

(a+b) 3 =a 3 +3a 2 b+3ab 2 +b 3

Если вы забыли эти формулы, можно их получить напрямую, раскрыв скобки в очевидных равенствах

Может быть, вам приходил в голову вопрос: можно ли (без компьютера) получить формулы типа для биномов четвертой степени, пятой, десятой – какой угодно?

Давайте попробуем дойти напрямую хотя бы до пятой степени, а там, может быть, окажется «рояль в кустах» (для порядка будем размещать слагаемые в правой части по убыванию степени а, она убывает от максимума до нуля):

(a+b) 4 =(a+b) 3 (a+b)=(a 3 +3a 2 b+3ab 2 +b 3 )(a+b)=a 4 +4a 3 b+6a 2 b 2 +4ab 3 +b 4

(a+b) 5 =(a+b) 4 (a+b)=(a 4 +4a 3 b+6a 2 b 2 +4ab 3 +b 4 )(a+b)=a 5 +5a 4 b+10a 3 b 2 +10a 2 b 3 +5ab 4 +b 5

Теперь отдельно выпишем численные коэффициенты в правых частях формул при возведении бинома в заданную степень:

Легко проверить, что выписанные на численные коэффициенты – это строчки треугольника Паскаля, начиная с третьей. Этот «усеченный треугольник», в котором не хватает первых двух строк, легко сделать полным (получить строчки при n=0 и n=1):

Общая формула бинома Ньютона:

что такое однородный многочлен. Смотреть фото что такое однородный многочлен. Смотреть картинку что такое однородный многочлен. Картинка про что такое однородный многочлен. Фото что такое однородный многочлен.

Правая часть формулы называется разложением степени бинома.

что такое однородный многочлен. Смотреть фото что такое однородный многочлен. Смотреть картинку что такое однородный многочлен. Картинка про что такое однородный многочлен. Фото что такое однородный многочлен— называется биномиальными коэффициентами, а все слагаемые — членами бинома.

Треугольник Паскаля — бесконечная таблица биномиальных коэффициентов, имеющая треугольную форму. В этом треугольнике на вершине и по бокам стоят единицы. Каждое число равно сумме двух расположенных над ним чисел. Строки треугольника симметричны относительно вертикальной оси. Назван в честь Блеза Паскаля.

Европейские ученые познакомились с формулой бинома Ньютона, по-видимому, через восточных математиков. Детальное изучение свойств биномиальных коэффициентов провел французский математик и философ Б. Паскаль в 1654 г.

В заключении рассмотрим пример, в котором использование бинома Ньютона позволяет доказать делимость выражения на заданное число.

Доказать, что значение выражения 5 n +28n-1, где n – натуральное число, делится на 16 без остатка.

Решение: представим первое слагаемое выражение как 5 n = (4+1) n и воспользуемся формулой бинома Ньютона:

что такое однородный многочлен. Смотреть фото что такое однородный многочлен. Смотреть картинку что такое однородный многочлен. Картинка про что такое однородный многочлен. Фото что такое однородный многочлен

Полученное произведение доказывает делимость исходного выражения на 16.

Бином Ньютона применяется при доказательстве Теоремы Ферма, в теории бесконечных рядов и выводе формулы Ньютона-Лейбница

Примеры и разборы решения заданий тренировочного модуля

Из данных многочленов выделите симметрические:

Решение: к данному заданию применим определение симметрических многочленов (Многочлен Р(х;у) называют симметрическим, если он сохраняет свой вид при одновременной замене х на у и у на х). Получим, что нам подходят 1 и 4 пункты.

(а+b) 5 = __a 5 +___a 4 b+___a 3 b 2 +___a 2 b 3 +___ab 4 +__b 5

Решение: для решения данного задания воспользуемся треугольником Паскаля

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

Нас интересует последняя строчка.

Применив ее, получим ответ:

(а+b) 5 = 1a 5 +5a 4 b+10a 3 b 2 +10a 2 b 3 +5ab 4 +1b 5

Источник

Полиномы

что такое однородный многочлен. Смотреть фото что такое однородный многочлен. Смотреть картинку что такое однородный многочлен. Картинка про что такое однородный многочлен. Фото что такое однородный многочлен

где ci фиксированные коэффициенты, а x — переменная. Многочлены составляют один из важнейших классов элементарных функций.

Изучение полиномиальных уравнений и их решений составляло едва ли не главный объект «классической алгебры». С изучением многочленов связан целый ряд преобразований в математике: введение в рассмотрение нуля, отрицательных, а затем и комплексных чисел, а также появление теории групп как раздела математики и выделение классов специальных функций в анализе.

Техническая простота вычислений, связанных с многочленами, по сравнению с более сложными классами функций, а также тот факт, что множество многочленов плотно в пространстве непрерывных функций на компактных подмножествах евклидова пространства (смотри аппроксимационная теорема Вейерштрасса), способствовали развитию методов разложения в ряды и полиномиальной интерполяции в математическом анализе.

Многочлены также играют ключевую роль в алгебраической геометрии, объектом которой являются множества, определённые как решения систем многочленов. Особые свойства преобразования коэффициентов при умножении многочленов используются в алгебраической геометрии, алгебре, теории узлов и других разделах математики для кодирования, или выражения многочленами свойств различных объектов.

Содержание

Определение

Многочлен (или полином) от n переменных — есть конечная формальная сумма вида

что такое однородный многочлен. Смотреть фото что такое однородный многочлен. Смотреть картинку что такое однородный многочлен. Картинка про что такое однородный многочлен. Фото что такое однородный многочлен,

где I = (i1,i2. in) есть набор из целых неотрицательных чисел (называется мультииндекс), cI — число (называемое «коэффициент многочлена»), зависящее только от мультииндекса I.

В частности, многочлен от одной переменной есть конечная формальная сумма вида

что такое однородный многочлен. Смотреть фото что такое однородный многочлен. Смотреть картинку что такое однородный многочлен. Картинка про что такое однородный многочлен. Фото что такое однородный многочлен

Коэффициенты многочлена обычно берутся из определённого коммутативного кольца R (чаще всего поля, например, поля вещественных или комплексных чисел). В этом случае, относительно операций сложения и умножения многочлены образуют кольцо (более того ассоциативно-коммутативную алгебру над кольцом R без делителей нуля) которое обозначается

Связанные определения

Делимость

Например, многочлен x 4 + 2, неприводимый в поле рациональных чисел, разлагается на два множителя в поле вещественных чисел и на четыре множителя в поле комплексных чисел.

Вообще, каждый многочлен от одного переменного x разлагается в поле вещественных чисел на множители первой и второй степени, в поле комплексных чисел — на множители первой степени (основная теорема алгебры).

Для двух и большего числа переменных этого уже нельзя утверждать. Над любым полем для любого n > 2 существуют многочлен от n переменных, неприводимые в любом расширении этого поля. Такие многочлены называются абсолютно неприводимыми.

Полиномиальные функции

что такое однородный многочлен. Смотреть фото что такое однородный многочлен. Смотреть картинку что такое однородный многочлен. Картинка про что такое однородный многочлен. Фото что такое однородный многочлен.

В случае если R есть поле вещественных или комплексных чисел (а также любое другое поле с бесконечным числом элементов) то функция что такое однородный многочлен. Смотреть фото что такое однородный многочлен. Смотреть картинку что такое однородный многочлен. Картинка про что такое однородный многочлен. Фото что такое однородный многочленполностью определяет многочлен p. Однако в общем случае это неверно, например: многочлены что такое однородный многочлен. Смотреть фото что такое однородный многочлен. Смотреть картинку что такое однородный многочлен. Картинка про что такое однородный многочлен. Фото что такое однородный многочлени что такое однородный многочлен. Смотреть фото что такое однородный многочлен. Смотреть картинку что такое однородный многочлен. Картинка про что такое однородный многочлен. Фото что такое однородный многочлениз что такое однородный многочлен. Смотреть фото что такое однородный многочлен. Смотреть картинку что такое однородный многочлен. Картинка про что такое однородный многочлен. Фото что такое однородный многочленопределяют тождественно равные функции что такое однородный многочлен. Смотреть фото что такое однородный многочлен. Смотреть картинку что такое однородный многочлен. Картинка про что такое однородный многочлен. Фото что такое однородный многочлен.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *