что такое нормальность и молярность раствора
Концентрация растворов. Способы выражения концентрации растворов.
Концентрация раствора может выражаться как в безразмерных единицах (долях, процентах), так и в размерных величинах (массовых долях, молярности, титрах, мольных долях).
Способы выражения концентрации растворов.
1. Массовая доля (или процентная концентрация вещества) – это отношение массы растворенного вещества m к общей массе раствора. Для бинарного раствора, состоящего из растворённого вещества и растворителя:
,
ω – массовая доля растворенного вещества;
mв-ва – масса растворённого вещества;
Массовую долю выражают в долях от единицы или в процентах.
2. Молярная концентрация или молярность – это количество молей растворённого вещества в одном литре раствора V:
,
C – молярная концентрация растворённого вещества, моль/л (возможно также обозначение М, например, 0,2 М HCl);
n – количество растворенного вещества, моль;
V – объём раствора, л.
Раствор называют молярным или одномолярным, если в 1 литре раствора растворено 1 моль вещества, децимолярным – растворено 0,1 моля вещества, сантимолярным – растворено 0,01 моля вещества, миллимолярным – растворено 0,001 моля вещества.
3. Моляльная концентрация (моляльность) раствора С(x) показывает количество молей n растворенного вещества в 1 кг растворителя m:
,
С (x) – моляльность, моль/кг;
n – количество растворенного вещества, моль;
4. Титр – содержание вещества в граммах в 1 мл раствора:
,
T – титр растворённого вещества, г/мл;
mв-ва – масса растворенного вещества, г;
5. Мольная доля растворённого вещества – безразмерная величина, равная отношению количества растворенного вещества n к общему количеству веществ в растворе:
,
N – мольная доля растворённого вещества;
n – количество растворённого вещества, моль;
nр-ля – количество вещества растворителя, моль.
Сумма мольных долей должна равняться 1:
Иногда при решении задач необходимо переходить от одних единиц выражения к другим:
М(Х) – молярная масса растворенного вещества;
ρ= m/(1000V) – плотность раствора. 6. Нормальная концентрация растворов (нормальность или молярная концентрация эквивалента) – число грамм-эквивалентов данного вещества в одном литре раствора.
Грамм-эквивалент вещества – количество граммов вещества, численно равное его эквиваленту.
Эквивалент – это условная единица, равноценная одному иону водорода в кислотоно-основных реакциях или одному электрону в окислительно – восстановительных реакциях.
Для записи концентрации таких растворов используют сокращения н или N. Например, раствор, содержащий 0,1 моль-экв/л, называют децинормальным и записывают как 0,1 н.
,
СН – нормальная концентрация, моль-экв/л;
z – число эквивалентности;
Коэффициент растворимости – отношение массы вещества, образующего насыщенный раствор при конкретной температуре, к массе растворителя:
Концентрация растворов
Способы выражения концентрации растворов
Пример
Сколько грамм сульфата натрия и воды нужно для приготовления 300 г 5% раствора?
Таким образом, для приготовления 300 г 5% раствора сульфата натрия надо взять 15 г Na2SO4 и 285 г воды.
Молярная концентрация C(B) показывает, сколько моль растворённого вещества содержится в 1 литре раствора.
C(B) = n(B) / V = m(B) / (M(B) V),
Пример
Какую массу хромата калия K2CrO4 нужно взять для приготовления 1,2 л 0,1 М раствора?
V M(K2CrO4) = 0,1 моль/л 1,2 л 194 г/моль = 23,3 г.
Таким образом, для приготовления 1,2 л 0,1 М раствора нужно взять 23,3 г K2CrO4 и растворить в воде, а объём довести до 1,2 литра.
Величины нормальности обозначают буквой «Н». Например, децинормальный раствор серной кислоты обозначают «0,1 Н раствор H2SO4«. Так как нормальность может быть определена только для данной реакции, то в разных реакциях величина нормальности одного и того же раствора может оказаться неодинаковой. Так, одномолярный раствор H2SO4 будет однонормальным, когда он предназначается для реакции со щёлочью с образованием гидросульфата NaHSO4, и двухнормальным в реакции с образованием Na2SO4.
Пример
Рассчитайте молярность и нормальность 70%-ного раствора H2SO4 (r = 1,615 г/мл).
Этими же формулами можно воспользоваться, если нужно пересчитать нормальную или молярную концентрацию на процентную.
Решение
Мольная масса серной кислоты равна 98. Следовательно,
m(H2SO4) = 98 и э(H2SO4) = 98 : 2 = 49.
Подставляя необходимые значения в формулы, получим:
а) Молярная концентрация 12% раствора серной кислоты равна
M = (12 1,08 10) / 98 = 1,32 M
б) Нормальная концентрация 12% раствора серной кислоты равна
N = (12 1,08 10) / 49 = 2,64 H.
Иногда в лабораторной практике приходится пересчитывать молярную концентрацию в нормальную и наоборот. Если эквивалентная масса вещества равна мольной массе (Например, для HCl, KCl, KOH), то нормальная концентрация равна молярной концентрации. Так, 1 н. раствор соляной кислоты будет одновременно 1 M раствором. Однако для большинства соединений эквивалентная масса не равна мольной и, следовательно, нормальная концентрация растворов этих веществ не равна молярной концентрации.
Для пересчета из одной концентрации в другую можно использовать формулы:
M = (N Э) / m
Пример
Нормальная концентрация 1 М раствора серной кислоты N = (1 98) / 49 = 2 H.
Пример
Молярная концентрация 0,5 н. Na2CO3
M = (0,5 53) / 106 = 0,25 M. Упаривание, разбавление, концентрирование,
смешивание растворов
Имеется mг исходного раствора с массовой долей растворенного вещества w1 и плотностью r1.
Упаривание раствора
В результате упаривания исходного раствора его масса уменьшилась на Dm г. Определить массовую долю раствора после упаривания w2
Концентрирование раствора
Какую массу вещества (X г) надо дополнительно растворить в исходном растворе, чтобы приготовить раствор с массовой долей растворенного вещества w2?
Решая полученное уравнение относительно х получаем:
w2 m + w 2 x = w 1 m + x
Смешивание растворов с разными концентрациями
Смешали m1 граммов раствора №1 c массовой долей вещества w1 и m2 граммов раствора №2 c массовой долей вещества w2. Образовался раствор (№3) с массовой долей растворенного вещества w3. Как относятся друг к другу массы исходных растворов?
Решение
Пусть w1 > w2, тогда w1 > w3 > w2. Масса растворенного вещества в растворе №1 составляет w1
m1 / m2 = (w3— w2 ) / (w1— w3)
Таким образом, массы смешиваемых растворов m1 и m2 обратно пропорциональны разностям массовых долей w1 и w2 смешиваемых растворов и массовой доли смеси w3. (Правило смешивания).
Для облегчения использования правила смешивания применяют правило креста :
Пример
Определите массы исходных растворов с массовыми долями гидроксида натрия 5% и 40%, если при их смешивании образовался раствор массой 210 г с массовой долей гидроксида натрия 10%.
40% \ | 5% / | m1 | |
10% | |||
/ 5% | \ 30% | m2=210-m1 |
Разбавление раствора
Исходя из определения массовой доли, получим выражения для значений массовых долей растворенного вещества в исходном растворе №1 (w1) и полученном растворе №2 (w2):
w1 = m1 / (r1 V 1 ) откуда V 1 = m 1 /( w 1 r 1 )
Раствор №2 получают, разбавляя раствор №1, поэтому m1 = m2. В формулу для V1 следует подставить выражение для m2. Тогда
V1= (w2 r 2 V 2 ) / (w 1 r 1 )
w1 • r1 • V1 | = | w2 • r2 • V2 |
m1(раствор) | m2(раствор) |
m1(раствор) / m2(раствор) = w2 / w1
При одном и том же количестве растворенного вещества массы растворов и их массовые доли обратно пропорциональны друг другу.
Пример
Определите массу 3%-ного раствора пероксида водорода, который можно получить разбавлением водой 50 г его 3%-ного раствора.
m1(раствор) / m2(раствор) = w2 / w1
50 / x = 3 / 30
3x = 50
x = 500 г
Последнюю задачу можно также решить, используя «правило креста»:
30% \ | 3% / | 50 | |
3% | |||
/ 0% | \ 27% | X |
3 / 27 = 50 / x
x = 450 г воды
450 г + 50 г = 500 г
Способы выражения концентрации
Существует множество способов измерить концентрацию раствора. Это так называемые способы выражения концентрации раствора.
Концентрация раствора — это количество вещества, находящегося в единице объема или массы раствора.
Что такое раствор
Среди окружающих нас веществ, лишь немногие представляют собой чистые вещества. Большинство являются смесями, состоящими из нескольких компонентов, которые могут находиться в одном или различных фазовых состояниях.
Смеси, имеющие однородный состав являются гомогенными, неоднородный состав – гетерогенными.
Иначе, гомогенные смеси, называют растворами, в которых одно вещество полностью растворяется в другом (растворителе). Растворитель – это тот компонент раствора, который при образовании раствора сохраняет свое фазовое состояние. Он обычно находится в наибольшем количестве.
Существуют растворы газовые, жидкие и твердые. Но более всего распространены жидкие растворы, поэтому, в данном разделе, именно на них мы сосредоточим свое внимание.
Концентрацию раствора можно охарактеризовать как:
Качественная концентрация характеризуется такими понятиями, как разбавленный и концентрированный раствор.
С этой точки зрения растворы можно классифицировать на:
Количественная концентрация выражается через молярную, нормальную (молярную концентрацию эквивалента), процентную, моляльную концентрации, титр и мольную долю.
Способы выражения концентрации растворов
Молярная концентрация растворов (молярность)
Раствор называют молярным или одномолярным, если в 1 литре раствора растворено 1 моль вещества, децимолярным – растворено 0,1 моля вещества, сантимолярным — растворено 0,01 моля вещества, миллимолярным — растворено 0,001 моля вещества.
Термин «молярная концентрация» распространяется на любой вид частиц.
Вместо обозначения единицы измерения — моль/л, возможно такое ее обозначение – М, например, 0,2 М HCl.
Молярная концентрация эквивалента или нормальная концентрация растворов (нормальность).
Понятие эквивалентности мы уже вводили. Напомним, что эквивалент – это условная частица, которая равноценна по химическому действию одному иону водорода в кислотоно-основных реакциях или одному электрону в окислительно – восстановительных реакциях.
Например, эквивалент KMnO4 в окислительно – восстановительной реакции в кислой среде равен 1/5 (KMnO4).
Еще одно необходимое понятие — фактор эквивалентности – это число, обозначающее, какая доля условной частицы реагирует с 1 ионом водорода в данной кислотоно-основной реакции или с одним электроном в данной окислительно – восстановительной реакции.
Он может быть равен 1 или быть меньше 1. Фактор эквивалентности, например, для KMnO4 в окислительно – восстановительной реакции в кислой среде составляет fэкв(KMnO4) = 1/5.
Следующее понятие – молярная масса эквивалента вещества х. Это масса 1 моля эквивалента этого вещества, равная произведению фактора эквивалентности на молярную массу вещества х:
Молярная концентрация эквивалента (нормальность) определяется числом молярных масс эквивалентов на 1 литр раствора.
Для обозначения нормальной концентрации допускается сокращение «н» вместо «моль/л».
Процентная концентрация раствора или массовая доля
Массовая концентрация показывает сколько единиц массы растворенного вещества содержится в 100 единицах массы раствора.
Это отношение массы m(х) вещества x к общей массе m раствора или смеси веществ:
Массовую долю выражают в долях от единицы или процентах.
Моляльная концентрация раствора
Моляльная концентрация раствора b(x) показывает количество молей n растворенного вещества х в 1 кг. растворителя m. Единица измерения моляльной концентрации — моль/кг :
Титр раствора
Титр раствора показывает массу растворенного вещества х, содержащуюся в 1 мл. раствора. Единица измерения титра — г/мл:
Мольная или молярная доля
Мольная или молярная доля α(х) вещества х в растворе равна отношению количества данного вещества n(х) к общему количеству всех веществ, содержащихся в растворе Σn:
Между приведенными способами выражения концентраций существует взаимосвязь, которая позволяет, зная одну единицу измерения концентрации найти (пересчитать) ее в другие единицы. Существуют формулы, позволяющие провести такой пересчет, которые, в случае необходимости, вы сможете найти в сети. В разделе задач показано, как произвести такой пересчет, не зная формул.
Пример перевода процентной концентрации в молярную, нормальную концентрацию, моляльность, титр
Решение.
1. Рассчитать молярную массу FeSO4:
M (FeSO4) = 56+32+16·4 = 152 г/моль
2. Рассчитать молярную массу эквивалента:
Мэ = fэкв· М(FeSO4) = 1/2·152 = 76 г/моль
3. Найдем m раствора объемом 2 л
4. Найдем массу 2 % раствора по формуле:
m(FeSO4) = 0,02·2,06 = 0,0412 кг = 41,2 г
5. Найдем молярность, которая определяется как количество молей растворенного вещества в одном литре раствора:
n = m/М
n = 41,2/152 = 0,27 моль
См = n/V
См = 0,27/2 = 0,135 моль/л
6. Найдем нормальность:
nэ = 41,2/76 = 0,54 моль
Сн = 0,54/2 = 0,27 моль/л
7. Найдем моляльность раствора. Моляльная концентрация равна:
b (x) = n(x)/m
Масса растворителя, т.е. воды в растворе равна:
mH2O = 2,06-0,0412 = 2,02 кг
b (FeSO4) = n(FeSO4)/m = 0,27/2,02 = 0,13 моль/кг
8. Найдем титр раствора, который показывает какая масса вещества содержится в 1 мл раствора:
Т(х) = m (х)/V
Т(FeSO4) = m (FeSO4)/V = 41,2/2000 = 0,0021 г/мл
Урок 15. Моляльность и молярность
В уроке 15 «Моляльность и молярность» из курса «Химия для чайников» рассмотрим понятия растворитель и растворенное вещество научимся выполнять расчет молярной и моляльной концентрации, а также разбавлять растворы. Невозможно объяснить что такое моляльность и молярность, если вы не знакомы с понятием моль вещества, поэтому не поленитесь и прочитайте предыдущие уроки. Кстати, в прошлом уроке мы разбирали задачи на выход реакции, посмотрите если вам интересно.
Растворитель и растворенное вещество
Расчет концентрации раствора
Молярная концентрация
Формула для вычисления молярной концентрации (молярности):
где n — количество растворенного вещества в молях, V — объем раствора в литрах.
Пару слов о технике приготовления растворов нужной молярности. Очевидно, что если добавить к одному литру растворителя 1 моль вещества, общий объем раствора будет чуть больше одного литра, и потому будет ошибкой считать полученный раствор одномолярным. Чтобы этого избежать, первым делом добавляем вещество, а только потом доливаем воду, пока суммарный объем раствора не будет равным 1 л. Полезно будет запомнить приближенное правило аддитивности объемов, которое гласит, что объем раствора приближенно равен сумме объемов растворителя и растворенного вещества. Растворы многих солей приближенно подчиняются данному правилу.
Пример 1. Химичка дала задание растворить в литре воды 264 г сульфата аммония (NH4)2SO4, а затем вычислить молярность полученного раствора и его объем, основываясь на предположении об аддитивности объемов. Плотность сульфата аммония равна 1,76 г/мл.
Пользуясь правилом аддитивности объемов, найдем окончательный объем раствора:
Число молей растворенного сульфата аммония равно:
Завершающий шаг! Молярность раствора равна:
Приближенным правилом аддитивности объемов можно пользоваться только для грубой предварительной оценки молярности раствора. Например, в примере 1, объем полученного раствора на самом деле имеет молярную концентрацию равную 1,8 М, т.е погрешность наших расчетов составляет 3,3%.
Моляльная концентрация
Наряду с молярностью, химики используют моляльность, или моляльную концентрацию, в основе которой учитывается количество использованного растворителя, а не количество образующегося раствора. Моляльная концентрация — это число молей растворенного вещества в 1 кг растворителя (а не раствора!). Моляльность выражается в моль/кг и обозначается маленькой буквой m. Формула для вычисления моляльной концентрации:
где n — количество растворенного вещества в молях, m — масса растворителя в кг
Для справки отметим, что 1 л воды = 1 кг воды, и еще, 1 г/мл = 1 кг/л.
Пример 2. Химичка попросила определить моляльность раствора, полученного при растворении 5 г уксусной кислоты C2H4O2 в 1 л этанола. Плотность этанола равна 0,789 г/мл.
Число молей уксусной кислоты в 5 г равно:
Масса 1 л этанола равна:
Последний этап. Найдем моляльность полученного раствора:
Единица моляльности обозначается Мл, поэтому ответ также можно записать 0,106 Мл.
Разбавление растворов
где с 1 и V 1 — молярная концентрация и объем раствора до разбавления, с 2 и V 2 — молярная концентрация и объем раствора после разбавления. Рассмотрите задачи на разбавление растворов:
Пример 3. Определите молярность раствора, полученного разбавлением 175 мл 2,00 М раствора до 1,00 л.
Пример 4 самостоятельно. До какого объема следует разбавить 5,00 мл 6,00 М раствора HCl, чтобы его молярность стала 0,1 М?
Без сомнения, вы и сами догадались, что урок 15 «Моляльность и молярность» очень важный, ведь 90% все лабораторных по химии связаны с приготовлением растворов нужной концентрации. Поэтому проштудируйте материал от корки до корки. Если у вас возникли вопросы, пишите их в комментарии.
Выражение концентрации растворов в единицах нормальности, молярности и моляльности. Взаимный переход от одних видов выражения концентрации к другим
Молярная концентрация (молярность) – выражается числом молей растворенного вещества в 1 литре раствора.
где См – молярная концентрация (молярность) (моль/л),
υ – число молей (моль),
Единицы измерения молярной концентрации моль/л.
Раствор, содержащий в 1 литре 1 моль растворенного вещества, называется молярным. Например, 1 молярный раствор NаOH – это такой раствор, 1литр которого содержит 1 моль растворенного вещества NaOH или 1·40 = 40 г NaOH.
Сн = υэ /V (5),
где Сн – нормальная концентрация (нормальность) моль-экв/л,
Раствор в 1 литре, которого содержится 1 моль-эквивалент, называется нормальным.
При нахождении моль эквивалентов вещества по его молекулярной массе необходимо знать, что молярная масса эквивалента данного вещества может быть различным при разных химических реакциях, в которых это вещество участвует. Поэтому один и тот же раствор в разных случаях может иметь различную нормальность.
Например, если при взаимодействии раствора серной кислоты, содержащей 9,8 г кислоты, с NaOH образуется кислая соль, то раствор серной кислоты будет 0,1 н., т.к. эта реакция сводится к замещению одного иона водорода в серной кислоте на ион натрия:
Если же образуется средняя соль, реакция сводится к замещению двух ионов водорода в серной кислоте на два иона натрия:
Для перехода от процентной концентрации к концентрациям, выраженным в единицах нормальности и молярности, и обратно необходимо учитывать плотность растворов.
Титром – называют число грамм растворенного вещества, содержащееся в 1 мл раствора. Единицы измерения титра г/мл.
ПРИМЕР 9: Рассчитать молярность, нормальность 36:-ного раствора серной кислоты (плотность раствора 1,268 г/см 3 ).
РЕШЕНИЕ:
1) Рассчитаем массу 1л раствора 36%-ного раствора серной кислоты:
mр-ра = 1000·1,268 = 1268г
2) Рассчитаем массу серной кислоты, которая содержится в 1268г раствора. Зная, что исходный раствор 36%-ный, можно сделать вывод, что в 100г этого раствора содержится 36г серной кислоты. Тогда в 1268г 36%-ного раствора будет содержаться:
36·1268/100 = 456,48г серной кислоты.
3) Зная массу серной кислоты и молярную массу серной кислоты, можно найти число моей кислоты
υ = 456,48/98 = 4,65 моля
(98 г/моль –молярная масса серной кислоты).
Поскольку все расчеты мы вели на 1 литр, то мы нашли число молей растворенного вещества в 1 литре раствора, а значит, мы нашли молярность. Следовательно, См = 4,65 М.
ОТВЕТ: См = 4,65 М, Сн = 9,3н.
ПРИМЕР10: Вычислите процентную концентрацию, молярность и титр 2 н. раствора КОН (ρ = 1,10 г/см 3 ).
1) Вычислим массу 1 литра раствора КОН
Мэ кон = М кон, т.к. fэ = 1.
m = υэ·Мэ = 2·56 = 112 г
4) Рассчитаем по формуле (1) процентную концентрацию:
ω = mраст. в-ва·100/ mр-ра = 112·100/1100 = 10,18 %.
5) Молярность и нормальность отличается друг от друга фактором эквивалентности: См =Сн·fэ или Сн = См/fэ
Для КОН fэ = 1, т.е. См=Сн, следовательно, См = 2 М.
6) Рассчитаем титр раствора
Т=mраств. в-ва /Vр-ра = 112/1000 = 0,112 г/мл.
ПРИМЕР11:Рассчитать объём 36:-ной кислоты НС1 (ρ = 1,179 г/см 3 ) для приготовления а) 200 мл 0,1 н. раствора; б) 500 мл 0,5 М раствора.
а)1) рассчитаем массу НС1, которая содержится в 200 мл 0,1 н. раствора:
mHCl = 0,1·200·36,5/1000 = 0,73 г
2)Рассчитаем массу 36%-ного раствора НС1, в которой содержится 0,73 г НС1
36 г НС1 находятся в 100 г 36%-ного раствора НС1
0,73 г НС1 находятся в Х г 36%-ного раствора НС1
Х = 0,73·100/ 36 = 2,03 г
3) Найдем, какой объём НС1 составляет 2,03 г раствора:
V = m/ ρ = 2,03/1,179 = 1,8 мл
ОТВЕТ:Необходимо взять 1,8 мл 36%-ного раствора НС1
б)1) Рассчитаем массу НС1, содержащуюся в 500 мл 0,5 М раствора
2) Рассчитаем массу 36%-ной НС1, в которой содержится 9,125 г НС1
3) Рассчитаем объём, который составляют 25,35 г раствора НС1:
V = 25,35/1,179 = 21,51 мл.
ОТВЕТ:Необходимо взять 21,51 мл 36%-ного раствора НС1.
§ 1.4. Расчет объёмов растворов, необходимых для реакции.
Зная концентрации растворов, применяемых при проведении различных реакций, можно вычислить в каких объёмных отношениях должны быть смешаны эти растворы, чтобы растворенные в них вещества реагировали без остатка. Эти вычисления особенно упрощаются, если пользоваться растворами определенной нормальности.
Для расчета объёмов растворов используют закон эквивалентов для растворов.
При одинаковой нормальности растворов объёмы этих растворов всегда будут равны между собой, при различных объёмы обратно пропорциональны нормальностям.
где N1 –нормальная концентрация первого вещества,
V1 – объём первого вещества (мл),
N2 – нормальная концентрация второго вещества,
V2 – объём второго вещества (мл).
ПРИМЕР 12: Для нейтрализации 42 мл раствора кислоты потребовалось прилить к ним 14 мл 0,3 н. раствора щелочи. Определить нормальность кислоты.
РЕШЕНИЕ: Обозначим нормальность кислоты через Х и составим пропорцию:
следовательно, Х = 0,3·13/ 42 = 0,1н.
ОТВЕТ: Нормальность кислоты 0,1н.
ПРИМЕР 13: Сколько миллилитров 0,25 н. раствора серной кислоты потребуется для осаждения в виде ВаSO4 всего бария, содержащегося в 20 мл 2 н. раствора ВаС12?
РЕШЕНИЕ: Обозначим искомый объём раствора серной кислоты через V и составляем пропорцию:
следовательно, V= 2·20/ 0,25 = 160 мл.
ОТВЕТ: Требуется 160 мл серной кислоты.
Зная объём и нормальную концентрацию одного раствора, можно рассчитать массу определяемого вещества по формуле:
Мэ1 – эквивалентная масса первого вещества (г/моль),
V2 – объём второго вещества (мл),
Сн2 – нормальная концентрация второго вещества.