что такое общий знаменатель дробей и как его найти
Обыкновенные дроби
Доля целого
Доля — это каждая равная часть, из суммы которых состоит целый предмет.
Для примера возьмем два мандарина. Когда мы их почистим, то получим в каждом мандарине разное количество долек или долей. В одном может быть 6, а в другом — целых 9. Размеры долей у каждого мандарина тоже разные.
У каждой доли есть свое название: оно зависит от количества долей в конкретном предмете. Если в мандарите шесть долей — каждая из них будет определяться, как одна шестая от целого.
Понятие доли можно применить не только к предметам, но и величинам. Так, например, картина занимает четверть стены — при этом ее ширина треть метра.
Чтобы быстрее запомнить соотношения частей и целого, можно использовать наглядную табличку:
Понятие дроби
Дробь — это запись числа в математика, в которой a и b — числа или выражения. По сути, это всего лишь одна из форм, в которой можно представить число. Есть два формата записи:
Виды дробей:
Какие еще бывают дроби:
Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.
Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3\5.
Выделение целой части из неправильной дроби — это запись неправильной дроби в виде суммы натурального числа и правильной дроби. Например, 11/5 = 2 + 1/5.
Как устроена обыкновенная дробь
Обыкновенная дробь — это запись вида m/n, где m и n любые натуральные числа.
Такие дроби записываются с помощью двух натуральных чисел и горизонтальной черты, которая называется чертой дроби. Иногда ставится не горизонтальная черта, а косая.
Числитель обыкновенной дроби m/n — это натуральное число m, которое стоит над чертой. Числитель это делимое — то, что мы делим.
Знаменатель обыкновенной дроби m/n — натуральное число n, которое стоит под чертой. Знаменатель это делитель — то, на сколько делим.
Черта между числителем и знаменателем — символ деления.
Равные обыкновенные дроби — обыкновенные дроби a/b и c/d, для которых справедливо равенство: a * d = b * c. Пример равных дробей: 1/2 и 2/4, так как 1 * 4 = 2 * 2.
Неравные обыкновенные дроби — обыкновенные дроби a/b и c/d, для которых равенство: a * d = b * c не является верным.
Как устроена десятичная дробь
В десятичной дроби знаменатель всегда равен 10, 100, 1000, 10000 и т.д. Выходит, что десятичная дробь — это то, что получается, если разделить числитель на знаменатель. Десятичную дробь записывают в строчку через запятую, чтобы отделить целую часть от дробной. Вот так:
Конечная десятичная дробь — это дробь, в которой количество цифр после запятой точно определено.
Бесконечная десятичная дробь — это когда после запятой количество цифр бесконечно. Для удобства математики договорились округлять эти цифры до 1-3 после запятой.
Свойства дробей
Основное свойство дроби: если числитель и знаменатель дроби умножить или разделить на одно и то же отличное от нуля число, то получится дробь, равная данной. Формула выглядит так:
где a, b, k — натуральные числа.
Обыкновенная и десятичная дробь — давние друзья. Вот, как они связаны:
У нас есть отличные курсы по математике для учеников с 1 по 11 классы, записывайтесь!
Действия с дробями
С дробями можно выполнять те же действия, что и с обычными числами: складывать, вычитать, умножать и делить. А еще дроби можно сокращать и сравнивать между собой. Давайте попробуем.
Сравнение дробей
Из двух дробей с одинаковыми знаменателями больше та, у которой числитель больше.
Сравним 1/5 и 4/5. Как рассуждаем:
Чтобы сравнить дроби с разными знаменателями, нужно привести дроби к общему знаменателю. А после приведения дробей к общему знаменателю, можно применить правило сравнения дробей с одинаковыми знаменателями.
Пример. Сравнить 2/7 и 1/14.
Важно запомнить: любая неправильная дробь больше любой правильной. Потому что неправильная дробь всегда больше или равна 1, а правильная дробь всегда меньше 1.
Чтобы сравнить дроби с разными числителями и знаменателями, нужно:
Чтобы привести дроби к наименьшему общему знаменателю, нужно:
Сокращение дробей
Сокращение дроби — это деление числителя и знаменателя дроби на одно и то же натуральное число. Сократить дробь значит сделать ее короче и проще для восприятия. Например, дробь 1/3 выглядит намного проще и красивее, чем 27/81.
Сокращение дроби выглядит так: зачеркивают числитель и знаменатель, а рядом записывают результаты деления числителя и знаменателя на одно и то же число.
В этом примере делим обе части дроби на двойку.
Можно никуда не спешить и сокращать дроби последовательно, в несколько действий.
Сложение и вычитание дробей
При сложении и вычитании дробей с одинаковыми знаменателями к числителю первой дроби прибавляют числитель второй дроби (из числителя первой вычитают числитель второй) и оставляют тот же знаменатель.
Не забудьте проверить, можно ли сократить дробь и выделить целую часть.
При сложении и вычитании дробей с разными знаменателями нужно найти наименьший общий знаменатель, сложить или вычесть полученные дроби (используем предыдущее правило).
Для этого запишем в столбик числа, которые в сумме дают значения делителей. Далее перемножаем полученное и получаем НОК.
НОК (15, 18) = 3 * 2 * 3 * 5 = 90
Полученные числа запишем справа сверху над числителем.
Ход решения одной строкой:
Сложение или вычитание смешанных чисел можно привести к отдельному сложению их целых частей и дробных частей. Для этого нужно действовать поэтапно:
Необходимо приводить к общему, если знаменатели разные. Для этого воспользуемся знаниями из предыдущего примера.
Если при сложении дробных частей получилась неправильная дробь, нужно выделить ее целую часть и прибавить к полученной ранее целой части.
Умножение и деление дробей
Произведение двух дробей равно дроби, числитель которой равен произведению числителей, а знаменатель — произведению знаменателей:
Не забываем про сокращение. Это может облегчить вычисления.
Чтобы умножить два смешанных числа, надо:
Чтобы разделить дробь на дробь нужно выполнить следующую последовательность действий:
Другими словами это правило звучит так: чтобы разделить одну дробь на другую, надо первую умножить на обратную от второй.
Числа, произведение которых равно 1, называют взаимно обратными.
Как делить дроби с разными знаменателями? На самом деле одинаковые или разные знаменатели у дробей — неважно, потому что все дроби делятся по правилу, описанному выше.
Для деления смешанных чисел необходимо:
Приведение дробей к общему знаменателю
Общий знаменатель обыкновенных дробей
Если обыкновенные дроби имеют одинаковые знаменатели, то про эти дроби говорят, что они имеют общий знаменатель. Например, дроби
и
имеют общий знаменатель 7.
Общий знаменатель — это число, которое является знаменателем для двух и более обыкновенных дробей.
Дроби, имеющие разные знаменатели, можно привести к общему знаменателю.
Приведение дробей к общему знаменателю
Приведение дробей к общему знаменателю — это замена данных дробей, имеющих разные знаменатели, на равные им дроби, у которых одинаковые знаменатели.
Дроби можно привести либо просто к общему знаменателю, либо к наименьшему общему знаменателю.
Наименьший общий знаменатель — это наименьшее общее кратное знаменателей данных дробей. Чтобы привести дроби к наименьшему общему знаменателю нужно:
Пример. Привести к общему знаменателю дроби и
.
24 : 8 = 3 (для )
24 : 12 = 2 (для ).
Приведение к общему знаменателю можно записывать в более краткой форме, указывая дополнительный множитель рядом с числителем каждой дроби (сверху справа или сверху слева) и не записывая промежуточные вычисления:
К общему знаменателю можно привести и более простым способом, умножив члены первой дроби на знаменатель второй дроби, а члены второй дроби — на знаменатель первой.
