что такое неспаренные электроны в химии

Атомы и электроны

Атомно-молекулярное учение

Описываемая модель атома называется «планетарной» и была предложена в 1913 году великими физиками: Нильсом Бором и Эрнестом Резерфордом

что такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химии

Запомните, что в невозбужденном состоянии атом содержит одинаковое число электронов и протонов. Так у кальция (порядковый номер 20) в ядре находится 20 протонов, а вокруг ядра на электронных орбиталях 20 электронов.

что такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химии

Я еще раз подчеркну эту важную деталь. На данном этапе будет отлично, если вы запомните простое правило: порядковый номер элемента = числу электронов. Это наиболее важно для практического применения и изучения следующей темы.

Электронная конфигурация атома

Электроны атома находятся в непрерывном движении вокруг ядра. Энергия электронов отличается друг от друга, в соответствии с этим электроны занимают различные энергетические уровни.

Состоит из s-подуровня: одной «s» ячейки (2s 2 ) и p-подуровня: трех «p» ячеек (2p 6 ), на которых помещается 6 электронов

Состоит из s-подуровня: одной «s» ячейки (3s 2 ), p-подуровня: трех «p» ячеек (3p 6 ) и d-подуровня: пяти «d» ячеек (3d 10 ), в которых помещается 10 электронов

Состоит из s-подуровня: одной «s» ячейки (4s 2 ), p-подуровня: трех «p» ячеек (4p 6 ), d-подуровня: пяти «d» ячеек (4d 10 ) и f-подуровня: семи «f» ячеек (4f 14 ), на которых помещается 14 электронов

что такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химии

Зная теорию об энергетических уровнях и порядковый номер элемента из таблицы Менделеева, вы должны расположить определенное число электронов, начиная от уровня с наименьшей энергией и заканчивая к уровнем с наибольшей. Чуть ниже вы увидите несколько примеров, а также узнаете об исключении, которое только подтверждает данные правила.

Подуровни: «s», «p» и «d», которые мы только что обсудили, имеют в определенную конфигурацию в пространстве. По этим подуровням, или атомным орбиталям, движутся электроны, создавая определенный «рисунок».

что такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химии

Правила заполнения электронных орбиталей и примеры

Должно быть, вы обратили внимание на некоторое несоответствие: после 3p подуровня следует переход к 4s, хотя логично было бы заполнить до конца 4s подуровень. Однако природа распорядилась иначе.

Запомните, что, только заполнив 4s подуровень двумя электронами, можно переходить к 3d подуровню.

Теперь мы располагаем указанное количество электронов на энергетических уровнях, руководствуясь правилами заполнения.

что такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химии

Обращаю ваше особе внимание: на 2p-подуровне углерода мы расположили 2 электрона в разные ячейки, следуя одному из правил. А на 3p-подуровне у серы электронов оказалось много, поэтому сначала мы расположили 3 электрона по отдельным ячейкам, а оставшимся одним электроном дополнили первую ячейку.

Внешний уровень и валентные электроны

что такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химии

Тренировка

Потренируйтесь и сами составьте электронную конфигурацию для магния и скандия. Определите число электронов на внешнем (валентном) уровне и число неспаренных электронов. Ниже будет дано наглядное объяснение этой задаче.

что такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химии

Источник

УЧЕБНАЯ КНИГА ПО ХИМИИ

ДЛЯ УЧИТЕЛЕЙ СРЕДНИХ ШКОЛ,
СТУДЕНТОВ ПЕДАГОГИЧЕСКИХ ВУЗОВ И ШКОЛЬНИКОВ 9–10 КЛАССОВ,
РЕШИВШИХ ПОСВЯТИТЬ СЕБЯ ХИМИИ И ЕСТЕСТВОЗНАНИЮ

УЧЕБНИКчто такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химииЗАДАЧНИКчто такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химииЛАБОРАТОРНЫЙ ПРАКТИКУМчто такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химииНАУЧНЫЕ РАССКАЗЫ ДЛЯ ЧТЕНИЯ

Продолжение.
См. № 4–14, 16–28, 30–34, 37–44, 47, 48/2002;
1, 2, 3, 4, 5, 6, 7/2003

§ 4.7. Многоэлектронные атомы

Описание поведения даже только двух электронов в атоме оказывается непосильной задачей для современной вычислительной науки, поэтому предполагается, что любой многоэлектронный атом похож (энергетические уровни, форма орбиталей и другие свойства) на атом водорода. Однако для такого предположения приходится вводить целый ряд дополнительных теоретических предпосылок. Тщательное изучение структуры спектральных линий атомов показало, что два электрона, имеющие одинаковые значения трех квантовых чисел n, l и m, т. е. одну и ту же энергетическую характеристику, форму областей максимальной вероятности нахождения электрона и одинаковую ориентацию, могут различаться друг от друга некоторым особым магнитным свойством, которое не поддается объяснению с точки зрения классической механики. Из-за того, что это свойство обусловливает собственный магнитный момент электрона, раньше считали, что два электрона на одной орбитали вращаются вокруг своей оси в различных направлениях, например, по часовой стрелке и против. Это «вращение» характеризуется величиной, которая называется спин, он может иметь два противоположных направления. Спину электрона отвечает спиновое квантовое число, которое обозначим s (в научной литературе часто пользуются обозначением ms). Спиновое квантовое число s может принимать два значения:

Не путайте спиновое квантовое число с обозначением s-орбитали!
Электроны с положительным или отрицательным спиновым числом обозначают стрелками, направленными вверх или вниз, которые помещают в квадрат, изображающий орбиталь. Ниже представлен атом водорода с одним электроном на первом энергетическом уровне, или, что в данном случае одно и то же, на s-подуровне, в основном (невозбужденном) состоянии со спиновым квантовым числом s = +1/2:

что такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химии

Для атома водорода, т. е. для системы «один протон и один электрон», спин электрона не влияет на энергетические характеристики атома, но без представления о спине не удается объяснить образования молекулы водорода Н2 из двух атомов водорода. Молекула водорода образуется, если сталкивающиеся атомы водорода имеют:
энергию активации, достаточную для преодоления сил отталкивания одноименно заряженных электронных оболочек;
в момент столкновения третью частицу, забирающую избыточную энергию молекулы;
противоположные по знаку спины (спиновые квантовые числа) двух электронов, что в данный момент является самым главным.
Только атомы с двумя противоположными спинами способны взаимодействовать друг с другом (рис. 4.4).

Рис. 4.4.
Модель реакции между двумя атомами водорода
(ковалентный способ образования химической связи)

Вам понятна эта схема образования молекулы водорода? Попытайтесь письменно изложить ее суть.
Заметим, эта схема универсальна для возникновения ковалентной связи, когда каждый атом отдает на образование химической связи по одному электрону. Область перекрывания электронных оболочек двух атомов находится на равном расстоянии от двух одинаковых ядер, поэтому данная связь одновременно является и неполярной. Забегая вперед и вспоминая ранее изученный материал, заметим, что при разных ядрах атомов зона перекрывания электронных оболочек смещается в сторону одного из ядер. Такая связь называется полярной. При очень сильном смещении зоны перекрывания к ядру одного из атомов связь называется ионной.
У атомов, имеющих больше одного электрона, не может быть двух и более электронов с одинаковыми значениями всех четырех квантовых чисел. Это – принцип Паули, или запрет Паули. Любые два электрона в атоме должны отличаться по крайней мере значением одного из четырех квантовых чисел. Двум электронам атома запрещено быть во всех отношениях похожими друг на друга, поэтому в одной электронной ячейке не может находиться два электрона с одинаковыми значениями спинового квантового числа, например что такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химии, и больше двух электронов, например три. Если бы это случилось, то возникло бы состояние что такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химии, но это не подтверждено ни теоретически, ни экспериментально. Таким образом, в одной ячейке (или на одной орбитали) может находиться не более двух электронов, причем только с противоположными спинами.
Сейчас некоторые философы и естествоиспытатели пытаются перенести явления и законы микромира на такие сложные объекты, как организм и даже жизнь человека и общества. Попытайтесь и вы найти аналогию принципу Паули в жизни людей.
Два электрона, находящиеся на одной орбитали, или в одной ячейке, и имеющие различные по знаку значения спинового квантового числа, называются спаренными что такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химии. Электроны, размещенные по одному на орбиталях, называются неспаренными. Наличие спаренных или неспаренных электронов в атомах, молекулах и кристаллах устанавливается экспериментально путем изучения магнитных свойств вещества. Вещества с неспаренными электронами парамагнитны. Эти вещества намагничиваются во внешнем магнитном поле по направлению поля, и поэтому магнитное поле втягивает эти вещества. Парамагнитными являются атомы водорода, а также часто упоминавшаяся ранее молекула диоксида азота NO2, имеющая один неспаренный электрон.
Вещества со всеми спаренными электронами диамагнитны. Они намагничиваются навстречу направлению действующего на них внешнего магнитного поля, которое их выталкивает. Диамагнитными являются атомы гелия, молекулы водорода, тетраоксида диазота N2О4 и др.

Изучение магнитных свойств вещества в ряде случаев позволяет определить возраст минерала или изделия, что используется в археологии. Один из методов датировки древних эпох, когда не было письменности, заключается в измерении остаточной намагниченности подвергшихся обжигу изделий из глины (посуда, кирпичи и т. п.).

Увеличение числа электронов в атоме подчиняется определенным законам, что приводит к строгому расположению элементов в периодической таблице Д.И.Менделеева и периодическому повторению их свойств. Ранее не раз упоминались некоторые основные положения электронного строения атомов. Повторим их и кратко рассмотрим новые.
1. Подобие энергетических электронных уровней атомов уровням атома водорода. Поскольку точный расчет электронного строения двух- и многоэлектронных атомов пока невозможен, предполагается, что их электронные уровни и подуровни расположены, как в атоме водорода. Это предположение имеет исключения.
2. Принцип наименьшей энергии. При заполнении электронами уровней и подуровней последовательность размещения электронов должна отвечать как наименьшей энергии электрона, так и наименьшей энергии атома в целом. Электрон не занимает вышележащий уровень, если в нижележащем есть ячейки, располагаясь в которых, он будет обладать меньшей энергией. Этот принцип выражает общее термодинамическое требование к устойчивости системы: максимуму устойчивости системы соответствует минимум ее энергии. Но помните также и о том, что в состоянии максимальной устойчивости электронной системы в атоме связь электронов с ядром наиболее прочна. Чем ближе к ядру находится электрон, тем прочнее его связь с ядром.
3. Правило n + l, или правило Клечковского. Энергия электрона в атоме определяется значениями главного n и побочного l квантовых чисел, поэтому сначала заполняются электронами те энергетические уровни и подуровни, для которых сумма значений квантовых чисел n + l минимальна. Если для двух подуровней одного или разных уровней суммы n + l равны, то сначала заполняется подуровень с меньшим значением n.
4. Правило Гунда (Хунда). Заполнение электронами ячеек p-, d- и f-подуровней вначале происходит неспаренными электронами, и лишь после такого заполнения подуровня начинается вхождение в ячейки вторых электронов (с противоположными спиновыми квантовыми числами), т. е. происходит их спаривание.

Спокойная очередь входит в пустой автобус. Каждый пассажир вначале занимает одно место двухместного сиденья, а когда такие места заканчиваются, пассажиры начинают подсаживаться на свободные места к уже сидящим. В столовой почему-то вы выбираете столик, за которым никто не сидит, но, когда таких столиков нет, вы подсаживаетесь вторым. Неужели законы квантовой механики сказываются на поведении людей?
Принцип Паули и правило Гунда свидетельствуют о неизвестном и непонятном нам информационном взаимодействии между электронами. Каждый электрон как будто знает о состоянии другого электрона в атоме (и, наверное, в молекуле).

5. Повышенная устойчивость подуровней. Незаполненные, наполовину заполненные и полностью заполненные подуровни обладают повышенной устойчивостью.
На рис. 4.5 показан порядок заполнения электронных уровней и подуровней многоэлектронных атомов, найденный при подсчете сумм n + l, с учетом других теоретических положений.

что такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химии
Рис. 4.5.
Порядок заполнения электронных уровней и
подуровней многоэлектронных атомов

Теперь мы можем обсудить причины проявления элементом той или иной валентности. Согласно спиновой теории валентности валентность элемента определяется числом неспаренных электронов невозбужденного и возбужденного атома. На рис. 4.6 показаны энергетические диаграммы атомов фтора (а), хлора (б) и марганца (в).

что такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химии
Рис. 4.6.
Энергетические электронные диаграммы атомов:
а – фтора; б – хлора; в – марганца
что такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химии
Рис. 4.7.
Валентности (спиновые) хлора

Кислородные кислоты хлора – хороший пример изменения кислотных и окислительных свойств в зависимости от валентного состояния элемента. В ряду кислот HСlO – НСlO2 – НСlO3 – НСlO4 четко видно усиление кислотных свойств (хлорная кислота НСlO4 – самая сильная неорганическая кислота), ослабление окислительной активности (кинетика) в разбавленных водных растворах и усиление окислительных свойств (термодинамика) в концентрированных водных растворах.
Почему марганец и хлор находятся в одной группе периодической таблицы элементов Д.И.Менделеева? Эти элементы расположены в разных подгруппах: хлор – в главной, марганец – в побочной. Марганец находится в 4-м периоде, и в атоме его четыре главных энергетических уровня (см. рис. 4.6, в). Два спаренных электрона находятся на 4s-подуровне и пять неспаренных – на 3d-подуровне. У марганца несколько валентностей, но наиболее часто имеют дело с соединениями, в которых он двух- и семивалентен. Эти валентности проявляются при распаривании 4s-электронов. К соединениям двухвалентного марганца относятся MnO, MnCl2, MnSO4, семивалентного – перманганат калия KMnO4 и перманганат-ион что такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химии.

Растворы перманганата калия («марганцовка») используют для дезинфекции ран (это лучше, чем раствор йода, но хуже пероксида водорода) и иногда для тонирования древесины. Раствор перманганата калия не очень интенсивного фиолетового цвета можно принимать внутрь при желудочных заболеваниях, если отсутствуют другие более сильные средства, но нужно помнить, что соединения марганца способствуют разжижению крови и приводят к ее трудной свертываемости.

Ниже мы будем пользоваться понятием спиновой валентности для объяснения состава и структуры простейших соединений.
Периодичность свойств элементов наиболее ярко выражается в структуре электронных уровней и подуровней атомов и проявляется в зависящих от них свойствах. Свойства сложных атомных систем (молекулы, кристаллы) слагаются из свойств, которые могут изменяться в противоположных направлениях, поэтому явление периодичности или закономерное изменение свойств таких систем по периоду или подгруппе элементов часто не обнаруживается (в учебниках и научных статьях, однако, чаще всего приводятся данные, подтверждающие закон периодичности).
Свойства элементов, определяемые электронной структурой атома, изменяются периодически, как и сама структура атома.
Простейшей химической реакцией, характеризующей свойства свободных атомов, является процесс отрыва электрона (электронов) от невозбужденного атома:

Э = Э + + е,

чему отвечает что такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химии, или I.

Изменение энтальпии что такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химиив этом процессе равно количеству энергии, необходимой для отрыва электрона от невозбужденного атома, т. е. равно энергии ионизации I. Энергия ионизации характеризует способность атома удерживать электроны, что является важной характеристикой химической активности элемента. Для многоэлектронных атомов определены энергии ионизации, отвечающие последовательным отрывам электронов: I1, I2, I3 и т. д.

Иногда, чаще всего в физике, пользуются потенциалами ионизации, которые определяют как наименьшее напряжение электрического поля, при котором начинают из атомов образовываться положительно заряженные ионы и электроны. Потенциалы ионизации выражают в эВ/атом, при этом
1 эВ/атом = 1,602•10 –19 Дж/атом. Умножим это число на число Авогадро и получим значение 96,48 кДж/моль. Энергия ионизации, выраженная в электрон-вольтах, численно равна энергии ионизации, выраженной в вольтах. Энергии ионизации и потенциалы ионизации, выраженные в одинаковых единицах измерения, численно равны. Например, потенциал ионизации атома водорода равен 13,59 эВ, или 13,59 В. Умножив это число на коэффициент перевода 96,48, получим 13,59•96,48 что такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химии1311 кДж/моль.

Обычно удаление электрона из атома тем легче, чем больше номер периода элемента, т. е. чем дальше от ядра находится электрон. Вдоль по периоду первые энергии ионизации атомов элементов возрастают, но не равномерно, что видно из
рис. 4.8.

что такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химии
Рис. 4.8.
Энергии ионизации
атомов элементов
2-го и 3-го периодов

От лития к бериллию энергия ионизации возрастает (заполнение 2s-подуровня), затем немного понижается к бору (начинается заполнение 2р-подуровня), а от него почти линейно возрастает к азоту (произошло заполнение 2р-подуровня одиночными электронами), после которого немного снова понижается у кислорода, а затем резко повышается к неону. Второй энергетический уровень заполнен и очень стабилен.
Внешний электрон у атома натрия связан с ядром слабее, чем у атома лития, и при дальнейшем повышении числа электронов в атоме примерно повторяется ход зависимости энергии ионизации от числа электронов для атомов второго периода. Даже такое упрощенное обсуждение ионизационных потенциалов еще раз доказывает правильность квантовых представлений об электронной структуре атомов.

Список новых и забытых понятий и слов

Источник

Химическая связь

что такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химии

Химическая связь и строение вещества

Все системы стремятся к равновесию и к уменьшению свободной энергии — так гласит один из постулатов химической термодинамики. Атомы, взаимодействующие в молекуле вещества, тоже подчиняются этому закону. Они стремятся образовать устойчивую конфигурацию — 8-электронную или 2-электронную внешнюю оболочку. Этот процесс взаимодействия называется химической связью, благодаря ему получаются молекулы и молекулярные соединения.

что такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химии
Химическая связь — это взаимодействие между атомами в молекуле вещества, в ходе которого два электрона (по одному от каждого атома) образуют общую электронную пару либо электрон переходит от одного атома к другому.

Как понятно из определения химической связи, при взаимодействии двух атомов один из них может притянуть к себе внешние электроны другого. Эта способность называется электроотрицательностью (ЭО). Атом с более высокой электроотрицательностью (ЭО) при образовании химической связи с другим атомом может вызвать смещение к себе общей электронной пары.

Механизм образования химической связи

Существует два механизма взаимодействия атомов:

обменный — предполагает выделение по одному внешнему электрону от каждого атома и соединение их в общую пару;

донорно-акцепторный — происходит, когда один атом (донор) выделяет два электрона, а второй атом (акцептор) принимает их на свою свободную орбиталь.

Независимо от механизма химическая связь между атомами сопровождается выделением энергии. Чем выше ЭО атомов, т. е. их способность притягивать электроны, тем сильнее и этот энергетический всплеск.

Энергией связи называют ту энергию, которая выделяется при взаимодействии атомов. Она определяет прочность химической связи и по величине равна усилию, необходимому для ее разрыва.

Также на прочность влияют следующие показатели:

Длина связи — расстояние между ядрами атомов. С уменьшением этого расстояния растет энергия связи и увеличивается ее прочность.

Кратность связи — количество электронных пар, появившихся при взаимодействии атомов. Чем больше это число, тем выше энергия и, соответственно, прочность связи.

На примере химической связи в молекуле водорода посмотрим, как меняется энергия системы при сокращении расстояния между ядрами атомов. По мере сближения ядер электронные орбитали этих атомов начинают перекрывать друг друга, в итоге появляется общая молекулярная орбиталь. Неспаренные электроны через области перекрывания смещаются от одного атома в сторону другого, возникают общие электронные пары. Все это сопровождается нарастающим выделением энергии. Сближение происходит до тех пор, пока силу притяжения не компенсирует сила отталкивания одноименных зарядов.

что такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химии

Основные типы химических связей

Различают четыре вида связей в химии: ковалентную, ионную, металлическую и водородную. Но в чистом виде они встречаются редко, обычно имеет место наложение нескольких типов химических связей. Например, в молекуле фосфата аммония (NH4)3PO4присутствует одновременно ионная связь между ионами и ковалентная связь внутри ионов.

Также отметим, что при образовании кристалла от типа связи между частицами зависит, какой будет кристаллическая решетка. Если это ковалентная связь — образуется атомная решетка, если водородная — молекулярная решетка, а если ионная или металлическая — соответственно, будет ионная или металлическая решетка. Таком образом, влияя на тип кристаллической решетки, химическая связь определяет и физические свойства вещества: твердость, летучесть, температуру плавления и т. д.

Основные характеристики химической связи:

насыщенность — ограничение по количеству образуемых связей из-за конечного числа неспаренных электронов;

полярность — неравномерная электронная плотность между атомами и смещение общей пары электронов к одному из них;

направленность — ориентация связи в пространстве, расположение орбиталей атомов под определенным углом друг к другу.

Ковалентная связь

Как уже говорилось выше, этот тип связи имеет два механизма образования: обменный и донорно-акцепторный. При обменном механизме объединяются в пару свободные электроны двух атомов, а при донорно-акцепторном — пара электронов одного из атомов смещается к другому на его свободную орбиталь.

Ковалентная связь — это процесс взаимодействия между атомами с одинаковыми или близкими радиусами, при котором возникает общая электронная пара. Если эта пара принадлежит в равной мере обоим взаимодействующим атомам — это неполярная связь, а если она смещается к одному из них — это полярная связь.

Как вы помните, сила притяжения электронов определяется электроотрицательностью атома. Если у двух атомов она одинакова, между ними будет неполярная связь, а если один из атомов имеет большую ЭО — к нему сместится общая электронная пара и получится полярная химическая связь.

Ковалентная неполярная связь образуется в молекулах простых веществ, неметаллов с одинаковой ЭО: Cl2, O2, N2, F2 и других.

Посмотрим на схему образования этой химической связи. У атомов водорода есть по одному внешнему электрону, которые и образуют общую пару.

что такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химии

Ковалентная полярная связь характерна для неметаллов с разным уровнем ЭО: HCl, NH3,HBr, H2O, H2S и других.

Посмотрим схему такой связи в молекуле хлороводорода. У водорода имеется один свободный электрон, а у хлора — семь. Таким образом, всего есть два неспаренных электрона, которые соединяются в общую пару. Поскольку в данном случае ЭО выше у хлора, эта пара смещается к нему.

что такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химии

Другой пример — молекула сероводорода H2S. В данном случае мы видим, что каждый атом водорода имеет по одной химической связи, в то время как атом серы — две. Количество связей определяет валентность атома в конкретном соединении, поэтому валентность серы в сероводороде — II.

что такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химии

Число связей, которые могут быть у атома в молекуле вещества, называется валентностью.

Характеристики ковалентной связи:

Ионная связь

Как понятно из названия, данный тип связи основан на взаимном притяжении ионов с противоположными зарядами. Он возможен между веществами с большой разницей ЭО — металлом и неметаллом. Механизм таков: один из атомов отдает свои электроны другому атому и заряжается положительно. Второй атом принимает электроны на свободную орбиталь и получает отрицательный заряд. В результате этого процесса образуются ионы.

Ионная связь — это такое взаимодействие между атомами в молекуле вещества, итогом которого становится образование и взаимное притяжение ионов.

Разноименно заряженные ионы стремятся друг к другу за счет кулоновского притяжения, которое одинаково направлено во все стороны. Благодаря этому притяжению образуются ионные кристаллы, в решетке которых заряды ионов чередуются. У каждого иона есть определенное количество ближайших соседей — оно называется координационным числом.

Обычно ионная связь появляется между атомами металла и неметалла в таких соединениях, как NaF, CaCl2, BaO, NaCl, MgF2, RbI и других. Ниже схема ионной связи в молекуле хлорида натрия.

что такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химии

Характеристики ионной связи:

не имеет направленности.

что такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химии

Ковалентная и ионная связь в целом похожи, и одну из них можно рассматривать, как крайнее выражение другой. Но все же между ними есть существенная разница. Сравним эти виды химических связей в таблице.

Характеризуется появлением электронных пар, принадлежащих обоим атомам.

Характеризуется появлением и взаимным притяжением ионов.

Общая пара электронов испытывает притяжение со стороны обоих ядер атомов.

Ионы с противоположными зарядами подвержены кулоновскому притяжению.

Имеет направленность и насыщенность.

Ненасыщенна и не имеет направленности.

Количество связей, образуемых атомом, называется валентностью.

Количество ближайших соседей атома называется координационным числом.

Образуется между неметаллами с одинаковой или не сильно отличающейся ЭО.

Образуется между металлами и неметаллами — веществами со значимо разной ЭО.

Металлическая связь

Отличительная особенность металлов в том, что их атомы имеют достаточно большие радиусы и легко отдают свои внешние электроны, превращаясь в положительно заряженные ионы (катионы). В итоге получается кристаллическая решетка, в узлах которой находятся ионы, а вокруг беспорядочно перемещаются электроны проводимости, образуя «электронное облако» или «электронный газ».

Свободные электроны мигрируют от одного иона к другому, временно соединяясь с ними и снова отрываясь в свободное плавание. Этот механизм по своей природе имеет сходство с ковалентной связью, но взаимодействие происходит не между отдельными атомами, а в веществе.

Металлическая связь — это взаимодействие положительных ионов металлов и отрицательно заряженных электронов, которые являются частью «электронного облака», рассеянного по всему объему вещества.

Наличие такого «электронного облака», которое может прийти в направленное движение, обусловливает электропроводность металлов. Другие их качества — пластичность и ковкость, объясняются тем, что ионы в кристаллической решетке легко смещаются. Поэтому металл при ударном воздействии способен растягиваться, но не разрушаться.

что такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химии

Характеристики металлической связи:

Металлическая связь присуща как простым веществам — таким как Na, Ba, Ag, Cu, так и сложным сплавам — например, AlCr2, CuAl11Fe4, Ca2Cu и другим.

Схема металлической связи:

что такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химии

M — металл,

n — число свободных внешних электронов.

К примеру, у железа в чистом виде на внешнем уровне есть два электрона, поэтому его схема металлической связи выглядит так:

что такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химии

Обобщим все полученные знания. Таблица ниже описывает кратко химические связи и строение вещества.

Типы химической связи и их основные отличительные признаки

что такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химии

Водородная связь

Данный тип связи в химии стоит отдельно, поскольку он может быть как внутри молекулы, так и между молекулами. Как правило, у неорганических веществ эта связь происходит между молекулами.

Водородная связь образуется между молекулами, содержащими водород. Точнее, между атомами водорода в этих молекулах и атомами с большей ЭО в других молекулах вещества.

Объясним подробнее механизм этого вида химической связи. Есть молекулы А и В, содержащие водород. При этом в молекуле А есть электроотрицательные атомы, а в молекуле В водород имеет ковалентную полярную связь с другими электроотрицательными атомами. В этом случае между атомом водорода в молекуле В и электроотрицательным атомом в молекуле А образуется водородная связь.

Такое взаимодействие носит донорно-акцепторный характер. Донором электронов в данном случае выступают электроотрицательные элементы, а акцептором — водород.

Графически водородная связь обозначается тремя точками. Ниже приведена схема такого взаимодействия на примере молекул воды.

что такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химии

Характеристики водородной связи:

что такое неспаренные электроны в химии. Смотреть фото что такое неспаренные электроны в химии. Смотреть картинку что такое неспаренные электроны в химии. Картинка про что такое неспаренные электроны в химии. Фото что такое неспаренные электроны в химии

Кратко о химических связях

Итак, самое главное. Химической связью называют взаимодействие атомов, причиной которого является стремление системы приобрести устойчивое состояние. Во время взаимодействия свободные внешние электроны атомов объединяются в пары либо внешний электрон одного атома переходит к другому.

Образование химической связи сопровождается выделением энергии. Эта энергия растет с увеличением количества образованных электронных пар и с сокращением расстояния между ядрами атомов.

Основные виды химических связей: ковалентная (полярная и неполярная), ионная, металлическая и водородная. В отличие от всех остальных водородная ближе к молекулярным связям, поскольку может быть как внутри молекулы, так и между разными молекулами.

Как определить тип химической связи:

Ковалентная полярная связь образуется в молекулах неметаллов между атомами со сходной ЭО.

Ковалентная неполярная связь имеет место между атомами с разной ЭО.

Ионная связь ведет к образованию и взаимному притяжению ионов. Она происходит между атомами металла и неметалла.

Металлическая связь бывает только между атомами металлов. Это взаимодействие положительных ионов в кристаллической решетке и свободных отрицательных электронов. Масса рассеянных по всему объему свободных электронов представляет собой «электронное облако».

Водородная связь появляется при условии, что есть атом с высокой ЭО и атом водорода, связанный с другой электроотрицательной частицей ковалентной связью.

Химическая связь и строение молекулы: типом химической связи определяется кристаллическая решетка вещества: ионная, металлическая, атомная или молекулярная.

Определить тип химической связи в 8 классе поможет таблица.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *