что такое наложение в геометрии
Наложения и движения
При наложении различные точки отображаются в различные точки.
Доказательство:
Из этого утверждения мы можем сделать вывод, что при наложении отрезок отображается на равный ему отрезок. Пусть при наложении концы А и В отрезка АВ отображаются в точки А1 и В1. Тогда отрезок АВ отображается на отрезок А1В1 (т.к. согласно аксиоме, если при наложении совмещаются концы двух отрезков, то совмещаются и сами отрезки), и, следовательно, АВ=А1В1. Так как равные отрезки имеют равные длины, то наложение является отображением плоскости на себя, которое сохраняет расстояния, то есть любое наложение является движением плоскости.
Теорема
Любое движение является наложением. |
Доказательство
Дано: движение ,
АВС отображается в
А1В1С1,
АВС=
А1В1С1
Доказать: движение — наложение
Доказательство:
Так как АВС=
А1В1С1 , то по определению существует наложение
, при котором точки А, В и С отображаются в точки А1, В1 и С1 соответственно. Докажем, что
совпадает с
.
Предположим обратное. Тогда найдется хотя бы одна точка М, которая при движении отображается в точку М1, а при наложении
отображается в другую точку М2. При отображениях
и
сохраняются расстояния, поэтому ВМ=В1М1, ВМ=В1М2, отсюда В1М1=В2М2, то есть точка В1 равноудалена от точек М1 и М2.
Аналогично можно доказать, что точки А1 и С1 равноудалены от точек М1 и М2. Следовательно, точки А1, В1, и С1 лежат на серединном перпендикуляре к отрезку М1М2, но это не возможно, так как вершины А1В1С1 не лежат на одной прямой. Значит, наше предположение неверно и отображение
совпадает с
, другими словами, движение
является наложением. Теорема доказана.
Следствие
При движении любая фигура отображается на равную ей фигуру. |
Поделись с друзьями в социальных сетях:
Наложения и движения
Напомним, что в нашем курсе геометрии равенство фигур определяется с помощью наложений. Мы говорим, что фигура Ф равна фигуре Фп если фигуру Ф можно совместить наложением с фигурой Ф1. Понятие наложения в нашем курсе относится к основным понятиям геометрии, поэтому определение наложения не даётся. Под наложением фигуры Ф на фигуру Ф1 мы понимаем некоторое отображение фигуры Ф на фигуру Ф1 Более того, мы считаем, что при этом не только точки фигуры Ф, но и любая точка плоскости отображается в определённую точку плоскости, т. е. наложение — это отображение плоскости на себя.
Однако не всякое отображение плоскости на себя мы называем наложением. Наложения — это такие отображения плоскости на себя, которые обладают свойствами, выраженными в аксиомах (см. приложение 1, аксиомы 7—13). Эти аксиомы позволяют доказать все те свойства наложений, которые мы себе представляем наглядно и которыми пользуемся при доказательстве теорем и решении задач. Докажем, например, что при наложении различные точки отображаются в различные точки.
В самом деле, предположим, что это не так, т. е. при некотором наложении какие-то две точки А и В отображаются в одну и ту же точку С. Тогда фигура Ф1, состоящая из точек А и В, равна фигуре Ф2, состоящей из одной точки С. Отсюда следует, что Ф2 = Ф1 (аксиома 12), т. е. при некотором наложении фигура Ф2 отображается в фигуру Ф1. Но это невозможно, так как наложение — это отображение, а при любом отображении точке С ставится в соответствие только одна точка плоскости.
Из доказанного утверждения следует, что при наложении отрезок отображается на равный ему отрезок. Действительно, пусть при наложении концы А и В отрезка АВ отображаются в точки А1 и В1. Тогда отрезок АВ отображается на отрезок А1В1 (аксиома 7), и, следовательно, отрезок АВ равен отрезку А1В1. Так как равные отрезки имеют равные длины, то наложение является отображением плоскости на себя, сохраняющим расстояния, т. е. любое наложение является движением плоскости.
Наложение (геом.)
Полезное
Смотреть что такое «Наложение (геом.)» в других словарях:
КВАНТОВАЯ МЕХАНИКА — (волновая механика), теория, устанавливающая способ описания и законы движения микрочастиц (элем. ч ц, атомов, молекул, ат. ядер) и их систем (напр., кристаллов), а также связь величин, характеризующих ч цы и системы, с физ. величинами,… … Физическая энциклопедия
КОНФОРМАЦИОННЫЙ АНАЛИЗ — раздел стереохимии, изучающий конформации молекул, их взаимопревращения и зависимость физ. и хим. св в от конформац. характеристик. Конформации молекулы разл. пространств. формы молекулы, возникающие при изменении относит. ориентации отдельных ее … Химическая энциклопедия
РЕОЛОГИЯ — (от греч. rheos течение, поток и logos слово, учение), наука, изучающая деформац. св ва реальных тел. Р. рассматривает действующие на тело мех. напряжения и вызываемые ими деформации, как обратимые, так и необратимые (остаточные). В узком смысле… … Химическая энциклопедия
КАЛИБРОВОЧНЫЕ ПОЛЯ — (компенсирующие поля), векторные поля, обеспечивающие инвариантность ур ний движения относительно калибровочных преобразований (см. КАЛИБРОВОЧНАЯ СИММЕТРИЯ). Примеры таких полей эл. магн. поле в электродинамике, а также глюонные поля в квантовой… … Физическая энциклопедия
СПЕКТРОМЕТРИЯ — область физики и техники, разрабатывающая теорию и методы измерении спектров. В оптич. диапазоне длин волн С. объединяет разделы прикладной спектроскопии, метрологии и теории линейных систем. С. служит для обоснования выбора принципиальных схем… … Физическая энциклопедия
Финслерова геометрия — Финслерова геометрия одно из обобщений римановой геометрии. В финслеровой геометрии рассматриваются многообразия с финслеровой метрикой; то есть выбором нормы на каждом касательном пространстве, которая гладко меняется от точки к точке.… … Википедия
ОТРАЖЕНИЕ ЗВУКА — явление, возникающеепри падении звуковой волны на границу раздела двух упругих сред и состоящеев образовании волн, распространяющихся от границы раздела в ту же среду … Физическая энциклопедия
КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА — расположение атомов кристаллич. в ва в пространстве. наиб. характерное св во К. с. трехмерная периодичность (см. Кристаллическое состояние). Обычно, говоря о К. с., подразумевают среднее во времени расположение атомных ядер (т. наз. статич.… … Химическая энциклопедия
СУПЕРПОЗИЦИИ ПРИНЦИП — (ср. век. лат. superpositio наложение, от лат. superpono кладу наверх) 1) С. п. в электродинамике принцип, выражающий фундаментальное св во электромагнитного поля в линейной среде. Согласно С. п. при наложении электромагнитных нолей в линейной… … Большой энциклопедический политехнический словарь
Наложения и движения (окончание)
Любое движение является наложением. |
Рассмотрим произвольное движение (обозначим его буквой g) и докажем, что оно является наложением. Возьмём какой-нибудь треугольник АВС. При движении g он отображается на равный ему треугольник А1В1С1. По определению равных треугольников существует наложение ƒ, при котором точки А, В и С отображаются соответственно в точки А1, В1 и С1.
Докажем, что движение g совпадает с наложением ƒ. Предположим, что это не так. Тогда на плоскости найдётся хотя бы одна такая точка М, которая при движении g отображается в точку М„ а при наложении ƒ — в другую точку М2. Так как при отображениях ƒ u g сохраняются расстояния, то AM = А1М1, AM = А1М2, поэтому A1M1 = А1М2, т. е. точка А1 равноудалена от точек М1 и М2 (рис. 328). Аналогично доказывается, что точки В1 и С1 равноудалены от точек М1 и М2. Отсюда следует, что точки А1, В1 и С1 лежат на серединном перпендикуляре к отрезку М1М2. Но это невозможно, так как вершины треугольника А1В1С1 не лежат на одной прямой. Таким образом, отображения ƒ u g совпадают, т. е. движение g является наложением. Теорема доказана.
Что такое наложение в геометрии
Наложение, в геометрии
— Под этим названием в элементарной геометрии разумеют один из основных приемов доказательства теорем о равенстве фигур; в геометрии считается аксиомой, что плоские фигуры можно передвигать по плоскости без изменения их вида и свойств. Н. одной фигуры на другую достигается передвижением их по плоскости, причем это передвижение может иногда сопровождаться и переворачиванием; фигуры называются равными, если при Н. одной из них на другую они совпадают. Указанная аксиома, собственно говоря, выражает свойство плоскости, как предмета, на котором строится плоская геометрия, и в этом отношении понятие о Н. фигур может быть распространено и на кривые поверхности: говорят, что одна поверхность накладывается на другую без складок и разрывов, если точкам одной поверхности можно так сопоставить точки другой, что всевозможные соответственные линии на этих двух поверхностях имеют одинаковые длины. Из сказанного вытекает следующая задача, решаемая соображениями дифференциального исчисления: даны две поверхности; узнать, накладывается ли одна из них в сказанном смысле на другую? Для решения этой задачи необходимо пользоваться известной теоремой Гаусса о кривизне поверхностей (см.), если две поверхности накладываются одна на другую без складок и разрывов, то значение кривизны в соответственных точках этих двух поверхностей должны быть одинаковы. Легко понять, что обратное заключение не всегда имеет место, потому что каковы бы ни были данные поверхности, всегда можно на них выбрать такой закон соответствия точек, что кривизны поверхностей для этих соответственных точек будут одинаковы. В самом деле, обозначая через K кривизну одной поверхности, выраженной двумя независимыми переменными, в которых представлены координаты точки на этой поверхности, а через K1 кривизну второй поверхности, выраженной в независимых переменных, соответствующих заданию другой поверхности, то всегда можно взять за одно уравнение, выражающее закон соответствия точек этих двух поверхностей, уравнение K=K1. Чтобы убедиться, что одна поверхность накладывается на другую, нужно показать, что другое уравнение, выражающее закон соответствия точек, можно выбрать так, чтобы длины соответствующих кривых на этих двух поверхностях были одинаковы. Разбор таких условий составляет предмет прямой задачи о Н. поверхностей и относится к области дифференциального исчисления. Совершенно иные трудности представляет обратная задача: найти все поверхности, накладываемые на данную без складок и разрывов. Эта задача относится к области интегрального исчисления и решена вполне только для простейшего случая Н. на плоскость. Оказывается, что накладываются или, как говорят, развертываются на плоскость лишь те поверхности, которые представляют геометрическое место касательных к произвольной кривой двоякой кривизны в пространстве, так, например, геликоид (см.), образованный движением касательной к винтовой линии, есть поверхность, развертывающаяся на плоскость. Предельные случаи для указанных поверхностей представляют поверхности цилиндрические и конические, которые всегда развертываются на плоскость. Понятно, что развертывающиеся поверхности принадлежат к числу так называемых линейчатых, т.е. поверхностей, образованных движением прямой линии (см.). Так как плоскость есть такая поверхность, кривизна которой во всех ее точках равна нулю, то на основании теоремы Гаусса ясно, что кривизна поверхностей, развертывающихся на плоскость, во всех точках тоже равна нулю. До сих пор не удалось решить вполне даже ближайшей по простоте задачи развертывания на шар, т. е. на поверхность с постоянной положительной кривизной, не говоря уже о задаче более общей, о развертывании на любую данную поверхность. В этой в высшей степени трудной области приложения интегрального исчисления к геометрии замечательны изыскания Бура, который показал, что существует бесчисленное множество совершенно определенных винтовых поверхностей, развертывающихся на данную поверхность вращения.