что такое нейронной сети защемило
Содержание
Содержание
Человеческий мозг — восхитительное устройство. Он вдохновляет современных исследователей, которые создают искусственные нейроны, словно ученики скульптора, копирующие бюст Сократа. И результат тому — искусственная нейронная сеть (ИНС), одно из самых обсуждаемых явлений современности.
Почему нейронная, почему сеть
Глубокое понимание нейросетей предполагает, что вы в курсе понятий математическая функция, перцептрон и матрица весов. Мы же предлагаем поговорить про это явление на общечеловеческом языке, чтобы всем было понятно.
Искусственная нейронная сеть неспроста получила такое название, ссылаясь к работе нейронов головного мозга. Под нейросетью понимается система вычислительных единиц — искусственных нейронов, функционирующих подобно нейронам мозга живых существ. Как и биологические, искусственные нейроны получают и обрабатывают информацию, после чего передают ее дальше. Взаимодействуя друг с другом, нейроны решают сложные задачи.Среди них:
Нейронная сеть воспроизводит психические процессы, например, речь, распознавание образов, творческий выбор, мышление. Те области, которые еще вчера мыслились нами как возможности исключительно человеческого разума, становятся доступными искусственному интеллекту. Другое преимущество нейросетей перед традиционным ПО — возможность обучаться. Нейронные сети апгрейдятся на основе поступающих данных о мире людей, опыта и ошибок. И, надо сказать, они уже здорово эволюционировали.
Кому это выгодно
Термин «нейронная сеть» появился еще в 1943 году, но популярность эта технология обрела только в последние годы: посредством магазинов приложений стало распространяться ПО, созданное при помощи нейросетей, в колонках новостей запестрели заголовки о фантастических возможностях искусственного интеллекта. Сегодня нейронные сети используются во множестве сфер.
Нейросети для развлечений
Нейросети знают многое о человеческих лицах: по фотографии они могут определить возраст, пол, настроение, спрогнозировать, как лицо будет выглядеть в старости, анимировать статическое изображение, заставив Барака Обаму говорить то, что он не говорил, и оживить знаменитую Мону Лизу. По фотографии теперь можно найти человека, а китайские нейросети Megvii даже ищут собак по изображению носа. Причем ИНС работает не только с изображениями, но и со звуком. Массачусетский технологический институт недавно представил нейросеть (Speech2Face), определяющую национальность, пол и возраст человека по голосу.
Звучит впечатляюще и пугающе. Конечно, мы можем развлекаться, играя со своей фотографией, но только представьте, какой отнюдь не развлекательный потенциал у этой технологии. Уже сейчас можно найти любого человека по фото, создать реалистичные несуществующие лица для рекламы, модельного бизнеса или кино, заставить статичные изображения говорить и двигаться. Нетрудно представить, что нейросети скоро станут целой индустрией.
Нейросети на службе правительства
Нейросети способны помогать правоохранительным органам искать преступников, бороться с наркобизнесом и терроризмом, быстро находить в интернете противозаконный контент. Как и при использовании камер наблюдения, здесь есть свои сложности, ведь нейросети можно применять как для поиска пропавших детей в отряде «Лиза Алерт», так и для ужесточения контроля над населением.
Уже есть несколько примеров проектов внедрения искусственных нейронных сетей в России. В ГИБДД хотят научить нейросеть обнаруживать факт кражи автомобильных номеров. По изображению автомобиля ИНС сможет установить, соответствует ли машина своему номеру. Это поможет своевременно выявлять подделку или кражу номеров. Руководитель Департамента транспорта Москвы Максим Ликсутов подтвердил, что данная программа сейчас проходит тестирование.
Еще один пример возможностей нейросетей в распознавании изображений – эксперимент Департамента информационных технологий Москвы по созданию сервиса для передачи показаний приборов учета воды. Возможно, вскоре нам не придется вводить показания вручную, достаточно будет лишь сфотографировать свой счетчик, а нейросеть сама распознает цифры с изображения.
Нейросети и бизнес
Нейросети — настоящий подарок для бизнеса и горе для работников. Мы живем в эпоху, когда данные имеют огромную ценность. Поверьте, мировые корпорации уже проанализировали ваш профиль в соцсетях и предоставляют вам персонализированную рекламу. Только представьте, что способности сетей искусственных нейронов к анализу и обобщению можно использовать для получения еще большего массива знаний о потребителях. Например, в 2019 году компания McDonald’s наняла специалистов по разработке нейросетей для создания индивидуальной рекламы. Потом не удивляйтесь, откуда бизнес знает о том, какую еду, одежду и косметику вы предпочитаете.
В банковской сфере нейросети уже применяются для анализа кредитной истории клиентов и принятия решений о выдаче кредита. Так, в 2018 году «Сбербанк» уволил 14 тысяч сотрудников, которых заменила «Интеллектуальная система управления» на основе нейросети. Вместо людей рутинные операции теперь выполняет обучаемый искусственный интеллект. По словам Германа Грефа, подготовку исковых заявлений нейросети проводят лучше штатных юристов. Также финансисты обращаются к прогностическим способностям искусственного интеллекта для работы с плохо предсказуемыми биржевыми индексами.
Нейросети в сфере искусства
Что будет, если нейросеть познакомить с шедеврами мировой живописи и предложить написать картину? Будет новое произведение искусства. Предложите нейросети сочинения Баха, и она придумает похожую мелодию, книги Джоан Роулинг – она напишет книгу «Гарри Поттер и портрет того, что похоже на большую кучу золы». Книга «День, когда Компьютер написал роман», созданная японской нейросетью, даже получила премию HoshiShinichiLiteraryAward.
Специалисты компании OpenAI заявляют, что их программа по созданию текстов пишет любые тексты без человеческого вмешательства. Тексты за авторством нейросети не отличаются от тех, что написаны человеком. Однако в общественный доступ программа не попала, авторы опасаются, что ее будут использовать для создания фейк-ньюс.
В 2018 году на аукционе «Сотбис» за полмиллиона долларов был продан необыкновенный лот: «Эдмонд де Белами, из семьи де Белами. Состязательная нейронная сеть, печать на холсте, 2018. Подписана функцией потерь модели GAN чернилами издателем, из серии одиннадцати уникальных изображений, опубликованных Obvious Art, Париж, в оригинальной позолоченной деревянной раме». Робби Баррат, художник и программист, научил нейросети живописи настолько, что теперь она уходит с молотка как шедевры искусства.
Появились нейросети-композиторы и даже сценаристы. Уже снят короткометражный фильм по сценарию, написанному искусственным интеллектом («Sunspring») — вышло бессмысленно и беспощадно, как заправский артхаус. Тем временем нейросеть от Яндекса произвела на свет пьесу для симфонического оркестра с альтом и альбом «Нейронная оборона» в стиле группы «Гражданская оборона», а позже начала писать музыку в стиле известных исполнителей, например группы Nirvana. А нейросеть под названием Dadabots имеет свой канал на YouTube, где генерируется deathmetal музыка.
Удивительно, как органично нейросети вписались в мир современного искусства. Получим ли мы робота-Толстого через пару лет? Сможет ли нейросеть постигнуть все глубины человеческих проблем и чувств, чтобы творить не компиляцию, а настоящее искусство? Пока эти вопросы остаются открытыми.
Нейросети в медицине
Нейросети уже помогают улучшить качество диагностики различных заболеваний. Анализируя данные пациентов, искусственный интеллект способен выявлять риск развития сердечно-сосудистых заболеваний, об этом заявляют ученые Ноттингемского университета. По данным исследования, обученная нейросеть прогнозирует вероятность инсульта точнее, чем обычный врач по общепринятой шкале.
В открытом доступе появились даже приложения для диагностики на основе нейросетей, например SkinVision, которое работает с фотографиями родинок и определяет доброкачественность или злокачественность вашего невуса. Точность приложения — 83 %.
Скайнет готовится к атаке?
Все ли так оптимистично в применении нейросетей? Есть ли сценарии, при которых эта технология может нанести вред человечеству? Вот несколько самых актуальных проблем на сегодняшний день.
Безработица. Уже сейчас в сети можно встретить немало тестов а-ля «заменят ли роботы и нейросети вашу профессию». С одной стороны, забавно, с другой — пугающе. Нейросети способны оставить без работы дизайнеров, художников, моделей, копирайтеров, административных служащих среднего звена — и это только малый перечень того, где искусственный интеллект показывает сейчас вполне впечатляющие результаты.
Выводы и прогнозы
Нейросети стремятся сделать мир более персонализированным: каждому из нас будут предлагаться блюда, музыка, фильмы и литература по вкусу. В сериалах мы сможем выбирать развитие сюжета, кстати, Netflix уже экспериментирует с такими решениями.
Так как искусственный интеллект уже начал выполнять человеческие задачи, миллионы квалифицированных специалистов могут постепенно лишаться рабочих мест. Работодателю будет проще запустить нейросеть, чем нанимать человека. По тонкому замечанию Антона Балакирева, руководителя интернет-портала Robo-sapiens.ru, нейросети не уходят на пенсию, не страдают алкоголизмом и депрессией. Идеальный работник.
Однако искусственный интеллект по-прежнему не может заменить человеческий мозг. В вопросах ответственности, норм морали и нравственности, а также критических систем безопасности нам не следует доверять нейросети безраздельно, пусть она и умнее нас. Доверяй, но проверяй.
Как работает нейронная сеть: алгоритмы, обучение, функции активации и потери
Нейронная сеть — попытка с помощью математических моделей воспроизвести работу человеческого мозга для создания машин, обладающих искусственным интеллектом.
Искусственная нейронная сеть обычно обучается с учителем. Это означает наличие обучающего набора (датасета), который содержит примеры с истинными значениями: тегами, классами, показателями.
Неразмеченные наборы также используют для обучения нейронных сетей, но мы не будем здесь это рассматривать.
Например, если вы хотите создать нейросеть для оценки тональности текста, датасетом будет список предложений с соответствующими каждому эмоциональными оценками. Тональность текста определяют признаки (слова, фразы, структура предложения), которые придают негативную или позитивную окраску. Веса признаков в итоговой оценке тональности текста (позитивный, негативный, нейтральный) зависят от математической функции, которая вычисляется во время обучения нейронной сети.
Раньше люди генерировали признаки вручную. Чем больше признаков и точнее подобраны веса, тем точнее ответ. Нейронная сеть автоматизировала этот процесс.
Искусственная нейронная сеть состоит из трех компонентов:
Обучение нейросетей происходит в два этапа:
Во время прямого распространения ошибки делается предсказание ответа. При обратном распространении ошибка между фактическим ответом и предсказанным минимизируется.
Прямое распространение ошибки
Зададим начальные веса случайным образом:
Умножим входные данные на веса для формирования скрытого слоя:
Выходные данные из скрытого слоя передается через нелинейную функцию (функцию активации), для получения выхода сети:
Обратное распространение
Полученный результат затем вычитается из соответствующих весов.
В результате получатся следующие обновленные веса:
То, что мы предполагаем и инициализируем веса случайным образом, и они будут давать точные ответы, звучит не вполне обоснованно, тем не менее, работает хорошо.
Популярный мем о том, как Карлсон стал Data Science разработчиком
Если вы знакомы с рядами Тейлора, обратное распространение ошибки имеет такой же конечный результат. Только вместо бесконечного ряда мы пытаемся оптимизировать только его первый член.
Смещения – это веса, добавленные к скрытым слоям. Они тоже случайным образом инициализируются и обновляются так же, как скрытый слой. Роль скрытого слоя заключается в том, чтобы определить форму базовой функции в данных, в то время как роль смещения – сдвинуть найденную функцию в сторону так, чтобы она частично совпала с исходной функцией.
Частные производные
Частные производные можно вычислить, поэтому известно, какой был вклад в ошибку по каждому весу. Необходимость производных очевидна. Представьте нейронную сеть, пытающуюся найти оптимальную скорость беспилотного автомобиля. Eсли машина обнаружит, что она едет быстрее или медленнее требуемой скорости, нейронная сеть будет менять скорость, ускоряя или замедляя автомобиль. Что при этом ускоряется/замедляется? Производные скорости.
Разберем необходимость частных производных на примере.
Предположим, детей попросили бросить дротик в мишень, целясь в центр. Вот результаты:
Теперь, если мы найдем общую ошибку и просто вычтем ее из всех весов, мы обобщим ошибки, допущенные каждым. Итак, скажем, ребенок попал слишком низко, но мы просим всех детей стремиться попадать в цель, тогда это приведет к следующей картине:
Ошибка нескольких детей может уменьшиться, но общая ошибка все еще увеличивается.
Найдя частные производные, мы узнаем ошибки, соответствующие каждому весу в отдельности. Если выборочно исправить веса, можно получить следующее:
Гиперпараметры
Нейронная сеть используется для автоматизации отбора признаков, но некоторые параметры настраиваются вручную.
Скорость обучения (learning rate)
Скорость обучения является очень важным гиперпараметром. Если скорость обучения слишком мала, то даже после обучения нейронной сети в течение длительного времени она будет далека от оптимальных результатов. Результаты будут выглядеть примерно так:
С другой стороны, если скорость обучения слишком высока, то сеть очень быстро выдаст ответы. Получится следующее:
Функция активации (activation function)
Функция активации — это один из самых мощных инструментов, который влияет на силу, приписываемую нейронным сетям. Отчасти, она определяет, какие нейроны будут активированы, другими словами и какая информация будет передаваться последующим слоям.
Без функций активации глубокие сети теряют значительную часть своей способности к обучению. Нелинейность этих функций отвечает за повышение степени свободы, что позволяет обобщать проблемы высокой размерности в более низких измерениях. Ниже приведены примеры распространенных функций активации:
Функция потери (loss function)
Функция потерь находится в центре нейронной сети. Она используется для расчета ошибки между реальными и полученными ответами. Наша глобальная цель — минимизировать эту ошибку. Таким образом, функция потерь эффективно приближает обучение нейронной сети к этой цели.
Функция потерь измеряет «насколько хороша» нейронная сеть в отношении данной обучающей выборки и ожидаемых ответов. Она также может зависеть от таких переменных, как веса и смещения.
Функция потерь одномерна и не является вектором, поскольку она оценивает, насколько хорошо нейронная сеть работает в целом.
Некоторые известные функции потерь:
Cреднеквадратичное отклонение – самая простая фукция потерь и наиболее часто используемая. Она задается следующим образом:
Функция потерь в нейронной сети должна удовлетворять двум условиям:
Глубокие нейронные сети
Глубокое обучение (deep learning) – это класс алгоритмов машинного обучения, которые учатся глубже (более абстрактно) понимать данные. Популярные алгоритмы нейронных сетей глубокого обучения представлены на схеме ниже.
Популярные алгоритмы нейронных сетей (http://www.asimovinstitute.org/neural-network-zoo)
Более формально в deep learning:
Пример
Рассмотрим однослойную нейронную сеть:
Здесь, обучается первый слой (зеленые нейроны), он просто передается на выход.
В то время как в случае двухслойной нейронной сети, независимо от того, как обучается зеленый скрытый слой, он затем передается на синий скрытый слой, где продолжает обучаться:
Следовательно, чем больше число скрытых слоев, тем больше возможности обучения сети.
Не следует путать с широкой нейронной сетью.
В этом случае большое число нейронов в одном слое не приводит к глубокому пониманию данных. Но это приводит к изучению большего числа признаков.
Изучая английскую грамматику, требуется знать огромное число понятий. В этом случае однослойная широкая нейронная сеть работает намного лучше, чем глубокая нейронная сеть, которая значительно меньше.
В случае изучения преобразования Фурье, ученик (нейронная сеть) должен быть глубоким, потому что не так много понятий, которые нужно знать, но каждое из них достаточно сложное и требует глубокого понимания.
Главное — баланс
Очень заманчиво использовать глубокие и широкие нейронные сети для каждой задачи. Но это может быть плохой идеей, потому что:
Проклятье размерности
Проклятие размерности относится к различным явлениям, возникающим при анализе и организации данных в многомерных пространствах (часто с сотнями или тысячами измерений), и не встречается в ситуациях с низкой размерностью.
Грамматика английского языка имеет огромное количество аттрибутов, влияющих на нее. В машинном обучении мы должны представить их признаками в виде массива/матрицы конечной и существенно меньшей длины (чем количество существующих признаков). Для этого сети обобщают эти признаки. Это порождает две проблемы:
Компромисс
На ранней стадии обучения смещение велико, потому что выход из сети далек от желаемого. А дисперсия очень мала, поскольку данные имеет пока малое влияние.
В конце обучения смещение невелико, потому что сеть выявила основную функцию в данных. Однако, если обучение слишком продолжительное, сеть также изучит шум, характерный для этого набора данных. Это приводит к большому разбросу результатов при тестировании на разных множествах, поскольку шум меняется от одного набора данных к другому.
алгоритмы с большим смещением обычно в основе более простых моделей, которые не склонны к переобучению, но могут недообучиться и не выявить важные закономерности или свойства признаков. Модели с маленьким смещением и большой дисперсией обычно более сложны с точки зрения их структуры, что позволяет им более точно представлять обучающий набор. Однако они могут отображать много шума из обучающего набора, что делает их прогнозы менее точными, несмотря на их дополнительную сложность.
Следовательно, как правило, невозможно иметь маленькое смещение и маленькую дисперсию одновременно.
Сейчас есть множество инструментов, с помощью которых можно легко создать сложные модели машинного обучения, переобучение занимает центральное место. Поскольку смещение появляется, когда сеть не получает достаточно информации. Но чем больше примеров, тем больше появляется вариантов зависимостей и изменчивостей в этих корреляциях.
Нейронные сети
Что такое нейронные сети?
Нейронные сети, известные также как искусственные нейронные сети (ANN) или смоделированные нейронные сети (SNN), являются подмножеством алгоритмов машинного обучения и служат основой для алгоритмов глубокого обучения. Понятие «нейронные сети» возникло при попытке смоделировать процессы, происходящие в человеческом мозге при передаче сигналов между биологическими нейронами.
Искусственные нейронные сети (ANN) состоят из образующих слои узлов: слой входных данных, один или несколько скрытых слоев и слой выходных данных. Каждый узел (искусственный нейрон) связан с другими узлами с определенным весом и пороговым значением. Если вывод какого-либо узла превышает пороговое значение, то этот узел активируется и отправляет данные на следующий уровень сети. В противном случае данные на следующий уровень сети не передаются.
Для обучения и постепенного повышения точности нейронных сетей применяются обучающие данные. При достижении требуемой точности алгоритмы обучения превращаются в мощные инструменты для вычислений и искусственного интеллекта, что позволяет использовать их для классификации и кластеризации данных с высокой скоростью. Задачи из области распознавания речи или изображений можно выполнить за несколько минут, а не за несколько часов, как при распознавании вручную. Одной из наиболее известных нейронных сетей является алгоритм поиска Google.
Принцип работы нейронных сетей
Представим каждый отдельный узел в виде модели линейной регрессии, состоящей из входных данных, весовых коэффициентов, смещения (или порогового значения) и выходных данных. Эту модель можно описать следующей формулой:
∑wixi + bias = w1x1 + w2x2 + w3x3 + bias
output = f(x) = 1 if ∑w1x1 + b> = 0; 0 if ∑w1x1 + b
После определения слоя входных данных необходимо назначить весовые коэффициенты. Они помогают определить важность той или иной переменной: чем выше весовой коэффициент, тем существеннее его вклад в выходные данные по сравнению с другими входными данными. Затем произведения входных данных и соответствующих им весовых коэффициентов суммируются. Наконец, выходные данные передаются через функцию активации, которая вычисляет результат. Если полученный результат превышает установленное пороговое значение, узел срабатывает (активируется), передавая данные на следующий слой сети. Выходные данные одного узла становятся входными данными для следующего узла. Такой последовательный процесс передачи данных между слоями характерен для нейронных сетей прямого распространения.
Попробуем представить отдельно взятый узел в виде двоичных чисел. Для более наглядной демонстрации этой концепции рассмотрим реальный пример: допустим, вам нужно принять решение, стоит ли идти на серфинг (Да: 1, Нет: 0). Решение «идти» или «не идти» — наш прогнозируемый результат или «y c крышечкой». Предположим, существует три фактора, которые влияют на принятие решения:
Предположим, у нас имеются следующие входные данные:
Теперь нам нужно присвоить весовые коэффициенты для определения важности. Чем выше значение весового коэффициента, тем большим будет влияние конкретной переменной на решение или результат.
Наконец, установим пороговое значение 3, т. е. величина смещения будет равна –3. Теперь, когда все входные данные готовы, можно подставить значения в формулу и получить желаемый результат.
Y-hat = (1*5) + (0*2) + (1*4) – 3 = 6
С помощью функции активации, о которой было сказано в начале раздела, можно вычислить выходные данные для этого узла: результат равен 1, так как 6 больше 0. Это означает, что нам стоит идти на серфинг; если же изменить весовые коэффициенты или пороговое значение, результат вычисления для данной модели может отличаться. Из примера, приведенного выше, следует, что нейронная сеть способна принимать решения с возрастающей степенью сложности, в зависимости от выходных данных предыдущих решений или слоев.
В предыдущем примере для иллюстрации математических понятий были использованы персептроны, в то время как в нейронных сетях применяются сигмоидальные нейроны, значения которых могут находиться в диапазоне от 0 до 1. По своему принципу работы нейронные сети схожи с деревьями принятия решений, поэтому в результате передачи данных от одного узла к другому, при x значений от 0 до 1, влияние того или иного изменения отдельной переменной на выходные данные любого узла и, следовательно, выходные данные нейронной сети уменьшается.
Когда речь заходит о более практических сценариях использования нейронных сетей, например распознавание или классификация изображений, то для обучения алгоритма используется контролируемое обучение или маркированные наборы данных. В ходе обучения модели нам потребуется оценить точность с помощью функции стоимости (или потерь). Это так называемая среднеквадратическая ошибка (MSE). В уравнении ниже используются следующие обозначения:
Конечная цель — минимизировать функцию стоимости, чтобы обеспечить корректность для каждого отдельно взятого наблюдения. В процессе корректировки весовых коэффициентов и смещения модель использует функцию стоимости и обучение с подкреплением для достижения точки сходимости или локального минимума. Корректировка весовых коэффициентов происходит с помощью алгоритма градиентного спуска, что позволяет определить стратегию уменьшения количества ошибок (или минимизации функции стоимости). С каждым шагом обучения параметры модели корректируются, пока не будет достигнут минимум.
Для более подробного изучения математических понятий, используемых в нейронных сетях, рекомендуем прочитать статью на сайте IBM Developer.
Большинство глубоких нейронных сетей относятся к алгоритмам прямого распространения, т. е. данные передаются только в одном направлении — от входа к выходу. Однако для обучения моделей может также применяться метод обратного распространения ошибки, когда данные передаются в противоположном направлении — от выхода к входу. Метод обратного распространения ошибки позволяет вычислить и объяснить ошибки, связанные с каждым нейроном, что позволяет скорректировать и адаптировать параметры модели соответствующим образом.
Виды нейронных сетей
Нейронные сети можно разделить на несколько видов, в зависимости от целевого назначения. Вот список наиболее распространенных видов нейронных сетей, имеющих практическое применение:
Персептрон — первая нейронная сеть, созданная Фрэнком Розентблаттом в 1958 году. Она содержит один нейрон и представляет собой простейшую форму нейронной сети:
Эта статья посвящена в основном нейронным сетям прямого распространения или многослойным персептронам (MLP). Они состоят из следующих слоев: входные данные, один или несколько скрытых слоев и выходные данные. Хотя такие нейронные сети формально относятся к категории MLP, фактически они состоят из сигмоидальных нейронов, а не персептронов, так как большинство реальных задач нелинейны. Данные, поступающие в эти модели, используются для обучения; они лежат в основе алгоритмов компьютерного зрения, обработки данных на естественном языке и других нейронных сетей.
Сверточные нейронные сети (CNN) похожи на сети прямого распространения, однако они, как правило, применяются для распознавания изображений, выявления закономерностей и/или компьютерного зрения. Для обнаружения закономерностей в изображениях с помощью таких сетей применяются законы линейной алгебры, в частности правила перемножения матриц.
Рекуррентные нейронные сети (RNN) имеют в своем составе обратные связи. Такие алгоритмы обучения используются в основном для временных рядов данных с целью прогнозирования будущих событий, например стоимости акций на фондовых биржах или объема продаж.
Сравнение нейронных сетей и глубокого обучения
В обычном разговоре термины «глубокое обучение» и «нейронные сети» могут использоваться как синонимы, загоняя собеседников в тупик. Поэтому стоит отметить, что понятие «глубина» в «глубоком обучении» характеризует лишь количество слоев нейронной сети. Нейронную сеть, в составе которой более трех слоев (включая слой входных данных и слой выходных данных), можно отнести к алгоритмам глубокого обучения. Нейронная сеть с двумя-тремя уровнями считается простой нейронной сетью.
Для лучшего понимания разницы между нейронными сетями и другими разновидностями искусственного интеллекта, например машинным обучением, рекомендуем прочитать публикацию в блоге «Сравнение искусственного интеллекта, машинного обучения, глубокого обучения и нейронных сетей».
История возникновения нейронных сетей
История нейронных сетей намного длиннее, чем принято считать. Сама идея «способной к мышлению системы» возникла еще в Древней Греции, и популярность нейронных сетей менялась с течением времени. Мы же сосредоточимся на ключевых событиях современной эволюции:
1943: Уоррен Маккалок и Уолтер Питтс опубликовали работу «Логическое исчисление идей, относящихся к нервной деятельности» (внешняя ссылка, PDF, 1 МБ). Целью данного исследования было изучение работы человеческого мозга, а именно: создание сложных моделей путем передачи сигналов клетками мозга или нейронами. Одной из главных идей, возникших в ходе данного исследования, стала аналогия между нейронами с двоичным пороговым значением и булевской логикой (значения 0/1 или утверждения истина/ложь).
1958: Фрэнк Розенблатт в своем исследовании «Персептрон: вероятностная модель хранения и организации информации в головном мозге» (внешняя ссылка, PDF, 1,6 МБ) описал модель персептрона. Он развил идеи Маккалока и Питтса, добавив в формулу весовые коэффициенты. На компьютере IBM 704 Розенблатт смог обучить систему распознавать карточки, маркированные слева и справа.
1974: первым ученым на территории США, описавшим в своей диссертации (внешняя ссылка, PDF, 8,1 МБ) использование алгоритма обратного распространения ошибки в нейронных сетях, стал Пол Вербос, хотя развитием этой идеи занимались многие исследователи.
1989: Янн Лекун опубликовал статью (внешняя ссылка, PDF, 5,7 МБ), в которой было описано практическое использование ограничений обратного распространения ошибки и интеграция в архитектуру нейронной сети для обучения алгоритмов. В данном исследовании нейронная сеть успешно обучилась распознавать рукописные символы почтового индекса, предоставленные Почтовой службой США.
Нейронные сети и IBM Cloud
Компания IBM стоит у истоков развития ИИ-технологий и нейронных сетей, о чем свидетельствуют появление и эволюция IBM Watson. Watson — надежное решение для крупных предприятий, которым требуется внедрить передовые технологии глубокого обучения и обработки данных на естественном языке в свои системы, опираясь на проверенный многоуровневый подход к разработке и реализации ИИ.
Архитектура UIMA (Apache Unstructured Information Management Architecture) и программное обеспечение IBM DeepQA, лежащие в основе Watson, позволяют интегрировать в приложения мощные функции глубокого обучения. С помощью таких инструментов, как IBM Watson Studio, ваше предприятие сможет эффективно перенести ИИ-проекты с открытым исходным кодом в рабочую среду с возможностью развертывания и выполнения моделей в любой облачной среде.
Более подробная информация о том, как приступить к использованию технологии глубокого обучения, приведена на страницах IBM Watson Studio и Deep Learning service.