что такое напряжение насыщения транзистора
Между простой переключающей схемой и линейным усилителем на транзисторе имеется очевидное различие. В нормально работающем линейном усилителе коллекторный ток всегда прямо пропорционален базовому току. В переключающей схеме, такой как на рис. 1., коллекторный ток определяется, главным образом, напряжением питания VCC и сопротивлением нагрузки RL. Режим насыщения транзистора является достаточно важным и заслуживает подробного обсуждения.
Рис. 1. Иллюстрация режима насыщения. Транзистор действует как ключ для включения лампы.
Рассмотрим, что происходит с коллекторным током в схеме на рис. 1, если базовый ток постепенно увеличивается, начиная от нуля. Когда ключ S1 разомкнут, базовый ток не течет и ток коллектора ничтожно мал. Замыкание S1 приводит к появлению тока базы IB = VCC/RB, где мы пренебрегли разностью потенциалов на переходе база-эмиттер. Ток коллектора, протекающий по нагрузке RL, равен IC=hFEVCC/RB. Для конкретной схемы, приведенной на рисунке, при hFE = 100 и при максимальном значении RB (50 кОм) получим:
IC=100×10/5000 А=20 мА
Падение напряжения на RL определяется произведением RLIC и в нашем случае равно 50 х 0,02 = 1 В. Транзистор при этом находится в линейном режиме; уменьшение RB приводит к увеличению тока базы, увеличению тока коллектора и, следовательно, к увеличению падения напряжения на RL. В этих условиях схема могла бы быть использована как усилитель напряжения.
Теперь рассмотрим случай, когда
Следовательно, коллекторный ток равен
С точки зрения нагрузки транзистор ведет себя как пара контактов ключа. Из закона Ома следует, что ток нагрузки в этой ситуации не может превышать величины VCC/RL. Поэтому дальнейшее увеличение тока базы не может увеличить ток коллектора, который определяется теперь только сопротивлением нагрузки и напряжением питания. Транзистор находится в насыщении. На практике при насыщении транзистора между коллектором и эмиттером всегда остается небольшое напряжение, обычно обозначаемое VCE(sat). Как правило, оно меньше 1 В и может доходить до 0,1 B y транзисторов, специально предназначенных для работы в качестве ключей. Обычно VCE(sat) уменьшается по мере того, как через переход база-эмиттер течет все больший ток, то есть в случае, когда отношение тока коллектора IC к току базы IB становится значительно меньше, чем коэффициент усиления тока транзистора hFE.
Грубо говоря, глубокое насыщение (малое значение VCE(sat)) имеет место, когда
Биполярный транзистор
Автор: Владимир Васильев · Опубликовано 9 сентября 2015 · Обновлено 29 августа 2018
Приветствую вас дорогие друзья! Сегодня речь пойдет о биполярных транзисторах и информация будет полезна прежде всего новичкам. Так что, если вам интересно что такое транзистор, его принцип работы и вообще с чем его едят, то берем стул по удобнее и подходим поближе.
Продолжим, и у нас тут есть содержание, будет удобнее ориентироваться в статье 🙂
Виды транзисторов
Транзисторы бывают в основном двух видов: биполярные транзисторы и полевые транзисторы. Конечно можно было рассмотреть все виды транзисторов в одной статье, но мне не хочется варить кашу у вас в голове. Поэтому в этой статье мы рассмотрим исключительно биполярные транзисторы а о полевых транзисторах я расскажу в одной из следующих статей. Не будем все мешать в одну кучу а уделим внимание каждому, индивидуально.
Биполярный транзистор
Триоды за редким исключением применяют в аппаратуре для меломанов.
Биполярные транзисторы выглядеть могут так.
Как вы можете видеть биполярные транзисторы имеют три вывода и конструктивно они могут выглядеть совершенно по разному. Но на электрических схемах они выглядят простенько и всегда одинаково. И все это графическое великолепие, выглядит как-то так.
Это изображение транзисторов еще называют УГО (Условное графическое обозначение).
Причем биполярные транзисторы могут иметь различный тип проводимости. Есть транзисторы NPN типа и PNP типа.
Отличие n-p-n транзистора от p-n-p транзистора состоит лишь в том что является «переносчиком» электрического заряда (электроны или «дырки» ). Т.е. для p-n-p транзистора электроны перемещаются от эмиттера к коллектору и управляются базой. Для n-p-n транзистора электроны идут уже от коллектора к эмиттеру и управляются базой. В итоге приходим к тому, что для того чтобы в схеме заменить транзистор одного типа проводимости на другой достаточно изменить полярность приложенного напряжения. Или тупо поменять полярность источника питания.
У биполярных транзисторов есть три вывода: коллектор, эмиттер и база. Думаю, что по УГО будет сложно запутаться, а вот в реальном транзисторе запутаться проще простого.
Обычно где какой вывод определяют по справочнику, но можно просто прозвонить транзистор мультиметром. Выводы транзистора звонятся как два диода, соединенные в общей точке (в области базы транзистора).
Слева изображена картинка для транзистора p-n-p типа, при прозвонке создается ощущение (посредством показаний мультиметра ), что перед вами два диода которые соединены в одной точке своими катодами. Для транзистора n-p-n типа диоды в точке базы соединены своими анодами. Думаю после экспериментов с мультиметром будет более понятно.
Принцип работы биполярного транзистора
А сейчас мы попробуем разобраться как работает транзистор. Я не буду вдаваться в подробности внутреннего устройства транзисторов так как эта информация только запутывает. Лучше взгляните на этот рисунок.
Это изображение лучше всего объясняет принцип работы транзистора. На этом изображении человек посредством реостата управляет током коллектора. Он смотрит на ток базы, если ток базы растет то человек так же увеличивает ток коллектора с учетом коэффициента усиления транзистора h21Э. Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.
Эта аналогия не имеет ничего общего с реальной работой транзистора, но она облегчает понимание принципов его работы.
Для транзисторов можно отметить правила, которые призваны помочь облегчить понимание. (Эти правила взяты из книги П. Хоровица У.Хилла «Искусство схемотехники»).
Из этой формулы можно выразить основное свойство транзистора — небольшой ток базы управляет большим током коллектора.
-коэффициент усиления по току.
Его также обозначают как
Исходы из выше сказанного транзистор может работать в четырех режимах:
Для понимания того как работает транзистор нужно рассматривать конкретные схемные примеры, поэтому давайте рассмотрим некоторые из них.
Транзистор в ключевом режиме
Транзистор в ключевом режиме это один из случаев транзисторных схем с общим эмиттером. Схема транзистора в ключевом режиме применяется очень часто. К этой транзисторной схеме прибегают к примеру когда нужно управлять мощной нагрузкой посредством микроконтроллера. Ножка контроллера не способна тянуть мощную нагрузку, а транзистор может. Получается контроллер управляет транзистором, а транзистор мощной нагрузкой. Ну а обо всем по порядку.
Основная суть этого режима заключается в том, что ток базы управляет током коллектора. Причем ток коллектора гораздо больше тока базы. Здесь невооруженным взглядом видно, что происходит усиление сигнала по току. Это усиление осуществляется за счет энергии источника питания.
На рисунке изображена схема работы транзистора в ключевом режиме.
Для транзисторных схем напряжения не играют большой роли, важны лишь токи. Поэтому, если отношение тока коллектора к току базы меньше коэффициента усиления транзистора то все окей.
В этом случае даже если к базе у нас приложено напряжение в 5 вольт а в цепи коллектора 500 вольт, то ничего страшного не произойдет, транзистор будет покорно переключать высоковольтную нагрузку.
Главное чтобы эти напряжения не превышали предельные значения для конкретного транзистора (задается в характеристиках транзистора).
Чтож, теперь давайте попробуем рассчитать значение базового резистора.
На сколько мы знаем, что значение тока это характеристика нагрузки.
Мы не знаем сопротивления лампочки, но мы знаем рабочий ток лампочки 100 мА. Чтобы транзистор открылся и обеспечил протекание такого тока, нужно подобрать соответствующий ток базы. Ток базы мы можем корректировать меняя номинал базового резистора.
Так как минимальное значение коэффициента усиления транзистора равно 10, то для открытия транзистора ток базы должен стать 10 мА.
Ток который нам нужен известен. Напряжение на базовом резисторе будет
Такое значение напряжения на резисторе получилось из-зи того, что на переходе база-эмиттер высаживается 0,6В-0,7В и это надо не забывать учитывать.
В результате мы вполне можем найти сопротивление резистора
Осталось выбрать из ряда резисторов конкретное значение и дело в шляпе.
Все дело в том, что здесь есть небольшой нюанс.
Лампочка в том случае погаснет, когда потенциал резистора будет равен потенциалу земли. Если же резистор просто отключен от источника напряжения, то здесь не все так однозначно. Напряжение на базовом резисторе может возникнуть чудесным образом в результате наводок или еще какой потусторонней нечисти 🙂
Чтобы такого эффекта не происходило делают следующее. Между базой и эмиттером подключают еще один резистор Rбэ. Этот резистор выбирают номиналом как минимум в 10 раз больше базового резистора Rб (В нашем случае мы взяли резистор 4,3кОм).
Когда база подключена к какому-либо напряжению, то транзистор работает как надо, резистор Rбэ ему не мешает. На этот резистор расходуется лишь малая часть базового тока.
В случае, когда напряжение к базе не приложено, происходит подтяжка базы к потенциалу земли, что избавляет нас от всяческих наводок.
Вот в принципе мы разобрались с работой транзистора в ключевом режиме, причем как вы могли убедиться ключевой режим работы это своего рода усиление сигнала по напряжению. Ведь мы с помощью малого напряжения в 5В управляли напряжением в 12 В.
Эмиттерный повторитель
Эмиттерный повторитель является частным случаем транзисторных схем с общим коллектором.
Отличительной чертой схемы с общим коллектором от схемы с общим эмиттером (вариант с транзисторным ключем) является то, что эта схема не усиливает сигнал по напряжению. Что вошло через базу, то и вышло через эмиттер, с тем же самым напряжением.
Действительно допустим приложили к базе мы 10 вольт, при этом мы знаем что на переходе база-эмиттер высаживается где-то 0,6-0,7В. Выходит что на выходе (на эмиттере, на нагрузке Rн) будет напряжение базы минус 0,6В.
Получилось 9,4В, одним словом почти сколько вошло столько и вышло. Убедились, что по напряжению эта схема нам сигнал не увеличит.
«В чем же смысл тогда таком включении транзистора?»- спросите вы. А вот оказывается эта схема обладает другим очень важным свойством. Схема включения транзистора с общим коллектором усиливает сигнал по мощности. Мощность это произведение тока на напряжение, но так как напряжение не меняется то мощность увеличивается только за счет тока! Ток в нагрузке складывается из тока базы плюс ток коллектора. Но если сравнивать ток базы и ток коллектора то ток базы очень мал по сравнению с током коллектора. Получается ток нагрузки равен току коллектора. И в результате получилась вот такая формула.
Теперь я думаю понятно в чем суть схемы эмиттерного повторителя, только это еще не все.
Для понимания принципа работы транзистора этих двух транзисторных схем будет вполне достаточно. А если вы еще поэкспериментируете с паяльником в руках то прозрение просто не заставит себя ждать, ведь теория теорией а практика и личный опыт ценнее в сотни раз!
Где транзисторы купить?
Как и все другие радиокомпоненты транзисторы можно купить в любом ближайшем магазине радиодеталей. Если вы живете где-нибудь на окраине и о подобных магазинах не слышали (как я раньше) то остается последний вариант — заказать транзисторы в интернет- магазине. Я сам частенько заказываю радиодетали через интернет-магазины ведь в обычном оффлайн магазине может чего-нибудь просто не оказаться.
Впрочем если вы собираете устройство чисто для себя то можно не париться а добыть из старой, отслужившей свое техники и так сказать вдохнуть в старый радиокомпонет новую жизнь.
Чтож друзья, а на этом у меня все. Все, что планировал я сегодня вам рассказал. Если остались какие-либо вопросы, то задавайте их в комментариях, если вопросов нет то все равно пишите комментарии, мне всегда важно ваше мнение. Кстати не забывайте, что каждый кто впервые оставит комментарий получит подарок.
Также обязательно подпишитесь на новые статьи, потому что дальше вас ждет много интересного и полезного.
Желаю вам удачи, успехов и солнечного настроения!
Основные параметры и характеристики биполярного транзистора.
Продолжаем разбирать все, что связано с транзисторами и сегодня у нас на очереди одна из наиболее часто используемых схем включения. А именно схема включения биполярного транзистора с общим эмиттером (ОЭ)! Кроме того, на базе этой схемы мы рассмотрим основные параметры и характеристики биполярного транзистора. Тема важная и интересная, так что без лишних слов переходим к делу!
Название этой схемы во многом объясняет ее основную идею. Поскольку схема с общим эмиттером, то, собственно, эмиттер является общим электродом для входной и выходной цепей. Вот как выглядит схема с ОЭ для n-p-n транзистора:
А вот так — для p-n-p:
Давайте снова разбирать все процессы для случая с использованием n-p-n транзистора. Для p-n-p суть остается той же, меняется только полярность.
Входными величинами являются напряжение база-эмиттер ( U_ <бэ>) и ток базы ( I_ <б>), а выходными — напряжение коллектор-эмиттер ( U_ <кэ>) и ток коллектора ( I_ <к>). Обратите внимание, что в этих схемах у нас отсутствует нагрузка в цепи коллектора, поэтому все характеристики, которые мы далее рассмотрим носят название статических. Другими словами статические характеристики транзистора — это зависимости между напряжениями и токами на входе и выходе при отсутствии нагрузки.
Характеристики биполярного транзистора.
Выделяют несколько основных характеристик транзистора, которые позволяют понять, как он работает, и как его использовать для решения задач.
И первая на очереди — входная характеристика, которая представляет из себя зависимость тока базы от напряжения база-эмиттер при определенном значении напряжения коллектор-эмиттер:
В документации на конкретный транзистор обычно указывают семейство входных характеристик (для разных значений U_ <кэ>):
Входная характеристика, в целом, очень похожа на прямую ветвь ВАХ диода. При U_ <кэ>= 0 характеристика соответствует зависимости тока от напряжения для двух p-n переходов включенных параллельно (и смещенных в прямом направлении). При увеличении U_ <кэ>ветвь будет смещаться вправо.
Переходим ко второй крайне важной характеристике биполярного транзистора — выходной! Выходная характеристика — это зависимость тока коллектора от напряжения коллектор-эмиттер при постоянном токе базы.
Для нее также указывается семейство характеристик для разных значений тока базы:
Видим, что при небольших значениях U_ <кэ>коллекторный ток увеличивается очень быстро, а при дальнейшем увеличении напряжения — изменение тока очень мало и фактически не зависит от U_ <кэ>(зато пропорционально току базы). Эти участки соответствуют разным режимам работы транзистора.
Для наглядности можно изобразить эти режимы на семействе выходных характеристик:
Участок 1 соответствует активному режиму работы транзистора, когда эмиттерный переход смещен в прямом направлении, а коллекторный — в обратном. Как вы помните, в данном режиме незначительный ток базы управляет током коллектора, имеющим бОльшую величину.
Для управления током базы мы увеличиваем напряжение U_ <бэ>, что в соответствии со входными характеристиками приводит к увеличению тока базы. А это уже в соответствии с выходной характеристикой в активном режиме приводит к росту тока коллектора. Все взаимосвязано 🙂
На участке 2 транзистор находится в режиме насыщения. При уменьшении U_ <кэ>уменьшается и напряжение на коллекторном переходе U_ <кб>. И при определенном значении U_ <кэ>= U_ <кэ \medspace нас>напряжение на коллекторном переходе меняет знак и переход оказывается смещенным в прямом направлении. То есть в активном режиме у нас была такая картина — эмиттерный переход смещен в прямом направлении, а коллекторный — в обратном. В режиме же насыщения оба перехода смещены в прямом направлении.
В этом режиме основные носители заряда начинают двигаться из коллектора в базу — навстречу носителям заряда, которые двигаются из эмиттера в коллектор. Поэтому при дальнейшем уменьшении U_ <кэ>ток коллектора уменьшается. Кроме того, в режиме насыщения транзистор теряет свои усилительные свойства, поскольку ток коллектора перестает зависеть от тока базы.
Режим насыщения часто используется в схемах ключей на транзисторе. В одной из следующих статей мы как раз займемся практическими расчетами реальных схем и там используем рассмотренные сегодня характеристики биполярного транзистора!
Все параметры транзисторов довольно-таки сильно зависят как друг от друга, так и от температуры, поэтому в документации приводятся характеристики для разных значений. Вот, например, зависимость коэффициента усиления по току (в зарубежной документации обозначается как h_
Как видите, коэффициент усиления не просто зависит от тока коллектора, но и от температуры окружающей среды! Разным значениям температуры соответствуют разные кривые.
Основные параметры биполярных транзисторов.
Давайте теперь рассмотрим, какие существуют параметры биполярных транзисторов, и какие предельные значения они могут принимать.
I_ <КБО>( I_ |
I_ <ЭБО>( I_ |
I_ <КЭО>( I_ |
U_ <БЭ>( V_ |
U_ <КБ \medspace проб>( V_ <(BR) CBO>) — напряжение пробоя перехода коллектор-база при определенном обратном токе коллектора и разомкнутой цепи эмиттера. Например, для все того же BC847: |
U_ <ЭБ \medspace проб>( V_ <(BR) EBO>) — напряжение пробоя эмиттер-база при определенном обратном токе эмиттера и разомкнутой цепи коллектора. |
U_ <КЭ \medspace проб>( V_ <(BR) CES>) — напряжение пробоя коллектор-эмиттер при определенном прямом токе коллектора и разомкнутой цепи базы. |
Напряжения насыщения коллектор-эмиттер и база-эмиттер — U_ <КЭ \medspace нас>( V_ |
Конечно же, важнейший параметр — статический коэффициент передачи по току для схемы с общим эмиттером — h_ <21э>( h_ |
f_ <гр>( f_ |
И еще один параметр, который следует отнести к важнейшим — I_ <К>( I_ |
И на этом заканчиваем нашу сегодняшнюю статью, большое спасибо за внимание! Подписывайтесь на обновления и не пропустите новые статьи 🙂
Электроника
учебно-справочное пособие
Биполярные транзисторы
Устройство биполярного транзистора
Биполярный транзистор представляет собой полупроводниковый прибор, имеющий два р-n-перехода, образованных в одном монокристалле полупроводника. Эти переходы образуют в полупроводнике три области с различными типами электропроводности. Одна крайняя область называется эмиттером (Э), другая — коллектором (К), средняя — базой (Б). К каждой области припаивают металлические выводы для включения транзистора в электрическую цепь.
Электропроводность эмиттера и коллектора противоположна электропроводности базы.
В зависимости от порядка чередования р- и n-областей различают транзисторы со структурой р-n-р (рис. 1, а) и n-р-n (рис. 1, б) (иногда их еще называют прямой и обратный).
Условные графические обозначения транзисторов p-n-р и n-p-n отличаются лишь направлением стрелки у электрода, обозначающего эмиттер. Принцип работы транзисторов p-n-р и n-p-n одинаков.
Электронно-дырочный переход, образованный эмиттером и базой, называется эмиттерным, а коллектором и базой — коллекторным. Расстояние между переходами очень мало; у высокочастотных транзисторов оно менее 10 микрометров, а у низкочастотных не превышает 50 мкм (1 мкм=0,001 мм).
Для того, чтобы вычислить коллекторный ток, нужно умножить ток базы на коэффициент усиления:
Транзистор откроется и лампочка загориться. Причем яркость свечения лампочки будет зависить от сопротивления резистора и коэффициента усиления транзистора.
Напряжение, прилагаемое к базе и необходимое для открытия транзистора, называют напряжением смещения. Если вместо постоянного резистора поставить переменный резистор, то получим возможность регулировать яркость свечения лампочки.
Таким же образом можно усиливать и сигналы: подавая на базу транзистора определенный сигнал (к примеру звук), в коллекторной цепи получим тот же сигнал, но уже усиленный в h21Э раз.
Если базовое смещение транзистора застабилизировать при помощи стабилитрона (рис. 3), то мы получим простейший стабилизатор напряжения, т.у. схему, которая будет поддерживать постоянное напряжение на выходе, даже если входное напряжение будет изменяться.
Для получения повышенной мощности используются схемы последовательного включения наскольких транзисторов, так называемые схемы Дарлингтона (или составные транзисторы)
Система обозначений биполярных транзисторов
Третьим элементом может быть буква, определяющая классификацию по параметрам транзисторам, изготовленной по одной технологии. Например:
П416Б — транзистор германиевый, высокочастотный, малой мощности, разновидности Б;
МП39Б — германиевый транзистор, имеющий холодносварочный корпус, низкочастотный, малой мощности, разновидности Б.
В новой системе обозначений используется шифр, который состоит из 5 элементов:
1-й элемент системы обозначает исходный материал, на основе которого изготовлен транзистор:
2-й элемент — буква Т (биполярный транзистор) или П (полевой транзистор).
3-й элемент — цифра, указывающая на функциональные возможности транзистора по допустимой рассеиваемой мощности и граничной частоте.
Транзисторы малой мощности, Рmах 1,5 Вт:
7 — большой мощности низкочастотный;
8 — большой мощности среднечастотный;
9 — большой мощности высокочастотный и сверхвысокочастотный (fгр>300 Гц).
4-й элемент — цифры от 01 до 99, указывающие порядковый номер разработки.
5-й элемент — буквы от А до Я, обозначающая деление технологического типа приборов на группы.
КТ540Б — кремниевый транзистор средней мощности среднечастотный, номер разработки 40, группа Б.
КТ315А — кремниевый биполярный транзистор, маломощный, высокочастотный,подкласс А.
С 1978 года были введены изменения, первые два символа обозначающие материал и подкласс транзистора остались прежними.
Для биполярных транзисторов:
Пример:
КТ2115А-2 кремниевый биполярный транзистор для устройств широкого применения, маломощный, высокочастотный, бескорпусный с гибкими выводами на кристаллодержателе.
В импортной (японской )маркировке первые три символа обозначают структуру:
Основные параметры биполярных транзисторов
Режимы работы биполярного транзистора
В зависимости от способа подключения р-n-переходов транзистора к внешним источникам питания он может работать в режиме отсечки, насыщения или активном режиме.
Режим отсечки
Режим отсечки транзистора получается тогда, когда эмиттерный и коллекторный p-n-переходы подключены к внешним источникам в обратном направлении (рис. 5). В этом случае через оба p-n-перехода протекают очень малые обратные токи эмиттера ( Iэбо ) и коллектора ( Iкбо ). В этом случае говорят, что транзистор полностью закрыт или просто закрыт.
Ток базы равен сумме этих токов и в зависимости от типа транзистора находится в пределах от единиц микроампер — мкА (у кремниевых транзисторов) до единиц миллиампер — мА (у германиевых транзисторов).
Режим насыщения
Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения (рис. 6 ). Через эмиттер и коллектор транзистора потекут токи насыщения эмиттера ( Iэ.нас ) и коллектора ( Iк.нас ). Величина этих токов в много раз больше токов в режиме отсечки.
Есть такое понятие, как коэффициент насыщения. Он определяется как отношение реального тока базы (того, который у вас есть в данный момент) к току базы в пограничном состоянии между активным режимом и насыщением.
Режимы отсечки и насыщения используются при работе транзисторов в импульсных схемах и в режиме переключения.
Активный режим
При работе транзистора в активном режиме (нормальном активном режиме) эмиттерный переход включается в прямом, а коллекторный — в обратном направлениях (рис. 7).
В активном режиме ток базы в десятки и сотни раз меньше тока коллектора и тока эмиттера.
Для токов коллектора и эмиттера выполняется соотношение:
Величина h21Б называется статическим коэффициентом передачи тока эмиттера. Для современных транзисторов h21Б=0,90. 0,998. Активный режим используется при построении транзисторных усилителей.
Инверсный активный режим
Барьерный режим
Управление биполярным транзистором
Величина тока базы и максимально возможного тока через коллектор (при таком токе базы) связаны постоянным коэффициентом β (коэффициент передачи тока базы):
Кроме параметра β используется ещё один коэффициент: коэффициент передачи эмиттерного тока (α). Он равен отношению тока коллектора к току эмиттера:
На рисунке 9 изображены простейшие схемы. Они эквивалентны, но построены с участием транзисторов разных проводимостей.
Рассмотренный режим работы транзистора как раз является активным. Коэффициент β может измеряться десятками и даже сотнями. То есть для того, чтобы сильно менять ток, протекающий из эмиттера в коллектор, достаточно лишь немного изменять ток, протекающий из эмиттера в базу.
Статические характеристики биполярного транзистора
Эти характеристики показывают графическую зависимость между токами и напряжениями транзистора и могут применяться для определения некоторых его параметров, необходимых для расчета транзисторных схем. Наибольшее применение получили статические входные и выходные характеристики.
Входные статические характеристики представляют собой вольтамперные характеристики эмиттерного электронно-дырочного перехода (ЭДП). Если транзистор включен по схеме с общей базой, то это будет зависимость тока эмиттера Iэ от напряжения на эмиттерном переходе Uэб (рис. 10, а). При отсутствии коллекторного напряжения ( Uкб = 0) входная характеристика представляет собой прямую ветвь вольтамперной характеристики эмиттерного ЭДП, подобную ВАХ диода. Если на коллектор подать некоторое напряжение, смещающее его в обратном направлении, то коллекторный ЭДП расширится и толщина базы вследствие этого уменьшится. В результате уменьшится и сопротивление базы эмиттерному току, что приведет к увеличению эмиттерного тока, то есть характеристика пройдет выше.
Выходные статические характеристики биполярного транзистора — это вольтамперные характеристики коллекторного электронно-дырочного перехода, смещенного в обратном направлении. Их вид также зависит от способа включения транзистора и очень сильно от состояния, а точнее — режима работы, в котором находится эмиттерный ЭДП.
Сказанное справедливо и при включении биполярного транзистора по схеме с общим эмиттером (ОЭ). Разница состоит лишь в том, что в этом случае выходные характеристики снимают не при постоянных значениях тока эмиттера, а при постоянных значениях тока базы Iб (рис. 11, б), и идут они более круто, чем выходные характеристики в схеме с ОБ.
При чрезмерном увеличении коллекторного напряжения происходит пробой коллекторного ЭДП, сопровождающийся резким увеличением коллекторного тока, разогревом транзистора и выходом его из строя. Для большинства транзисторов напряжение пробоя коллекторного перехода лежит в пределах от 20 до 30 В. Это важно знать при выборе транзистора для заданного напряжения источника питания или при определении необходимого напряжения источника питания для имеющихся транзисторов.
Увеличение температуры вызывает возрастание токов транзистора и смещение его характеристик. Особенно сильно влияет температура на выходные характеристики в схеме ОЭ (рис. 12).
Все описанное выше касалось работы транзистора при постоянных напряжениях и токах его электродов. При работе транзисторов в усилительных схемах важную роль играют переменные сигналы с малыми амплитудами. Свойства транзистора в этом случае определяются так называемыми малосигнальными параметрами.
На практике наибольшее применение получили малосигнальные h-параметры (читается: аш-параметры). Их называют также гибридными, или смешанными, из-за того, что одни из них имеют размерность проводимости, другие сопротивления, а третьи вообще безразмерные.
Всего h-параметров четыре: h11 (аш-один-один), h12 (аш-один-два), h21 (аш-два-один) и h22 (аш-два-два) и определяются они следующими выражениями:
— коэффициент обратной связи по напряжению, безразмерная величина;
— коэффициент прямой передачи по току, безразмерная величина;
— выходная проводимость, измеряется в сименсах (См ).
Значения h-параметров зависят от режима работы транзистора, т. е. от напряжений и токов его электродов. Режим работы транзистора определяется на характеристиках положением рабочей точки, которую будем обозначать в дальнейшем буквой А. Если указано положение рабочей точки А на семействе статических входных характеристик транзистора, включенного по схеме ОЭ (рис. 14, а), параметры h11э и h12э определяются следующим образом:
Параметры h21э и h22э определяются в рабочей точке А по выходным характеристикам (рис. 14, б) в соответствии с формулами:
Аналогично рассчитываются h-параметры для схемы ОБ.
При расчете параметров h12 и h21 надо токи и напряжения подставлять в формулы в основных единицах измерения.
Частотные свойства биполярного транзистора
При работе транзистора на частотах, превышающих fh21э его усилительные свойства уменьшаются вплоть fгр . На частотах, превышающих fгр, транзистор вообще не усиливает. Поэтому величины fh21э или fгр позволяют судить о возможности работы транзистора в заданном диапазоне частот. По значению граничной частоты все транзисторы подразделяются на низкочастотные ( fгр fгр fгр >30 МГц). Транзисторы, у которых fгр > 300 МГц, называют сверхвысокочастотными.
Например, для транзистора типа ГТ320Б значение | h21э |=6 на частоте f =20 МГц. Следовательно, граничная частота этого транзистора fгр = 20 · 6 = 120 МГц.