что такое наибольший общий делитель двух чисел

Наибольший общий делитель (НОД), свойства и формулы

что такое наибольший общий делитель двух чисел. Смотреть фото что такое наибольший общий делитель двух чисел. Смотреть картинку что такое наибольший общий делитель двух чисел. Картинка про что такое наибольший общий делитель двух чисел. Фото что такое наибольший общий делитель двух чисел

Понятие наибольшего общего делителя

Начнем с самого начала и вспомним, что такое общий делитель. У целого числа может быть несколько делителей. А сейчас нам особенно интересно, как обращаться с делителями сразу нескольких целых чисел.

Делитель натурального числа — это такое натуральное число, которое делит данное число без остатка. Если у натурального числа больше двух делителей, его называют составным.

Если b — делитель целого числа a, которое не равно нулю, то модуль числа b не может быть больше модуля числа a. Значит любое число, не равное 0, имеет конечное число делителей.

Наибольшим общим делителем двух чисел a и b называется наибольшее число, на которое a и b делятся без остатка. Для записи может использоваться аббревиатура НОД. Для двух чисел можно записать вот так: НОД (a, b).

Проверить результаты вычислений можно с помощью онлайн-калькулятора НОД и НОК.

Наибольшим общим делителем трех чисел и более будет самое большое целое число, которое будет делить все эти числа одновременно.

Взаимно простые числа — это натуральные числа, у которых только один общий делитель — единица. Их НОД равен 1.

Помимо НОД есть еще и НОК, что расшифровывается, как наименьшее общее кратное и означает наименьшее число, которое делится на каждое из исходных чисел без остатка.

Еще один пример. Рассчитаем НОД для 28 и 64.

Д (64) = 2 * 2 * 2 * 2 * 2 * 2

НОД (28; 64) = 2 * 2 = 4

Ответ: НОД (28; 64) = 4

Оформить поиск НОД можно в строчку, как мы сделали выше или в столбик, как на картинке.

Свойства наибольшего общего делителя

У наибольшего общего делителя есть ряд определенных свойств. Опишем их в виде теорем и сразу приведем доказательства.

Важно! Все свойства НОД будем формулировать для положительных целых чисел, при этом будем рассматривать делители только больше нуля.

Свойство 1. Наибольший общий делитель чисел а и b равен наибольшему общему делителю чисел b и а, то есть НОД (a, b) = НОД (b, a). Перемена мест чисел не влияет на конечный результат.

Доказывать свойство не имеет смысла, так как оно напрямую исходит из самого определения НОД.

Свойство 2. Если а делится на b, то множество общих делителей чисел а и b совпадает со множеством делителей числа b, поэтому НОД (a, b) = b.

Доказательство

Любой общий делитель чисел а и b является делителем каждого из этих чисел, в том числе и числа b. Так как а кратно b, то любой делитель числа b является делителем и числа а, благодаря свойствам делимости. Из этого следует, что любой делитель числа b является общим делителем чисел а и b.

Значит, если а делится на b, то совокупность делителей чисел а и b совпадает с совокупностью делителей одного числа b. А так как наибольшим делителем числа b является само число b, то наибольший общий делитель чисела и b также равен b, то есть НОД (а, b) = b.

В частности, если a = b, то НОД (a, b) = НОД (a, a) = НОД (b, b) = a = b.

Доказанное свойство наибольшего делителя можно использовать, чтобы найти НОД двух чисел, когда одно из них делится на другое. При этом НОД равен одному из этих чисел, на которое делится другое число.

Свойство 3. Если a = bq + c, где а, b, с и q — целые числа, то множество общих делителей чисел а и b совпадает со множеством общих делителей чисел b и с. Равенство НОД (a, b) = НОД (b, c) справедливо.

Доказательство

Существует равенство a = bq + c, значит всякий общий делитель чисел а и b делит также и с, исходя из свойств делимости. По этой же причине, всякий общий делитель чисел b и с делит а. Поэтому совокупность общих делителей чисел а и b совпадает с совокупностью общих делителей чисел b и c.

Поэтому должны совпадать и наибольшие из этих общих делителей, и равенство НОД (a, b) = НОД (b, c) можно считать справедливым.

Свойство 4. Если m — любое натуральное число, то НОД (mа, mb) = m * НОД(а, b).

Доказательство

Если умножить на m обе стороны каждого из равенств алгоритма Евклида, то получим, что НОД (mа, mb)= mr, где r — это НОД (а, b). На этом свойстве наибольшего общего делителя основан поиск НОД с помощью разложения на простые множители.

Свойство 5. Пусть р — любой общий делитель чисел а и b, тогда НОД (а : p, b : p) = НОД (а, b) : p. А именно, если p = НОД (a, b) имеем НОД (a : НОД (a, b), b: НОД (a, b)) = 1, то есть, числа a : НОД (a, b) и b : НОД (a, b) — взаимно простые.

Так как a = p(a : p) и b = p(b : p), и в силу предыдущего свойства, мы можем записать цепочку равенств вида НОД (a, b) = НОД (p(a : p), p(b : p)) = p * НОД (a : p, b : p), откуда и следует доказываемое равенство.

Способы нахождения наибольшего общего делителя

Найти наибольший общий делитель можно двумя способами. Рассмотрим оба, чтобы при решении задач выбирать самую оптимальную последовательность действий.

1. Разложение на множители

Чтобы найти НОД нескольких чисел, достаточно разложить их на простые множители и перемножить между собой общие множители для всех чисел.

Пример 1. Найти НОД (84, 90).

Ответ: НОД (84, 90) = 6.

Пример 2. Найти НОД (15, 28).

Ответ: НОД (15, 28) = 1.

Пример 3. Найти НОД для 24 и 18.

Ответ: НОД (24, 18) = 6

2. Алгоритм Евклида

Способ Евклида помогает найти НОД через последовательное деление. Сначала посмотрим, как работает этот способ с двумя числами, а затем применим его к трем и более.

Алгоритм Евклида заключается в следующем: если большее из двух чисел делится на меньшее — наименьшее число и будет их наибольшим общим делителем. Использовать метод Евклида можно легко по формуле нахождения наибольшего общего делителя.

Формула НОД: НОД (a, b) = НОД (b, с), где с — остаток от деления a на b.

Пример 1. Найти НОД для 24 и 8.

Так как 24 делится на 8 и 8 тоже делится на 8, значит, 8 — общий делитель этих чисел. Этот делитель является наибольшим, потому что 8 не может делиться ни на какое число, большее его самого. Поэтому: НОД (24, 8) = 8.

В остальных случаях для нахождения наибольшего общего делителя двух чисел нужно соблюдать такой порядок действий:

Пример 2. Найти наибольший общий делитель чисел 140 и 96:

Последний делитель равен 4 — это значит: НОД (140, 96) = 4.

Ответ: НОД (140, 96) = 4

Пошаговое деление можно записать столбиком:

что такое наибольший общий делитель двух чисел. Смотреть фото что такое наибольший общий делитель двух чисел. Смотреть картинку что такое наибольший общий делитель двух чисел. Картинка про что такое наибольший общий делитель двух чисел. Фото что такое наибольший общий делитель двух чисел

Чтобы найти наибольший общий делитель трех и более чисел, делаем в такой последовательности:

Знакомство с темой наибольшего общего делителя начинается в 5 классе с теории и закрепляется в 6 классе на практике. В этой статье мы узнали все основные определения, свойства и их доказательства, а также как найти НОД.

Источник

Вычисление НОД — ошибка, которой не замечают

Что такое НОД, все знают еще со школы. Для тех, кто подзабыл, напомню: НОД — наибольший общий делитель, делящий два целых числа без остатка. Например, НОД чисел 100 и 45 равен 5, а НОД чисел 17 и 7 равен 1. Существует несколько различных алгоритмов поиска этого числа. Однако, несмотря на то, что это достаточно простые алгоритмы, часто совершают одну маленькую, но очень существенную ошибку.

Алгоритмы вычисления НОД

Естественно, чаще всего пишут первый вариант — он легко запоминается, быстро пишется и достаточно быстро работает.

Претесты

Реализации корректно работают на таких тестах:

Естественно, они будут работать и на подобных тестах, где в качестве аргументов выступают целые неотрицательные числа. Но что, если…

Первые тесты с подвохом

… если заменить одно из чисел нулем? Например так:

Классический алгоритм Евклида (№3) уже попадает в бесконечный цикл.

Копаем глубже

Согласно определению, НОД может быть определен для любых двух целых чисел. Так почему бы не попробовать тесты, где одно из чисел — отрицательное:

Все становится еще интереснее. Первые две реализации выдают в качестве ответа -5. Третий алгоритм снова попадает в бесконечный цикл. Вместе с ним в бесконечном цикле оказывается пятый алгоритм. Четвертый падает по StackOverFlow — скорее всего тоже попадает в бесконечный цикл.
Но ведь ответ -5 — неправильный. По определению НОД — наибольший общий делитель. А таковым является число 5. Ведь и первое, и второе число делятся без остатка на 5. Значит и первые две реализации не дают верный ответ.

Почему решения №№3-5 попадают в бесконечный цикл?

Алгоритм Евклида попадает в цикл из-за бесконечного увеличения аргументов, если один из них отрицательный. Действительно, если посмотреть на эти строки, то можно заметить, что при отрицательном a (или b) операция вычитания заменяется сложением.

Аналогичное происходит в четвертом и пятом алгоритме:

В ситуации, когда a или b равны 0, то происходит бесконечное вычитание нуля, которое никаким образом не меняет значения аргументов.

Так что же не так?

Все эти алгоритмы корректны для входных данных, когда оба числа a и b — целые неотрицательные числа. Но вспомним еще раз — НОД существует для любых двух целых чисел.

Что же делать?

В качестве аргументов в функцию можно передавать абсолютное значение чисел, тогда ответ будет корректен:

Второй способ решения задачи — возвращать абсолютное значение ответа:

Второй вариант гораздо предпочтительнее: будет производиться меньше лишних вычислений, чем в первом варианте.

Итоги

Мы рассмотрели пять различных вариантов вычисления наибольшего общего делителя. Для каждого из них мы указали входные данные, на которых ответ существует, но решение «падает», а также способ решения проблемы.
Такие небольшие ошибки чаще всего допускаются по причине того, что не замечают «скользкие» места решения какой-то задачи. Часть из них отлавливается в процессе тестирования, а часть остается незамеченной.
В ситуации с вычислением НОД почти все реализации приведены с ошибкой. В Сети я нашел лишь парочку корректно работающих решений, остальные идентичны тем, что приведены в начале поста.

Источник

Наибольший общий делитель (НОД): определение, примеры и свойства

Что такое общие делители

Чтобы понять, что из себя представляет наибольший общий делитель, сначала сформулируем, что вообще такое общий делитель для целых чисел.

В статье о кратных и делителях мы говорили, что у целого числа всегда есть несколько делителей. Здесь же нас интересуют делители сразу некоторого количества целых чисел, особенно общие (одинаковые) для всех. Запишем основное определение.

Общим делителем нескольких целых чисел будет такое число, которое может быть делителем каждого числа из указанного множества.

Зная свойства делимости, мы можем утверждать, что любое целое число можно разделить на единицу и минус единицу, значит, у любого набора целых чисел уже будет как минимум два общих делителя.

Что такое наибольший общий делитель (НОД)

Переходим к формулировке основного определения.

Наибольшим общим делителем нескольких чисел является самое большое целое число, которое делит все эти числа.

Для трех и более чисел определение наибольшего общего делителя будет почти таким же.

Наибольшим общим делителем трех чисел и более будет самое большое целое число, которое будет делить все эти числа одновременно.

Проверить правильность данного утверждения можно с помощью записи всех делителей этих чисел и последующего выбора наибольшего из них.

На практике часто встречаются случаи, когда наибольший общий делитель равен одному из чисел. Это происходит тогда, когда на данное число можно разделить все остальные числа (в первом пункте статьи мы привели доказательство этого утверждения).

Основные свойства НОД и алгоритм Евклида

У наибольшего общего делителя есть некоторые характерные свойства. Сформулируем их в виде теорем и докажем каждое из них.

Отметим, что данные свойства сформулированы для целых чисел больше нуля, а делители мы рассмотрим только положительные.

Данное свойство следует из самого определения НОД и не нуждается в доказательствах.

Докажем это утверждение.

Следующее свойство получило название алгоритма Евклида. С его помощью можно вычислить наибольший общий делитель двух чисел, а также доказать другие свойства НОД.

Рассмотрев данное свойство, заключаем, что множество общих делителей a и b аналогично множеству делителей НОД этих чисел. Это утверждение, которое является следствием из алгоритма Евклида, позволит нам вычислить все общие делители двух заданных чисел.

Перейдем к другим свойствам.

Докажем данное свойство. Запишем последовательность равенств по алгоритму Евклида:

Это все, что мы хотели бы рассказать о свойствах наибольшего общего делителя.

Источник

Наибольший общий делитель НОД.

Но многие натуральные числа делятся нацело ещё и на другие натуральные числа.

— число 12 делится на 1, на 2, на 3, на 4, на 6, на 12;

— число 36 делится на 1, на 2, на 3, на 4, на 6, на 12, на 18, на 36.

Кратко наибольший общий делитель чисел a и b записывают так:

Пример: НОД (12; 36) = 12.

Делители чисел в записи решения обозначают большой буквой «Д».

Наибольший общий делитель (НОД), свойства.

Это означает, в частности, что для приведения дроби к несократимому виду надо разделить её числитель и знаменатель на их НОД.

что такое наибольший общий делитель двух чисел. Смотреть фото что такое наибольший общий делитель двух чисел. Смотреть картинку что такое наибольший общий делитель двух чисел. Картинка про что такое наибольший общий делитель двух чисел. Фото что такое наибольший общий делитель двух чисел

что такое наибольший общий делитель двух чисел. Смотреть фото что такое наибольший общий делитель двух чисел. Смотреть картинку что такое наибольший общий делитель двух чисел. Картинка про что такое наибольший общий делитель двух чисел. Фото что такое наибольший общий делитель двух чисел

и поэтому что такое наибольший общий делитель двух чисел. Смотреть фото что такое наибольший общий делитель двух чисел. Смотреть картинку что такое наибольший общий делитель двух чисел. Картинка про что такое наибольший общий делитель двух чисел. Фото что такое наибольший общий делитель двух чиселпредставим в виде линейной комбинации чисел m и n:

что такое наибольший общий делитель двух чисел. Смотреть фото что такое наибольший общий делитель двух чисел. Смотреть картинку что такое наибольший общий делитель двух чисел. Картинка про что такое наибольший общий делитель двух чисел. Фото что такое наибольший общий делитель двух чисел.

Вычисление наибольшего общего делителя (НОД).

Эффективными способами вычисления НОД двух чисел являются алгоритм Евклида и бинарный алгоритм. Кроме того, значение НОД (m,n) можно легко вычислить, если известно каноническое разложение чисел m и n на простые множители:

что такое наибольший общий делитель двух чисел. Смотреть фото что такое наибольший общий делитель двух чисел. Смотреть картинку что такое наибольший общий делитель двух чисел. Картинка про что такое наибольший общий делитель двух чисел. Фото что такое наибольший общий делитель двух чисел

что такое наибольший общий делитель двух чисел. Смотреть фото что такое наибольший общий делитель двух чисел. Смотреть картинку что такое наибольший общий делитель двух чисел. Картинка про что такое наибольший общий делитель двух чисел. Фото что такое наибольший общий делитель двух чисел

где что такое наибольший общий делитель двух чисел. Смотреть фото что такое наибольший общий делитель двух чисел. Смотреть картинку что такое наибольший общий делитель двух чисел. Картинка про что такое наибольший общий делитель двух чисел. Фото что такое наибольший общий делитель двух чисел— различные простые числа, а что такое наибольший общий делитель двух чисел. Смотреть фото что такое наибольший общий делитель двух чисел. Смотреть картинку что такое наибольший общий делитель двух чисел. Картинка про что такое наибольший общий делитель двух чисел. Фото что такое наибольший общий делитель двух чисели что такое наибольший общий делитель двух чисел. Смотреть фото что такое наибольший общий делитель двух чисел. Смотреть картинку что такое наибольший общий делитель двух чисел. Картинка про что такое наибольший общий делитель двух чисел. Фото что такое наибольший общий делитель двух чисел— неотрицательные целые числа (они могут быть нулями, если соответствующее простое отсутствует в разложении). Тогда НОД (m,n) и НОК(m,n) выражаются формулами:

что такое наибольший общий делитель двух чисел. Смотреть фото что такое наибольший общий делитель двух чисел. Смотреть картинку что такое наибольший общий делитель двух чисел. Картинка про что такое наибольший общий делитель двух чисел. Фото что такое наибольший общий делитель двух чисел

что такое наибольший общий делитель двух чисел. Смотреть фото что такое наибольший общий делитель двух чисел. Смотреть картинку что такое наибольший общий делитель двух чисел. Картинка про что такое наибольший общий делитель двух чисел. Фото что такое наибольший общий делитель двух чисел

Если чисел более двух: что такое наибольший общий делитель двух чисел. Смотреть фото что такое наибольший общий делитель двух чисел. Смотреть картинку что такое наибольший общий делитель двух чисел. Картинка про что такое наибольший общий делитель двух чисел. Фото что такое наибольший общий делитель двух чисел, их НОД находится по следующему алгоритму:

что такое наибольший общий делитель двух чисел. Смотреть фото что такое наибольший общий делитель двух чисел. Смотреть картинку что такое наибольший общий делитель двух чисел. Картинка про что такое наибольший общий делитель двух чисел. Фото что такое наибольший общий делитель двух чисел

что такое наибольший общий делитель двух чисел. Смотреть фото что такое наибольший общий делитель двух чисел. Смотреть картинку что такое наибольший общий делитель двух чисел. Картинка про что такое наибольший общий делитель двух чисел. Фото что такое наибольший общий делитель двух чисел

что такое наибольший общий делитель двух чисел. Смотреть фото что такое наибольший общий делитель двух чисел. Смотреть картинку что такое наибольший общий делитель двух чисел. Картинка про что такое наибольший общий делитель двух чисел. Фото что такое наибольший общий делитель двух чисел— это и есть искомый НОД.

Также, для того, чтобы найти наибольший общий делитель, можно разложить каждое из заданных чисел на простые множители. Потом выписать отдельно только те множители, которые входят во все заданные числа. Потом перемножаем между собой выписанные числа – результат перемножения и есть наибольший общий делитель.

Разберем пошагово вычисление наибольшего общего делителя:

1. Разложить делители чисел на простые множители:

что такое наибольший общий делитель двух чисел. Смотреть фото что такое наибольший общий делитель двух чисел. Смотреть картинку что такое наибольший общий делитель двух чисел. Картинка про что такое наибольший общий делитель двух чисел. Фото что такое наибольший общий делитель двух чисел

2. Подчёркиваем одинаковые простые множители в обоих числах:

64 = 22 • 2 • 2 • 2 • 2

3. Находим произведение одинаковых простых множителей и записываем ответ:

НОД (28; 64) = 2 • 2 = 4

Ответ: НОД (28; 64) = 4

Оформить нахождение НОД можно двумя способами: в столбик (как делали выше) или «в строчку».

Первый способ записи НОД:

что такое наибольший общий делитель двух чисел. Смотреть фото что такое наибольший общий делитель двух чисел. Смотреть картинку что такое наибольший общий делитель двух чисел. Картинка про что такое наибольший общий делитель двух чисел. Фото что такое наибольший общий делитель двух чисел

НОД (48; 36) = 2 • 2 • 3 = 12

Второй способ записи НОД:

Теперь запишем решение поиска НОД в строчку. Найти НОД 10 и 15.

Источник

Наибольший общий делитель

Если натуральное число делится только на 1 и на само себя, то оно называется простым.

Любое натуральное число всегда делится на 1 и на само себя.

Число 2 — наименьшее простое число. Это единственное чётное простое число, остальные простые числа — нечётные.

Но многие натуральные числа делятся нацело ещё и на другие натуральные числа.

Числа, на которые число делится нацело (для 12 это 1, 2, 3, 4, 6 и 12 ) называются делителями числа.

Делитель натурального числа a — это такое натуральное число, которое делит данное число « a » без остатка.

Натуральное число, которое имеет более двух делителей называется составным.

Общий делитель двух данных чисел « a » и « b » — это число, на которое делятся без остатка оба данных числа « a » и « b ».

Наибольший общий делитель (НОД) двух данных чисел « a » и « b » — это наибольшее число, на которое оба числа « a » и « b » делятся без остатка.

Кратко наибольший общий делитель чисел « a » и « b » записывают так:

Делители чисел в записи решения обозначают большой буквой «Д».

Как найти наибольший общий делитель

Чтобы найти НОД двух или более натуральных чисел нужно:

Вычисления удобно записывать с помощью вертикальной черты. Слева от черты сначала записываем делимое, справа — делитель. Далее в левом столбце записываем значения частных.

Ответ: НОД (28; 64) = 4

Оформить нахождение НОД можно двумя способами: в столбик (как делали выше) или «в строчку».

Первый способ записи НОД

что такое наибольший общий делитель двух чисел. Смотреть фото что такое наибольший общий делитель двух чисел. Смотреть картинку что такое наибольший общий делитель двух чисел. Картинка про что такое наибольший общий делитель двух чисел. Фото что такое наибольший общий делитель двух чиселНОД (48; 36) = 2 · 2 · 3 = 12

Второй способ записи НОД

На нашем информационном сайте вы также можете с помощью программы помощника найти наибольший общий делитель онлайн, чтобы проверить свои вычисления.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *