что такое обратный ток диода

Диод Шоттки

Что такое диод Шоттки

Диод Шоттки относится к семейству диодов. Выглядит он почти также, как и его собратья, но есть небольшие отличия.

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода

Простой диод выглядит на схемах вот так:

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода обозначение диода на схеме

Стабилитрон уже обозначается, как диод с «кепочкой»

Диод Шоттки имеет две «кепочки»

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода обозначение диода шоттки на схеме

Чтобы проще запомнить, можно добавить голову и ножки и представить себе человечка, танцующего ламбаду)

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода

Обратное напряжение диода Шоттки

Итак, как вы помните, диод пропускает электрический ток только в одном направлении, а в другом направлении блокирует прохождение электрического тока до какого-то критического значения, называемым обратным напряжением диода.

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода

Это значение можно найти в даташите

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода обратное напряжение диода

Для каждой марки диода оно разное

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода

Если превысить это значение, то произойдет пробой, и диод выйдет из строя.

Падение напряжения на диоде Шоттки

Если пропустить через такой диод прямой ток, то мощность, которая будет на нем рассеиваться, будет определяться формулой:

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода

Vf — прямое падение напряжение на диоде, В

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода

Поэтому, одним из главных преимуществ диода Шоттки является то, что его прямое падение напряжения намного меньше, чем у простого диода. Следовательно, он будет меньше рассеивать тепло, или простым языком, меньше нагреваться.

Давайте рассмотрим один из примеров. Возьмем диод 1N4007. Его прямое падение напряжения составляет 0,83 Вольт, что типично для простого полупроводникового диода.

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода падение напряжение на диоде в прямом включении

В настоящий момент через него проходит сила тока, равная 0,5 А. Давайте рассчитаем его рассеиваемую мощность в данный момент. P=0,83 x 0,5 = 0,415 Вт.

Если рассмотреть этот случай через тепловизор, то можно увидеть, что его температура корпуса составила 54,4 градуса по Цельсию.

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода

Теперь давайте проведем тот же самый эксперимент с диодом Шоттки 1N5817. Как вы видите, его прямое падение напряжения составило примерно 0,35 В.

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода падение напряжения на диоде Шоттки при прямом включении

При прохождении силы тока через диод Шоттки в 0,5 А, мы получим рассеиваемую мощность P=0,5 x 0,35 = 0,175 Вт. При этом тепловизор нам покажет, что температура корпуса уже будет 38,2 градуса.

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода

Следовательно, Шоттки намного эффективнее, чем простой полупроводниковый диод в плане пропускания через себя прямого тока, так как он обладает меньшим падением напряжения, а следовательно, меньше рассеивает тепло в окружающее пространство и меньше нагревается.

Прямое падение напряжения можно также посмотреть и в даташитах. Например, прямое падение напряжения на диоде Шоттки 1N5817 можно найти из графика зависимости прямого тока от падения напряжения на диоде Шоттки

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода график зависимости прямого тока от напряжения

В нашем случае если следовать графо-аналитическому способу, то мы как раз получаем значение 0,35 В

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода

Диод Шоттки в ВЧ цепях

Также диоды Шоттки обладают быстрой скоростью переключения. Это значит, что мы можем использовать их в высокочастотных (ВЧ) цепях.

Итак, возьмем генератор частоты и выставим синус частотой в 60 Гц

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода

Возьмем диод 1N4007 и диод Шоттки 1N5817. Подключим их по простой схеме однополупериодного выпрямителя

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диодачто такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода

и будем снимать с них показания

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода

Как вы видите, оба они прекрасно справляются со своей задачей по выпрямлению сигнала на частоте в 60 Гц.

Но что будет, если мы увеличим частоту до 300 кГц?

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода

Ого! Диод Шоттки более-менее справляется со своей задачей, что нельзя сказать о простом диоде 1N4007. Простой диод не может справиться со своей задачей не пропускать обратный ток, поэтому на осциллограмме мы видим отрицательный выброс

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода

Отсюда можно сделать вывод: диоды Шоттки рекомендуется использовать в ВЧ цепях.

Обратный ток утечки

Но раз уж диоды Шоттки такие крутые, то почему бы их не использовать везде? Почему мы до сих пор используем простые диоды?

Если мы подключим диод в обратном направлении, то он будет блокировать прохождение электрического тока. Это верно, но не совсем. Очень маленький ток все равно будет проходить через диод. В некоторых случаях это не принимают во внимание. Этот маленький ток называется обратным током утечки. На английский манер это звучит как reverse leakage current.

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода

Он очень мал, но имеет место быть.

Проведем простой опыт. Возьмем лабораторный блок питания, выставим на нем 19 В и подадим это напряжение на диод в обратном направлении

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода

Замеряем ток утечки

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода обратный ток утечки диода

Как вы видите, его значение составляет 0,1 мкА.

Давайте теперь повторим этот же самый опыт с диодом Шоттки

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода обратный ток утечки диода Шоттки

Ого, уже почти 20 мкА! Ну да, в некоторых случаях это сущие копейки и ими можно пренебречь. Но есть схемы, где все-таки недопустим такой незначительный ток. Например, в схемах пикового детектора

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода схема пик детектора

В этом случае эти 20 мкА будут весьма значительны.

Но есть также еще один камень преткновения. С увеличением температуры обратный ток утечки возрастает в разы!

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода зависимость обратного тока утечки от температуры корпуса диода Шоттки

Поэтому, вы не можете использовать Шоттки везде в схемах.

Но и это еще не все. Обратное напряжение для диодов Шоттки в разы меньше, чем для простых выпрямительных диодов. Это можно также увидеть из даташита. Если для диода 1N4007 обратное напряжение составляет 1000 В

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода

То для диода Шоттки 1N5817 это обратное напряжение уже будет составлять всего-то 20 В

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода

Поэтому, если это напряжение превысит значение, которое описано в даташите, мы в итоге получим:

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода

Применение диодов Шоттки

Диоды Шоттки находят достаточно широкое применение. Их можно найти везде, где требуется минимальное прямое падение напряжения, а также в цепях ВЧ. Чаще всего их можно увидеть в компьютерных блоках питания, а также в импульсных стабилизаторах напряжения.

Также эти диоды нашли применение в солнечных панелях, так как солнечные панели генерируют электрический ток только в светлое время суток. Чтобы в темное время суток не было обратного процесса потребления тока от аккумуляторов, в панели монтируют диоды Шоттки

В компьютерной технике чаще всего можно увидеть два диода в одном корпусе

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода

При написании данной статьи использовался материал с этого видео

Источник

Максимальная рассеиваемая мощность и обратное напряжение на диоде

При использовании полупроводниковых приборов следует соблюдать осторожность и не допускать слишком больших напряжений или токов, которые могли бы испортить прибор. В этой статье мы рассмотрим некоторые факторы, лимитирующие максимальные напряжение и ток на примере диода.

Подробно про диоды и их применение:

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода

Полупроводниковые диоды, используемые в компьютерной плате 1970-х годов (внизу справа и слева от синего конденсатора)

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода

Вольт-амперная характеристика германиевых и кремниевых диодов

Напряжение смещения Vd считается положительным на аноде и отрицательным на катоде. Таким образом, диод находится под прямым смещением, когда анод положительный, а катод отрицательный по отношению к аноду. В обратном случае говорят об обратной поляризации.

Ток, протекающий в диоде (Id), называется прямым, если он течет от анода к катоду (условное направление тока). Если диод смещен в обратном направлении, он не будет проводить ток, если напряжение не будет достаточно высоким, чтобы превысить напряжение пробоя.

Напряжение прямого смещения варьируется в зависимости от материала, используемого в конструкции, оно составляет 0,2 В для германия (VsdGe) и 0,6 В для кремния (VsdSi).

Диоды по своему применению обычно классифицируются в зависимости от того, какие из трех областей характеристики диода используются. Так, например, для переключения и выпрямления используется как прямая, так и обратная ветви характеристики диода. При этом, чтобы избежать нежелательного эффекта пробоя, следует выбирать диод с достаточно большим напряжением пробоя.

В свою очередь, область обратного пробоя используется главным образом в источниках опорного напряжения. Диод в этом случае выбирается по величине обратного напряжения, при которой происходит пробой. Эффектом обратного пробоя можно пренебречь, за исключением тех случаев, в которых область обратного пробоя характеристики используется специально.

Максимальная рассеиваемая мощность

Основным недостатком любого элемента электрической схемы является его разогрев. В резистивных элементах рассеиваемая мощность переходит в тепло, которое увеличивает температуру элемента по сравнению с окружающей. Максимальная температура, которую может выдержать прибор, характеризует его способность отдавать выделившееся тепло в окружающую среду и определяет максимально допустимую мощность рассеяния для прибора.

Максимальная температура прибора зависит от нескольких факторов: от изменения свойств полупроводника с температурой, плавления припоев, применяемых при изготовлении приборов, механического разрушения структуры вследствие неравных коэффициентов теплового расширения.

В кремниевых приборах максимальная температура составляет около 200 °С, а для германиевых редко превышает 100 °С. Способность отдавать тепло зависит от конструкции прибора и от способа его крепления.

Улучшение теплоотдачи достигается при монтаже приборов на ребристый теплоотвод и при применении принудительного воздушного или даже жидкостного охлаждения. Так или иначе, приборы и их арматура способны рассеивать определенную мощность без превышения максимально допустимой, температуры.

Максимально допустимая мощность рассеяния ограничивает величину произведения тока на напряжение в приборе.

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода

Границы максимально допустимой мощности на плоскости напряжение — ток

Если построим график соотношения на плоскости напряжение — ток, то получим гиперболы в первом и третьем квадрантах, определяющие границы допустимой мощности рассеяния в приборе. Бели рабочая точка диода пересекает эту границу и выходит из области безопасной работы, то прибор перегревается и его функционирование нарушается.

Обратное напряжение на диоде

В то время как максимальная рассеиваемая мощность устанавливает абсолютные пределы, за которыми происходят необратимые разрушения приборов, имеются другие явления (не обязательно разрушающие), которые приводят к значительным отклонениям характеристик диодов.

Одно из таких явлений, называемое пробоем, при обратном напряжении, ограничивает обратное напряжение, которое может выдержать диод прежде, чем начнется сильное увеличение обратного тока.

При увеличении обратного напряжения на диоде ток, достигнув значения обратного тока насыщения, остается постоянным, а электрическое поле в области объемного заряда растет. Увеличение напряженности электрического поля приводит к увеличению скорости подвижных носителей, пересекающих область объемного заряда и создающих обратный ток.

В некоторый момент скорость носителей становится такой, что при соударении вырываются добавочные электроны из ковалентньгх связей в области объемного заряда, при этом возникают дырки и свободные электроны. Эти новые носители увеличивают обратный ток и могут в свою очередь при соударениях порождать дополнительные подвижные электроны и дырки.

Этот процесс, называемый зенеровским пробоем или внутренней автоэлектронной эмиссией, приводит к тому же результату, что и лавинное размножение: быстрому увеличению обратного тока при превышении определенной величины обратного напряжения. Как правило, зенеровекий пробой преобладает в диодах, которые пробиваются при напряжениях ниже 6 В, а лавинное умножение преобладает в диодах, пробивное напряжение которых выше 6 В.

Очевидно, что пробой сильно влияет на вольт-амперную характеристику диода. Так, если требуется, чтобы диод не пропускал обратного тока, следует выбирать прибор, обратное напряжение которого больше, чем напряжение в схеме, которое может быть подано на диод в обратном направлении.

Хотя термин «пробой» подразумевает разрушение, на самом деле это не всегда так. Диод может работать в области пробоя и даже при напряжениях, значительно превышающих напряжение пробоя, без необратимых изменений, если только не превышается максимально допустимая мощность рассеяния.

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода

Полупроводниковые диоды трех разных типов в плате видеорегистратора. Обратите внимание на аббревиатуры, напечатанные на печатной плате с начальной буквой «D» для диода.

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода

Современные полупроводниковые диоды

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода

Силовые диоды в виде диодного моста для винтового монтажа (обратите внимание на отверстие под болт), подходящего для монтажа на радиаторе.

Диоды Зенера (стабилитроны)

В области пробоя ток через диод почти не зависит от напряжения. Простая линейная модель диода в области пробоя содержит только батарею, напряжение которой равно напряжению пробоя диода. Поэтому если в каком-то месте схемы требуется поддерживать постоянное напряжение, то можно использовать диод, работающий в области пробоя.

Диоды, предназначенные для этого вида работы, называются опорными диодами, диодами Зенера или стабилитронами, хотя механизм пробоя в них может быть и зенеровским, и лавинным. Аналогично напряжение, при котором происходит пробой, часто называют зенеровским напряжением.

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода

Стабилитрон представляет собой полупроводниковый диод, который использует обратное смещение и напряжение пробоя в качестве опорного напряжения

По сути, это стабилизатор напряжения. Стабилитрон диод чувствителен к температуре. Для напряжений стабилитрона ниже 5 вольт по мере увеличения температуры напряжение уменьшается, в то время как напряжения стабилитрона выше 6 вольт, когда температура увеличивается, напряжение стабилитрона увеличивается.

Само собой разумеется, что диоды с напряжением около 5-6 В по своей природе более стабильны. Обычно номинальное напряжение измеряется при температуре 25 ° C.

В поисках термостабильности, необходимой в некоторых приложениях, можно последовательно соединить стабилитроны различных типов с противоположными температурными коэффициентами, чтобы колебания напряжения компенсировали друг друга.

Для этого можно использовать и обычные диоды в прямой поляризации, включенные последовательно с стабилитроном, при условии, что они имеют тепловой коэффициент, противоположный таковому у стабилитрона.

Диоды Зенера могут быть соединены последовательно для получения более высоких напряжений. Результирующее напряжение будет суммой отдельных последовательно включенных стабилитронов. Очевидно, что невозможно подключить их параллельно (для увеличения управляемого тока), даже если они имеют одинаковое номинальное напряжение.

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода

Стабилитрон, установленный на алюминиевом радиаторе в электронном приборе 70-х годов

Стабилитроны имеют напряжения пробоя от 2,4 до 200 В. Рядом с символом такого диода часто записывают напряжение пробоя. Изготовители указывают также минимальный обратный ток, при котором должен работать опорный диод, чтобы обеспечить наступление пробоя. Максимальный ток ограничивается максимально допустимой мощностью рассеяния.

Источник

Диоды. For dummies

Введение

Диод — двухэлектродный электронный прибор, обладает различной проводимостью в зависимости от направления электрического тока. Электрод диода, подключённый к положительному полюсу источника тока, когда диод открыт (то есть имеет маленькое сопротивление), называют анодом, подключённый к отрицательному полюсу — катодом. (wikipedia)

Все диоды можно разделить на две большие группы: полупроводниковые и неполупроводниковые. Здесь я буду рассматривать только первую из них.

В основе полупроводникового диода лежит такая известная штука, как p-n переход. Думаю, что большинству читателей о нем рассказывали на уроках физики в школе, а кому-то более подробно еще и в институте. Однако, на всякий случай приведу общий принцип его работы.

Два слова о зонной теории проводимости твердых тел

Прежде, чем начать разговор о p-n переходе, стоит обговорить некоторые теоретические моменты.

Считается, что электроны в атоме расположены на различном расстоянии от ядра. Соответственно, чем ближе электрон к ядру, тем сильнее связь между ними и тем большую энергию надо приложить, чтобы отправить его «в свободное плаванье». Говорят, что электроны расположены на различных энергетических уровнях. Заполнение этих уровней электронами происходит снизу вверх и на каждом из них может находиться не больше строго определенного числа электронов (атом Бора). Таким образом, если уровень заполнен, то новый электрон не может на него попасть, пока для него не освободится место. Чтобы электрон мог перейти на уровень выше, ему нужно сообщить дополнительную энергию. А если электрон «падает» вниз, то излишек энергии освобождается в виде излучения. Электроны могут занимать в атоме только сторого определенные орбиты с определенными энергиями. Орбиты эти называются разрешенными. Соответственно, запрещенными называют те орбиты (зоны), в которых электрон находиться не может. Подробнее об этом можно почитать по ссылке на атом Бора выше, здесь же примем это как аксиому.

Самый верхний энергетический уровень называется валентным. У большинства веществ он заполнен только частично, поэтому электроны внешних подуровней других атомов всегда могут найти на нем себе место. И они действительно хаотично мигрируют от атома к атому, осуществляя таким образом связь между ними. Нижний слой, в котором могут перемещаться свободные электроны, называют зоной проводимости. Если валентная зона частично заполнена и электроны в ней могут перемещаться от атома к атому, то она совпадает с зоной проводимости. Такая картина наблюдается у проводников. У полупроводников валентная зона заполнена целиком, но разница энергий между валентным и проводящим уровнями у них мала. Поэтому электроны могут преодолевать ее просто за счет теплового движения. А у изоляторов эта разница велика, и чтобы получить пробой, нужно приложить значительную энергию.

Такова общая картина энергетического строения атома. Можно переходить непосредственно к p-n переходу.

p-n переход

Начнем с того, что полупроводники бывают n-типа и p-типа. Первые получают легированием четырехвалентного полупроводника (чаще всего кремния) пятивалентным полупроводником (например, мышьяком). Эту пятивалентную примесь называют донором. Ее атомы образуют четыре химических связи с атомами кремния, а пятый валентный электрон остается свободным и может выйти из валентной зоны в зону проводимости, если, например, незначительно повысить температуру вещества. Таким образом, в проводнике n-типа возникает избыток электронов.

Полупроводники p-типа тоже получаются путем легирования кремния, но уже трехвалентной примесью (например, бором). Эта примесь носит название акцептора. Он может образовывать только три из четырех возможных химических связей. А оставшуюся незаполненной валентную связь принято называть дыркой. Т.е. дырка — это не реальная частица, а абстракция, принятая для более удобного описания процессов, происходящих в полупроводнике. Ее заряд полагают положительным и равным заряду электрона. Итак, в полупроводнике p-типа у нас получается избыток положительных зарядов.

В полупроводниках обоих типов кроме основных носителей заряда (электроны для n-типа, дырки для p-типа) в наибольшом количестве присутствуют неосновные носители заряда: дырки для n-области и электроны для p-области.

Если расположить рядом p- и n-полупроводники, то на границе между ними возникнет диффузный ток. Произойдет это потому, что с одной стороны у нас чересчур много отрицательных зарядов (электронов), а с другой — положительных (дырок). Соответственно, электроны будут перетекать в приграничную область p-полупроводника. А поскольку дырка — место отсутствия электрона, то возникнет ощущение, будто дырки перемещаются в противоположную сторону — к границе n-полупроводника. Попадая в p- и n-области, электроны и дырки рекомбинируют, что приводит к снижению количества подвижных носителей заряда. На этом фоне становятся ясно видны неподвижные положительно и отрицательно заряженные ионы на границах полупроводников (от которых «ушли» рекомбинировавшие дырки и электроны). В итоге получим две узкие заряженные области на границе веществ. Это и есть p-n переход, который также называют обедненным слоем из-за малой концентрации в нем подвижных носителей заряда. Естественно, что здесь возникнет электрическое поле, направление которого препятствует дальнейшей диффузии электронов и дырок. Возникает потенциальный барьер, преодолеть который основные носители заряда смогут только обладая достаточной для этого энергией. А вот неосновным носителям возникшее электрическое поле наоборот помогает. Соответственно, через переход потечет ток, в противоположном диффузному направлении. Этот ток называют дрейфовым. При отсутствии внешнего воздействия диффузный и дрейфовый ток уравновешивают друг друга и перетекание зарядов прекращается.

Ширина обедненной области и контактная разность потенциалов границ перехода (потенциальный барьер) являются важными характеристиками p-n перехода.

Если приложить внешнее напряжение так, чтобы его электрическое поле «поддерживало» диффузный ток, то произойдет снижение потенциального барьера и сужение обедненной области. Соответственно, ток будет легче течь через переход. Такое подключение внешнего напряжения называют прямым смещением.

Но можно подключиться и наоборот, чтобы внешнее электрическое поле поддерживало дрейфовый ток. Однако, в этом случае ширина обедненной зоны увеличится, а потенциальный барьер возрастет. Переход «закроется». Такое подключение называют обратным смещением. Если величина приложенного напряжения превысит некоторое предельное значение, то произойдет пробой перехода, и через него потечет ток (электроны разгонятся до такой степени, что смогут проскочить через потенциальный барьер). Эта граничная величина называется напряжением пробоя.

Все, конец теории, пора перейти к ее практическому применению.

Диоды, наконец-то

что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода
Диод, по сути, одиночный p-n переход. Если он подключен с прямым смещением, то ток через него течет, а если с обратным — не течет (на самом деле, небольшой дрейфовый ток все равно остается, но этим можно пренебречь). Этот принцип показан в условном обозначении диода: если ток направлен по стрелке треугольника, то ему ничего не мешает, а если наоборот — то он «натыкается» на вертикальную линию. Эта вертикальная линия на диодах-радиоэлементах обозначается широкой полосой у края.

Помню, когда я была глупой студенткой и впервые пришла работать в цех набивки печатных плат, то сначала ставила диоды как бог на душу положит. Только потом я узнала, что правильное расположение этого элемента играет весьма и весьма значительную роль. Но это так, лирическое отступление.

Диоды имеют нелинейную вольт-амперную характеристику.
что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода

Области применения диодов

Немного экзотики

Не стоит забывать о том, что p-n переход — одно из явлений микромира, где правит балом квантовая физика и становятся возможными странные вещи. Например, туннельный эффект — когда частица может пройти через потенциальный барьер, обладая меньшей энергией. Это становится возможным благодаря неопределенности соотношения между импульсом и координатами частицы (привет, Гейзенберг!). Этот эффект лежит в основе туннельных диодов.
что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода
Чтобы обеспечить возможность «просачивания» зарядов, их делают из вырожденных полупроводников (содержащих высокую концентрацию примесей). В результате получают резкий p-n переход с тонким запирающим слоем. Такие диоды маломощные и низкоинерционные, поэтому их можно применять в СВЧ-диапазоне.

Есть еще одна необычная разновидность полупроводниковых диодов — диоды Шоттки.
что такое обратный ток диода. Смотреть фото что такое обратный ток диода. Смотреть картинку что такое обратный ток диода. Картинка про что такое обратный ток диода. Фото что такое обратный ток диода
В них используется не традиционный p-n переход, а переход металл-полупроводник в качестве барьера Шоттки. Барьер этот возникает в том случае, когда разнятся величины работы выхода электронов из металла и полупроводника. Если n-полупроводник имеет работу выхода меньше, чем контактирующий с ним металл, то приграничный слой металла будет заряжен отрицательно, а полупроводника — положительно (электронам проще перейти из полупроводника в металл, чем наоборот). Если же у нас контакт металл/p-полупроводник, причем работа выхода для второго выше, чем для первого, то получим положительно заряженный приграничный слой металла и отрицательно заряженный слой полупроводника. В любом случае, у нас возникнет разность потенциалов, с помощью которой работы выхода из обоих контактирующих веществ сравняются. Это приведет к возникновению равновесного состояния и формированию потенциального барьера между металлом и полупроводником. И так же, как и в случае p-n перехода, к переходу металл/полупроводник можно прикладывать прямое и обратное смещение с аналогичным результатом.

Диоды Шоттки отличаются от p-n собратьев низким падением напряжения при прямом включении и меньшей электрической емкостью перехода. Таким образом, повышается их рабочая частота и понижается уровень помех.

Заключение

Само собой, здесь рассмотрены далеко не все существующие виды диодов. Но надеюсь, что по написанному выше можно составить достаточно полное суждение об этих электронных компонетах.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *