что такое набор системной логики

Тема 1.6. Микросхемы системной логики Chipset

Тема 1.6. Микросхемы системной логики Chipset

Чипсет ( Chipset ) – основа системной платы, — это набор микросхем системной логики. Посредством чипсета происходит взаимодействие всех подсистем ПК. Чипсеты обладают высокой степенью интеграции, и представляют собой (чаще всего) две микросхемы (реже встречаются однокристальные решения), в которых реализованы интегрированные контроллеры, обеспечивающие работу и взаимодействие основных подсистем компьютера.

Практически у всех современных чипсетов, набор системной логики состоит двух микросхем северного и южного мостов. Название микросхем обусловлено их положением относительно шины PСI: северный — выше, южный — ниже.

что такое набор системной логики. Смотреть фото что такое набор системной логики. Смотреть картинку что такое набор системной логики. Картинка про что такое набор системной логики. Фото что такое набор системной логики

Рис.4 Блок схема набора микросхем

Микросхема северного моста обеспечивает работу с наиболее скоростными подсистемами.

Северный мост (Northbridge) — это системный контроллер, являющийся одним из элементов чипсета материнской платы, отвечающий за работу с оперативной памятью (RAM), видеоадаптером и процессором (CPU). Северный мост отвечает за частоту системной шины, тип оперативной памяти и ее максимально возможный объем. Одной из основных функций северного моста является обеспечение взаимодействия системной платы и процессора, а также определение скорости работы. Частью северного моста во многих современных материнских платах является встроенный видеоадаптер. Таким образом, функциональная особенность северного моста являет собой еще и управление шиной видеоадаптера и ее быстродействием. Также северный мост обеспечивает связь всех вышеперечисленных устройств с южным мостом.

Северный мост получил свое название благодаря «географическому» расположению на материнской плате. Внешне это квадратной формы микрочип, расположенный под процессором, но в верхней части системной платы. Как правило, северный мост использует дополнительное охлаждение. Обычно это пассивный радиатор, реже — радиатор с активным охлаждением в виде небольшого кулера. Связано это с тем, что температура северного моста примерно на 30 градусов Цельсия всегда выше температуры «южного собрата».

Завышенная температура вполне обоснована. Во-первых, северный мост находится в непосредственной близости от центрального процессора, во-вторых, он находится выше видеокарты, жестких дисков и южного моста. Это означает, что часть тепла от вышеупомянутых устройств доходит до северного моста. Ну и в-третьих, самое главное — северный мост отвечает за обработку команд самых сильных компонентов системы — процессор, память и графику. Поэтому будем считать, что увеличенный номинал температуры является нормой для северного моста любой материнской платы.

Южный мост (Southbridge) — это функциональный контроллер, известен как контроллер ввода-вывода или ICH (In/Out Controller Hub). Отвечает за так называемые «медленные» операции, к которым относится отработка взаимодействия между интерфейсами IDE, SATA, USB, LAN, Embeded Audio и северным мостом системы, который, в свою очередь, напрямую связан с процессором и другими важными компонентами, такими как оперативная память или видеоподсистема. Также южный мост отвечает за обработку данных на шинах PCI, PCIe и ISA (в старых моделях системных плат).

Список обслуживаемых систем материнской платы южным мостом довольно велик. Помимо вышеприведенных IDE, SATA, USB, LAN и прочего, южный мост отвечает еще и за SM шину (используется для управления вентиляторами на плате), DMA-контроллер, IRQ-контроллер, системные часы, BIOS, системы энергообеспечения APM и ACPI, шину LPC Bridge.

Как правило, выход из строя южного моста ставит точку в жизни системной платы. Именно южный мост является порой первым щитом, принявшим «удар на себя». Ввиду технологических особенностей это так. Причин «гибели» южного моста на порядок больше, чем северного, ведь он работает напрямую с «внешними» устройствами. Так, частой причиной выхода из строя ЮМ является банальный перегрев, вызванный коротким замыканием, например, USB-разъема. Либо неисправности питания жесткого диска. Т.к. в большинстве случаев южный мост не оборудован системой дополнительного охлаждения, он перегревается и сгорает. Реже причиной поломки южного моста является заводской брак. Деформация (излишние изгибы) системной платы также приводит к повышению нагрева южного моста с последующим выходом его из строя.

что такое набор системной логики. Смотреть фото что такое набор системной логики. Смотреть картинку что такое набор системной логики. Картинка про что такое набор системной логики. Фото что такое набор системной логики что такое набор системной логики. Смотреть фото что такое набор системной логики. Смотреть картинку что такое набор системной логики. Картинка про что такое набор системной логики. Фото что такое набор системной логики что такое набор системной логики. Смотреть фото что такое набор системной логики. Смотреть картинку что такое набор системной логики. Картинка про что такое набор системной логики. Фото что такое набор системной логики что такое набор системной логики. Смотреть фото что такое набор системной логики. Смотреть картинку что такое набор системной логики. Картинка про что такое набор системной логики. Фото что такое набор системной логики

Добавить ссылку на обсуждение статьи на форуме

РадиоКот >Обучалка >Цифровая техника >Основы цифровой техники >

Цифровые микросхемы. Типы логики, корпуса

Автор: Опубликовано 12.12.2005

Ну сначала скажем так: микросхемы делятся на два больших вида: аналоговые и цифровые. Аналоговые микросхемы работают с аналоговым сигналом, а цифровые, соответственно – с цифровым. Мы будем говорить именно о цифровых микросхемах.

Точнее даже, мы будем говорить не о микросхемах, а об элементах цифровой техники, которые могут быть «спрятаны» внутри микросхемы.

Что это за элементы?

Некоторые названия вы слышали, некоторые, может быть – нет. Но поверьте, эти названия можно произносить вслух в любом культурном обществе – это абсолютно приличные слова. Итак, примерный список того, что мы будем изучать:

Все цифровые микросхемы работают с цифровыми сигналами. Что это такое?

Цифровые сигналы – это сигналы, имеющие два стабильных уровня – уровень логического нуля и уровень логической единицы. У микросхем, выполненных по различным технологиям, логические уровни могут отличаться друг от друга.

В настоящее время наиболее широко распространены две технологии: ТТЛ и КМОП.

ТТЛ – Транзисторно-Транзисторная Логика; КМОП – Комплиментарный Металл-Оксид-Полупроводник.

У ТТЛ уровень нуля равен 0,4 В, уровень единицы – 2,4 В. У логики КМОП, уровень нуля очень близок к нулю вольт, уровень единицы – примерно равен напряжению питания.

По-всякому, единица – когда напряжение высокое, ноль – когда низкое.

НО! Нулевое напряжение на выходе микросхемы не означает, что вывод «болтается в воздухе». На самом деле, он просто подключен к общему проводу. Поэтому нельзя соединять непосредственно несколько логических выводов: если на них будут различные уровни – произойдет КЗ.

Кроме различий в уровнях сигнала, типы логики различаются также по энергопотреблению, по скорости (предельной частоте), нагрузочной способности, и т.д.

Тип логики можно узнать по названию микросхемы. Точнее – по первым буквам названия, которые указывают, к какой серии принадлежит микросхема. Внутри любой серии могут быть микросхемы, произведенные только по какой-то одной технологии. Чтобы вам было легче ориентироваться — вот небольшая сводная таблица:

Характеристики материнской платы

Поколение процессора под который предназначена материнская плата Устанавливать процессор одного поколения в материнскую плату другого нельзя. (Pentium, PII, PIII, PIV, Athlon). От того какой максимально мощный процессор использует ваша материнская плата зависит в принципе, сколько времени она у Вас прослужит. Диапазон поддерживаемых процессором тактовых частот в рамках одного поколения. Обычно чем дороже плата, тем больше диапазон процессорных частот она поддерживает. Если плата поддерживает частоты 1700-1800 МГч, то процессор с частотой 2,1 ГГц не вставить. Частота системной шины напрямую связана с частотой и скоростью работы процессора. ЦП практически умножает рабочую частоту мат.пл. в 2-3 раза. На выборе сочетания одного из коэффициентов с частотой системной шины основан способ разгона процессора. Разгонять процессор следует осторожно, ибо, в следствие перегрева, он может сгореть. Intel иногда ставит специальные противоразгонные блокировки. Базовый набор микросхем (chipset).От модели чипсета зависят основные характеристики мат.пл.: поддерживаемые процессоры и ОП, тип системной шины, порты внешних и внутренних устройств. На одних и тех же чипсетах строятся различными фирмами мат. платы. Существует несколько базовых чипсетов. Intel, VIA, Nvideo, Ali, Sis Примеры INTEL 845D 845E 845G 845РЕ 850E Фирма-производитель ABIT, ACORP, ASUSTEK, GIGABITE, INTEL, ELITEGROUP Форм-фактор – способ расположения основных микросхем и слотов Baby AT, AT, ATX и ATX-2.1, WTX ATX (AT extension) разработан фирмой INTEL в 1995г.– появление его обусловлено наличием в ПК большого числа всевозможных внутренних устройств, большой интеграцией микросхем на мат.пл., что повысило требования к охлаждению элементов. Необходим был более удобный доступ к внутренним устройствам. Отличия AT и ATХ корпусов: a) блоки питания: конструкция, размер, разъем для подачи питания на плату, мощность(300,330,350,400 VA). Расширенное управление питанием, в спящем режиме эл.потребление = 0. б) наличие интегрированных на плату внешних портов, уменьшает число кабелей внутри сис-темного блока (корпуса), облегчается доступ к компонентам системного блока. Порты располагаются компактно в ряд на задней стенке системного блока. в) слоты расширения позволяют устанавливать полноразмерные карты расширения. г) разъемы дисководов расположены рядом с их предполагаемыми посадочными местами, что позволяет использовать более короткие кабели. АТХ-2.1 – усовершенствованный ATX Платформа для Р4. Усовершенствования коснулись блока питания с двумя дополнительными выходами к ядру процессора. Дополнительно второй для усиления питающих линий. Тяжелый радиатор ЦП прикреплен к плате винтами, поэтому давление на плату не оказывается. Базовый набор слотов и разъемов. Количество разъемов и их тип. (тип и количество ОП, AGP, PCI, ISA) Наличие встроенных устройств. На материнской плате присутствуют чипы видео, звуковой, сетевой карт.

Мат.платы с интегрированными звуком, видео, сетью адаптерами (интегрированные)

Казалось бы это чуть дешевле, чем покупка отдельных компонентов, но такая интеграция имеет и свои недостатки: 1) Звук и видео встроенные платы имеют обычно очень скромные возможности 2) Даже если в данный момент вам и достаточно данных возможностей, то через полгода ситуация может в корне измениться. мат. карта морально стареет гораздо медленнее, чем, скажем видеокарта. 3) Комбинированные карты на практике ведут себя обычно гораздо капризнее, чем карты с от-дельными устройствами. Возможны зависания во время работы программ и при тестировании оборудования. Стоит подумать, прежде чем решиться на покупку комбинированной платы.

Источник

Главная / Содержание / Чипсеты

Введение.

Изучив, какие типы оперативной памяти и какие процессоры применяются сегодня в PC, теперь нам следует разобраться с чипсетами, которые обеспечивают не только связь памяти и центрального процессора, но являются центральным связующим компонентом, на базе которого строится материнская плата современного компьютера.

Для начала немного истории.

Чтобы заставить компьютер работать, на первые системные платы IBM PC пришлось установить много логических микросхем. Кроме процессора, на системную плату было установлено множество других компонентов: генератор тактовой частоты, контроллер шины, системный таймер, контроллеры прерываний и прямого доступа к памяти, память CMOS, часы и контроллер клавиатуры. Наконец, чтобы обеспечить работу установленных компонентов, понадобился еще ряд микросхем, а также процессор, математический сопроцессор (модуль для выполнения операций над числами с плавающей запятой) и память. Все эти компоненты изготавливались непосредственно фирмой Intel или по ее лицензии, за исключением микросхемы CMOS с часами, которая поставлялась фирмой Motorola. Всего на плате размещалось до сотни логических микросхем, и поэтому места для размещения микросхем, выполняющих дополнительные функции, на них не оставалось.

В 1986 году компания Chips and Technologies представила революционный компонент, названный 82С206, который и стал основной частью первого набора микросхем системной логики системной платы PC. Эта единственная микросхема выполняла все основные функции микросхем системной платы в компьютерах, совместимых с AT, а именно: функции генератора тактовой частоты (микросхема 82284), контроллера шины (микросхема 82288), системного таймера (микросхема 8254), двух контроллеров прерываний (микросхема 8259), двух контроллеров прямого доступа к памяти (микросхема 8237) и даже микросхемы CMOS-памяти и часов (микросхема МС146818). Кроме процессора, все основные компоненты системной платы PC были заменены одной микросхемой. Четыре дополнительные микросхемы использовались в качестве буферов и контроллеров памяти, расширяя возможности компонента 82С206. На системной плате было всего пять микросхем. Этому набору микросхем системной логики фирма Chips and Technologies присвоила название CS8220.

Это был революционный шаг в производстве системных плат для PC. He только значительно снизилась стоимость системной платы и упростилась ее конструкция, но и появилась возможность реализации функций, для которых прежде устанавливались платы расширения. Позже четыре микросхемы, установленные дополнительно к 82С206, были заменены новым набором, состоявшим только из трех микросхем; этот набор назывался New Enhanced AT (NEAT) CS8221. А еще через некоторое время появился набор микросхем системной логики 82С836 Single Chip AT (SCAT), который состоял всего из одной микросхемы.

Идею набора микросхем системной логики поддержали и другие изготовители микросхем. Компании Acer, Erso, Opti, Suntac, UMC, VLSI и другие стремились захватить свою долю рынка. К сожалению, у многих из них положение на рынке наборов микросхем системной логики было неустойчивым; цены быстро менялись, и многие компании потерпели неудачу. Например, в 1993 году VLSI доминировала на рынке наборов микросхем системной логики, а на следующий год чуть не стала банкротом.

В 1989 году фирма Compaq разработала шину EISA. В то время считалось, что шина EISA станет стандартом. Однако Compaq отказалась предоставить кому бы то ни было свой набор микросхем системной логики для этой шины (т.е. набор микросхем, необходимых для функционирования этой шины на системной плате). Именно тогда в Intel было принято решение поставлять наборы микросхем системной логики для сборщиков компьютеров на основе системных плат EISA. Шина EISA не принесла большого успеха, но Intel приобрела опыт разработки набора микросхем системной логики. Когда был создан процессор 486, Intel пришлось ожидать, пока другие компании разработают для него набор микросхем системной логики (ведь она не могла продавать процессоры без системных плат для них). В 1993 году Intel при разработке процессора Pentium учла прежний опыт и выпустила процессор вместе с набором микросхем системной логики.

Большинство системных плат вплоть до самого последнего времени имело набор микросхем системной логики, разработанный Intel. На сегодняшний день положение Intel на рынке наборов микросхем системной логики (чипсетов) не так безоблачно. Начиная с 2000 года Intel отдала значительную часть рынка чипсетов своему главному конкуренту в этой области тайваньской фирме VIA Tech., в первую очередь благодаря неудачному выбору фирмы Rambus в качестве поставщика оперативной памяти (подробно об этом позже). Среди прочих конкурентов сегодня можно назвать такие фирмы, как ALi (Acer Laboratories, Inc.) и SiS (Silicon integrated Systems). Компания Chips and Technologies выжила благодаря тому, что нашла свою нишу на рынке видеоадаптеров для портативных компьютеров. В 1998 году Intel купила эту компанию, чтобы внедриться на рынок видеоадаптеров.

Чипсеты Intel для процессоров класса Pentium.

Подробно чипсеты мы начнем изучать начиная с предназначенных для процессора Pentium. Мы с Вами подробно изучили этот класс процессоров, теперь же имеет смысл остановиться на чипсетах для него. Кроме того, изучая чипсеты для Pentium, мы сможем проследить основные тенденции, которые помогут нам в изучении сегодняшней ситуации с современными чипсетами.

i430 LX (Mercury)

Одновременно с появлением процессора Pentium в марте 1993 года Intel представила свой первый набор микросхем системной логики i430LX (кодовое название Mercury) для нового процессора. Этот набор микросхем использовался только с процессором Pentium первого поколения и, поэтому, прожил совсем недолго. Он был рассчитан на применение только с процессорами Pentium 60/66 МГц, поддерживал процессорное гнездо Socket 4 с питанием 5В. North Bridge в наборе микросхем системной логики 430LX состоял из трех микросхем. Основной микросхемой был системный контроллер 82434LX, который содержал контроллер кэша и контроллер шины PCI; кроме того, в его функции входила реализация интерфейса между процессором и памятью. Имелась также пара микросхем 82433LX для ускорения интерфейса шины PCI. Набор микросхем системной логики 430LX поддерживал:

* кэш-память второго уровня объемом до 512 Кбайт;

* память типа FPM объемом до 192 Мбайт. Вся оперативная память, установленная в системе могла быть кэширована. Это кажется вполне очевидным и без особого упоминания, но мы с Вами встретимся с чипсетами, которые могли кэшировать меньше памяти, чем установлено на материнской плате.

* частота системной шины до 66 МГц.

South Bridge чипсета 430LX назывался SIO (System Input/Output), имел маркировку 82378IB/ZB. Не содержал в себе контроллера жестких дисков, такой контроллер следовало установить в разъем для подключения плат расширения ISA или PCI.

i 430 NX ( Neptune )

Представленный в марте 1994 года, 430NX был первым набором микросхем системной логики для второго поколения процессоров Pentium с напряжением питания 3,3 В. Эти процессоры устанавливались в гнезда типа Socket 5 со встроенным преобразователем напряжения на 3,3 В/3,5 В, который использовался и для процессора, и для набора микросхем системной логики. Этот набор микросхем был разработан прежде всего для процессоров Pentium с тактовыми частотами от 75 до 133 МГц, хотя обычно использовался для процессоров Pentium с тактовыми частотами 75 и 100 МГц. Вместе с процессором, потребляющим более низкое напряжение, этот набор микросхем работал быстрее и надежнее и расходовал меньше энергии, чем наборы микросхем системной логики для первого поколения процессоров Pentium. Компонент North Bridge в наборе микросхем системной логики 430NX состоял из трех микросхем. Основная микросхема 82434NX содержала контроллер кэш-памяти и оперативной памяти, интерфейс управления шиной PCI. Фактически передачей данных по шине PCI управляли две микросхемы 82433NX, называемые акселераторами локальной шины. Эти две микросхемы вместе с основной микросхемой и составляли North Bridge.

Компонент South Bridge (микросхема 82378ZB) набора 430NX представлял собой ту же самую микросхему System I/O (SIO), что и в чипсете 430LX. Этот компонент подсоединялся к шине PCI и генерировал сигналы для шины ISA малого быстродействия.

По сравнению с набором Mercury (430LX) рассматриваемый набор микросхем системной логики обладал некоторыми новыми возможностями. Он мог поддерживать:

* память объемом до 512 Мбайт.

* память типа FPM объемом до 512 Мбайт. Вся оперативная память, установленная в системе могла быть кэширована.

* частота системной шины по прежнему до 66 МГц.

Набор микросхем системной логики 430NX был ориентирован на мощные рабочие станции и сервера: об этом говорит возможность поддержки двух процессоров Pentium, поддержка до 512 Мб памяти, а так же возможность кэширования всей оперативной памяти.

i 430 FX ( Triton )

В январе 1995 года Intel представила новый набор микросхем системной логики для процессора Pentium: i430FX (Triton). Это был первый набор, который поддерживал память EDO (Extended Data Out). Эта память хотя и не стоила дороже, но ее быстродействие было несколько выше, чем у стандартной памяти FPM (Fast Page Mode).

Компонент North Bridge в 430FX состоял из трех микросхем. Основная микросхема 82437FX выполняла функции системного контроллера, который состоял из контроллеров памяти и кэш-памяти, интерфейса процессора и контроллера шины PCI, а две микросхемы 82438FX представляли собой тракты прохождения данных для шины PCI.

Основные возможности 430FX:

* поддержка памяти EDO;

* поддержка более высокого быстродействия кэша (режим pipelined burst);

* реализация PIIX South Bridge с быстродействующим Bus Master IDE;

* отсутствие поддержки контроля четности в памяти;

* поддержка только одного процессора;

* поддержка оперативной памяти объемом не более 128 Мбайт, причем кэшироваться могли только первых 64 Мбайт.

* частота системной шины максимум 66 МГц.

Возможность кэшировать только до 64 Мбайт оперативной памяти означает, что, если в вашей системе установлена оперативная память емкостью более 64 Мбайт, эффективность системы снизится. Многие считают это несерьезной проблемой, поскольку их программное обеспечение не занимает все 64 Мбайт. Это еще одна ошибка, потому что Windows 9х и Windows NT/2000 (а также другие операционные системы, например Linux) загружаются в верхние адреса памяти. Таким образом, если вы установили оперативную память объемом 96 Мбайт (64 Мбайт + 32 Мбайт), то почти все ваше программное обеспечение, включая операционную систему, будет загружаться в некэшируемую область выше 64 Мбайт. Эффективность повышается только тогда, когда вы используете более 32 Мбайт. Попробуйте отключить кэш-память второго уровня, выбрав соответствующий параметр с помощью программы Setup BIOS, чтобы увидеть, как замедлится работа вашей системы. Именно такого эффекта можно ожидать, если установить более 64 Мбайт оперативной памяти на компьютере с набором микросхем 430FX.

South Bridge (микросхема 82371FB) был первым чипом PIIX (PCI ISA IDE Xcelerator). Эта микросхема служила в качестве моста между шиной PCI, работающей на частоте 33 МГц, и более медленной шиной ISA, работающей на частоте 8 МГц. Кроме того, в этой микросхеме впервые был реализован двухканальный интерфейс IDE. Переместив интерфейс IDE с шины ISA в микросхему РIIХ, удалось подключить его к шине PCI, что позволило намного увеличить скорость передачи данных. Благодаря этому стало возможным реализовать новые интерфейсы IDE, и тем самым значительно повысить эффективность жесткого диска.

Но, тем не менее, набор микросхем 430FX не мог вытеснить 430NX с рынка мощных серверов и рабочих станций, так как поддерживал только один процессор, всего 128 Мб оперативной памяти и кэшировал только первые 64Мб. Набор 430FX был ориентирован на рынок домашних компьютеров, в то время как 430NX, несмотря на отсутствие поддержки памяти EDO и устаревший South Bridge, по-прежнему применялся в серверах и мощных рабочих станциях.

i430HX (Triton II)

Набор микросхем системной логики Triton II 430НХ был разработан Intel для замены набора 430NX. Он поддерживает память EDO и кэш-память второго уровня типа pipeline burst. В нем также предусмотрена поддержка двухпроцессорных систем и в дополнение к средствам контроля четности добавлена поддержка кодов с исправлением ошибок, которые не только обнаруживают, но и исправляют ошибку в одном разряде в памяти. И для всего этого понадобилась только память с контролем четности.

Этот набор микросхем системной логики подходит не только для выполняющих критические задания высокоэффективных систем, таких как файл-серверы, но и для дешевых компьютеров. Если контроля четности или кодов с исправлением ошибок в памяти не требуется, этот набор микросхем можно легко сконфигурировать так, чтобы использовать более дешевую память, т.е. без контроля четности или без кодов с исправлением ошибок.

Ниже приведены основные преимущества набора микросхем системной логики НХ перед FX:

* поддержка симметричной мультипроцессорной обработки (для двух процессоров);

* поддержка кодов с исправлением ошибок (ЕСС) и контроля четности в памяти;

* поддержка оперативной памяти объемом 512 Мбайт (а не 128 Мбайт);

* кэширование оперативной памяти объемом 512 Мбайт с помощью кэш-памяти второго уровня, а не 64 Мбайт (если установлена необязательная микросхема Tag RAM);

* уменьшение количества циклов при обмене с памятью;

* поддержка версии PCI 2.1, которая допускает параллельно выполняемые операции PCI;

* поддержка компонентом РIIХЗ различных установок скорости передачи IDE на одиночном канале;

* поддержка шины USB компонентом РIIХЗ South Bridge.

* частота системной шины до 66 МГц.

Проблемы с кэшированием памяти, возникавшие в 430FX, были исправлены в 430НХ. Этот набор микросхем системной логики позволял кэшировать все 512 Мбайт оперативной памяти, если было установлено необходимое количество кэш-памяти для тэгов (это небольшая микросхема кэш-памяти, используемая для хранения адресов данных, которые содержатся в кэше). Большинство наборов микросхем 430НХ поставлялись с таким количеством микросхем кэш-памяти для тэгов, что можно было кэшировать только 64 Мбайт оперативной памяти, но по желанию каждый мог установить дополнительные микросхемы и кэшировать все 512 Мбайт оперативной памяти.

North Bridge в наборе микросхем системной логики 430НХ был однокристальным.

РIIХЗ South Bridge (микросхема 82371 SB) допускал независимую синхронизацию двойных каналов IDE. Иначе говоря, вы могли установить два устройства с различным быстродействием на одном и том же канале и конфигурировать скорости передачи для каждого устройства в отдельности. Микросхемы РIIX предыдущих поколений позволяли обоим устройствам работать только с одинаковым быстродействием. Микросхема РIIХЗ также поддерживала шину USB (Universal Serial Bus). К сожалению, в то время не существовало никаких устройств для подключения к USB, не было также ни операционных систем, ни драйверов для поддержки шины, а порты USB были диковинкой, и никто их не использовал.

Набор микросхем системной логики 430НХ, как мы уже упоминали, был ориентирован на замену уже прилично устаревшему 430NX в серверах, в то же время на базе этого чипсета можно было строить и недорогие рабочие станции с отличным быстродействием. Этот набор вобрал в себя все лучшее от 430NX и 430FX, кроме того сам по себе оказался очень удачным.

i430VX (Triton III)

Набор микросхем 430VX поддерживает:

* синхронную память DRAM (SDRAM) 66 МГц, разумеется поддержка FPM и EDO остается;

* коды с исправлением ошибок в памяти или отсутствие контроля четности;

* только один процессор;

* оперативную память объемом не более 128 Мбайт;

* кэширование только 64 Мбайт оперативной памяти.

* частота системной шины до 66 МГц. Хотя этот набор микросхем и поддерживает память SDRAM, фактическое быстродействие, достигаемое с помощью этой памяти, ограничено. Дело в том, что набор 430VX хоть и поддерживал SDRAM, но не по оптимальной схеме 5-1-1-1, а по схеме 6-1-1-1, именно поэтому большинство систем с 430НХ обладают более высоким быстродействием, чем системы на основе 430VX, даже несмотря на то, что VX может использовать память SDRAM с более высоким быстродействием. Кроме того: набор микросхем системной логики VX разработан для дешевых компьютеров, в большинство из которых никогда не устанавливалась память SDRAM.

Как и 430FX, VX может кэшировать только 64 Мбайт оперативной памяти. После падения цен на микросхемы памяти в 1996 году многие пользователи установили память объемом более 64 Мбайт, и это ограничение стало действительно серьезным недостатком.

i430TX (Triton IV)

что такое набор системной логики. Смотреть фото что такое набор системной логики. Смотреть картинку что такое набор системной логики. Картинка про что такое набор системной логики. Фото что такое набор системной логики

Набор микросхем системной логики 430ТХ не имел кодового названия, однако некоторые пользователи называют его Triton IV. Это последний набор микросхем системной логики фирмы Intel для Pentium.

Набор микросхем 430ТХ имеет некоторые преимущества перед 430VX, но, к сожалению, он не поддерживает контроль четности и коды с исправлением ошибок и может кэшировать только 64 Мбайт оперативной памяти, как и более старые наборы FX и VX. Этот набор микросхем системной логики не предназначался для замены высококачественного 430НХ, который все еще использовался в системах, выполнявших наиболее сложные задания.

Набор микросхем системной логики ТХ обладает следующими возможностями:

* поддержка памяти SDRAM, работающей на частоте 66 МГц;

* кэширование памяти объемом до 64 Мбайт;

* поддержка Ultra-ATA или Ultra-DMA 33 (UDMA) интерфейса IDE передачи данных;

* более низкое потребление мощности, что важно для портативных компьютеров;

* отсутствие контроля четности и поддержки кодов с исправлением ошибок;

* поддержка только одного процессора;

ТХ появился в феврале 1997 года и был последним чипсетом Intel для процессоров пятого поколения. После TX Intel прекращает разработку новых чипсетов и процессоров пятого поколения, и переходит к разработке систем шестого поколения, поколения Pentium II.

В этой таблице сведены воедино рассмотренные нами выше характеристики чипсетов Intel для платформы Р5.

Сводная таблица чипсетов Intel для процессоров класса Pentium

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

ТТЛТТЛШКМОПБастродейств. КМОПЭСЛ
Расшифровка названияТранзисторно-Транзисторная ЛогикаТТЛ с диодом ШотткиКомплиментарный Металл-Оксид ПолупроводникЭмиттерно-Согласованная Логика
Основные серии отеч. микросхемК155 К131К555 К531 КР1533К561 К176КР1554 КР1564К500 КР1500
Серии буржуйских микросхем7474LS 74ALSCD40 H 400074AC 74 HCMC10 F100
Задержка распространения, нС10…304…2015…503,5..50,5…2
Макс. частота, МГц1550..701…550…150300…500
Напряжение питания, В5 ±0,55 ±0,53…152…6-5,2 ±0,5
Потребляемый ток (без нагрузки), мА204…400,002…0,10,002…0,10,4
Уровень лог.0, В0,40,5Читайте также: Обзор низкопрофильной механической клавиатуры Cooler Master SK630. Формула успеха

Микросхемы выпускаются в различных корпусах. Наиболее распространены следующие виды корпусов:

DIP (Dual Inline Package )

Обычный «тараканчик». Ножки просовываем в дырки на плате – и запаиваем.

Ножек в корпусе может быть 8, 14, 16, 20, 24, 28, 32, 40, 48 или 56.

Расстояние между выводами (шаг) – 2,5 мм (отечественный стандарт) или 2,54 мм (у буржуев).

Ширина выводов около 0,5 мм

Нумерация выводов – на рисунке (вид сверху). Чтобы определить нахождение первой ножки, нужно найти на корпусе «ключик».

SOIC (Small Outline Integral Circuit)

Планарная микросхема – то есть ножки припаиваются с той же стороны платы, где находится корпус. При этом, микросхема лежит брюхом на плате.

Шаг выводов – 1,25 мм (отечественный) или 1,27 мм (буржуазный).

Ширина выводов – 0,33…0,51

PLCC (Plastic J-leaded Chip Carrier)

Микросхемы либо запаиваются непосредственно на плату (планарно), либо вставляются в панельку. Последнее – предпочтительней.

Количество ножек – 20, 28, 32, 44, 52, 68, 84.

Ширина выводов – 0,66…0,82

Нумерация выводов – первая ножка возле ключа, увеличение номера против часовой стрелки:

TQFP (Thin Quad Flat Package)

Квадратный корпус толщиной около 1мм, выводы расположены по всем сторонам.

Количество ножек – от 32 до 144.

Ширина вывода – 0,3…0,45 мм

Нумерация – от скошенного угла (верхний левый) против часовой стрелки.

Вот так, в общих чертах, обстоят дела с корпусами. Надеюсь теперь вам станет немножко легче ориентироваться в бесчисленном множестве современных микросхем, и вас не будет вгонять в ступор фраза продавца типа: «эта микросхема есть только в корпусе пэ эл си си»…

Как вам эта статья?Заработало ли это устройство у вас?
4810
12

10