Пример. Привести к общему знаменателю дроби и
:
В качестве общего знаменателя дробей можно взять произведение их знаменателей.
Приведение дробей к общему знаменателю используется при сложении, вычитании и сравнении дробей, у которых разные знаменатели.
Калькулятор приведения к общему знаменателю
Общий знаменатель алгебраических дробей
Общим знаменателем дробей называется число или выражение, содержащее в себе все множители знаменателей этих дробей.
Например, для дробей \(\frac<1><5a>\) и \(\frac<3>\) общим знаменателем будет \(5ab\), потому что именно это выражение содержит в себе все множители первого знаменателя (то есть, пятерку и \(a\)), а также все множители второго (это \(b\)).
Получается, что для нахождения общего знаменателя достаточно просто перемножить знаменатели всех дробей? Да, вообще говоря, это так. Однако на практике такой способ часто бывает неудобен, так как приводит к громоздким вычислениям в дальнейшем. Поэтому обычно находят наименьший общий знаменатель.
Например, для дробей \(\frac<1>
Как искать наименьший общий знаменатель?
В приведенном выше примере наименьший общий знаменатель был очевиден. Однако в более сложных случаях его вот так сходу не напишешь.
Чтобы найти наименьший общий знаменатель нескольких дробей нужно все знаменатели разложить на множители, а потом собрать из этих множителей наименьший общий знаменатель.
Решение. И вновь раскладываем на множители знаменатели всех трех дробей, а потом собираем нашего «Франкенштейна»:
Общий знаменатель зависит только от знаменателей дробей, числители же на него не влияют вообще никак!
Приведение дробей к наименьшему общему знаменателю, правило, примеры, решения.
Материал этой статьи объясняет, как найти наименьший общий знаменатель и как привести дроби к общему знаменателю. Сначала даны определения общего знаменателя дробей и наименьшего общего знаменателя, а также показано, как найти общий знаменатель дробей. Дальше приведено правило приведения дробей к общему знаменателю и рассмотрены примеры применения этого правила. В заключение разобраны примеры приведения трех и большего количества дробей к общему знаменателю.
Навигация по странице.
Что называют приведением дробей к общему знаменателю?
Теперь мы можем сказать, что такое приведение дробей к общему знаменателю. Приведение дробей к общему знаменателю – это умножение числителей и знаменателей данных дробей на такие дополнительные множители, что в результате получаются дроби с одинаковыми знаменателями.
Общий знаменатель, определение, примеры
Теперь пришло время дать определение общего знаменателя дробей.
Общий знаменатель – это любое положительное общее кратное всех знаменателей данных дробей.
Иными словами, общим знаменателем некоторого набора обыкновенных дробей является любое натуральное число, которое делится на все знаменатели данных дробей.
Из озвученного определения следует, что данный набор дробей имеет бесконечно много общих знаменателей, так как существует бесконечное множество общих кратных всех знаменателей исходного набора дробей.
Для закрепления материала рассмотрим решение следующего примера.
Наименьший общий знаменатель, как его найти?
В множестве чисел, являющихся общими знаменателями данных дробей, существует наименьшее натуральное число, которое называют наименьшим общим знаменателем. Сформулируем определение наименьшего общего знаменателя данных дробей.
Наименьший общий знаменатель – это наименьшее число, из всех общих знаменателей данных дробей.
Осталось разобраться с вопросом, как найти наименьший общий делитель.
Так как наименьшее общее кратное является наименьшим положительным общим делителем данного набора чисел, то НОК знаменателей данных дробей представляет собой наименьший общий знаменатель данных дробей.
Таким образом, нахождение наименьшего общего знаменателя дробей сводится к нахождению НОК знаменателей этих дробей. Разберем решение примера.
Как привести дроби к общему знаменателю? Правило, примеры, решения
Обычно обыкновенные дроби приводят к наименьшему общему знаменателю. Сейчас мы запишем правило, которое объясняет, как привести дроби к наименьшему общему знаменателю.
Применим озвученное правило к решению следующего примера.
Приведите дроби 5/14 и 7/18 к наименьшему общему знаменателю.
Выполним все шаги алгоритма приведения дробей к наименьшему общему знаменателю.
Осталось умножить числители и знаменатели дробей 5/14 и 7/18 на дополнительные множители 9 и 7 соответственно. Имеем и
.
и
.
Приведение к наименьшему общему знаменателю трех и более дробей
Правило из предыдущего пункта позволяет приводить к наименьшему общему знаменателю не только две дроби, но и три дроби, и большее их количество. Рассмотрим решение примера.
Приведение дробей к общему знаменателю
Общий знаменатель обыкновенных дробей
Любые дроби с разными знаменателями в математике можно привести к одному и тому же общему знаменателю — заменить на равные им дроби с одинаковым знаменателем.
Есть два вида знаменателей:
Общий знаменатель — это число или выражение, которое является знаменателем для двух и более обыкновенных дробей.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Наименьший общий знаменатель — наименьшее общее кратное знаменателей данных дробей.
Производить данную операцию необходимо в ряде случаев.
Как привести дроби к общему знаменателю, алгоритм
Чтобы осуществить операцию приведения, необходимо применить основное свойство дробей: если числитель и знаменатель дроби умножить на одно и то же число, отличное от нуля, дробь не изменится. То есть если подобрать правильные множители, то можно привести знаменатели к одному и тому же числу. Искомые множители называют дополнительными.
Это объяснение лежит в основе общего правила приведения дробей.
Существует несколько способов привести дроби к общему или наименьшему общему знаменателю.
Умножение «крест-накрест»
Самый простой способ — умножение «крест-накрест». Применяется следующий пошаговый алгоритм:
Недостаток этого метода — в размерах вычислений. При умножении могут получиться большие числа, которыми тяжело оперировать.
Метод общих делителей
Иногда один из знаменателей дроби уже делится на другой без остатка. В таком случае нет нужды перемножать их, количество действий сокращается.
Этот метод хорош тем, что является более кратким вариантом умножения «крест-накрест». При этом его невозможно использовать при решении примеров, в которых числа в знаменателях не делятся друг на друга.
Метод наименьшего общего кратного
Суть приведения заключается в том, чтобы найти такое число, которое делится на каждый из знаменателей. К этому числу и необходимо привести знаменатели обеих дробей.
Наименьшее общее кратное (НОК) — это наименьшее число, на которое делится каждый из знаменателей. Обозначается он как НОК (a; b).
НОК (3; 4) = 12; НОК (8; 12) = 24.
Иногда найти НОК можно «на глаз», не выполняя дополнительных расчетов. К примеру, НОК (6; 9) = 18. Однако иногда на это может понадобиться больше времени. Описание примера таких вычислений приведено в примерах решения задач ниже.
Таким образом, основное преимущество это метода заключается в краткости вычислений. При этом его недостатком является сложность нахождения НОК в некоторых случаях.
Примеры задач с подробным решением
Задача
Решение
Для начала применим метод «крест-накрест». Тогда:
Получившуюся дробь можно сократить на 5:
Однако решение можно сократить, применив метод общих делителей. 15 делится на 5 без остатка. При таком делении дополнительным множителем для первой дроби будет число 3:
Задача
Решение
Решить эту задачу методом общих делителей невозможно, ведь 20 не делится без остатка на 15. При этом оба числа являются большими:
Вычисление методом «крест-накрест» будет слишком большим.
Оптимальным вариантом решения является метод наименьшего общего кратного.
\(НОК (15; 20) = 5\cdot3\cdot4=60\)
При делении 60 на знаменатели обеих дробей получаются дополнительные множители 4 и 3. Используем их для вычислений: