что такое многочлен в математике 4 класс

Что такое многочлен

Часто путают понятия одночлена и многочлена.

Давайте разберемся, что называют одночленом, а что многочленом. Прежде всего, вспомним, что называли одночленом в уроке «Одночлены».

Обратите внимание, что «внутри» одночлена (между буквами и числовым коэффициентом) есть только знак умножения. Например, в одночлене: 3ab = 3 · a · b

Многочленом называется алгебраическая сумма нескольких одночленов.

Одночлены, из которых составлен многочлен, называют членами многочлена.

Примеры многочленов: a + 2b 2 − c; 3t 5 − 4b; 4 − 6xy

Несложно заметить, что любой многочлен состоит из нескольких одночленов.

Рассмотрим многочлен подробнее.

что такое многочлен в математике 4 класс. Смотреть фото что такое многочлен в математике 4 класс. Смотреть картинку что такое многочлен в математике 4 класс. Картинка про что такое многочлен в математике 4 класс. Фото что такое многочлен в математике 4 класс

Возникает вопрос, почему многочленом называют алгебраическую сумму одночленов, если в многочлене присутствует знак минуса.

Это объясняется тем, что на самом деле знак « − » относится к числовому коэффициенту одночлена, который стоит справа от знака.

что такое многочлен в математике 4 класс. Смотреть фото что такое многочлен в математике 4 класс. Смотреть картинку что такое многочлен в математике 4 класс. Картинка про что такое многочлен в математике 4 класс. Фото что такое многочлен в математике 4 класс

Любой многочлен можно записать по правилу знаков как сумму одночленов.

что такое многочлен в математике 4 класс. Смотреть фото что такое многочлен в математике 4 класс. Смотреть картинку что такое многочлен в математике 4 класс. Картинка про что такое многочлен в математике 4 класс. Фото что такое многочлен в математике 4 класс

В многочлене знак, который стоит слева от одночлена относится к числовому коэффициенту самого одночлена.

Как найти степень многочлена

Степенью многочлена называют наибольшую из степеней входящих в него одночленов.

То есть, чтобы найти степень многочлена, нужно сначала найти
степень каждого одночлена, который входит в состав многочлена.

Степени многочленов

МногочленСтепень
многочлена
a 2 − 3a 2 b + x =
a 2 (степень одночлена 2) − 3a 2 b(степень одночлена 3 ) + x(степень одночлена 1)
3
1
3

x 2 y 2 + 4x 2 =

1
3

x 2 y 2 (степень одночлена 4 ) + 4x 2 (степень одночлена 2)

4
8x 2 − 3a + 4 =
8x 2 (степень одночлена 2 ) − 3a(степень одночлена 1) + 4(степень одночлена 0)
2

Любой одночлен является многочленом. В самом деле, любой одночлен, по сути, является многочленом, который состоит всего из одного одночлена.

Примеры таких многочленов: 2a 2 b; −3d 3 ; a.

Источник

Алгебра

План урока:

Многочлен, вычисление значений многочлена

В предыдущем уроке мы познакомились с понятием одночлена. При записи одночленов не используется операция сложения. Если же возникает необходимость сложить несколько одночленов, то в результате получается многочлен.

В качестве примера многочленов можно привести следующие выражения:

Стоит обратить внимание, что в записи многочлена может использоваться и знак минус, при этом его всё равно можно считать суммой одночленов, а не разностью. Дело в том, что можно условно считать, что знак минус относится к коэффициенту одночлена, например:

Для некоторых видов многочленов существуют особые названия. Если многочлен состоит из двух одночленов, то его называют двучленом. Многочлен, состоящий из 3 одночленов, называют трехчленом.

Иногда в литературе используются такие термины, как «моном» (синоним «одночлена»), «бином» (синоним «двучлена»), «полином» (синоним «многочлена»).

Если известно значение переменных, входящих в полином, то возможно вычисление значения многочлена.

Пример. Найдем значение полинома x 3 +2x 2 +5y+1 при значении x=2 и y = 3.

Пример. Вычислим значение полинома v 4 – d 4 при значении переменных v = 4 и d = 3.

Стандартный вид многочлена

Иногда некоторые мономы, входящие в состав полинома, имеют одинаковую буквенную часть. Например, в выражении

первый и третий мономы отличаются лишь своими коэффициентами. Такие слагаемые называются подобными.

У подобных слагаемых одинаковый набор переменных, и при этом они возведены в одинаковые степени. Так, подобными являются мономы:

Также подобными слагаемыми можно считать и числа без буквенной части, например 8 и 2.

В качестве примеров неподобных слагаемых можно привести:

Подобные слагаемые можно складывать друг с другом. В этом случае буквенная часть останется неизменной, а коэффициенты сложатся друг с другом. Например:

Такое действие называется приведением подобных слагаемых.

Пример. Приведите подобные слагаемые полинома:

Решение. В данном полиноме есть три пары подобных слагаемых:

Сгруппируем подобные слагаемые друг с другом, после чего сложим их:

Если в полиноме нет подобных слагаемых, а все входящие в него мономы записаны в стандартном виде, то его называют многочленом стандартного вида.

Что такое одночлен стандартного вида, можно узнать из ранее изученного урока. Примерами полиномов стандартного вида являются:

Далее рассмотрим понятие степени многочлена. Каждый из входящих в полином мономов имеет свой показатель степени(см. урок 3). Степенью полинома стандартного вида называется наибольшая из всех степеней одночленов, входящих в его состав.

Рассмотрим пример. Дан трехчлен 2y 2 + x 3 y + 5y 2 x, требуется найти его степень.

Решение. Рассматриваемый трехчлен находится в стандартном виде. Он состоит из трех мономов:

Найдем степень каждого из них:

Получается, что максимальную степень, равную 4, имеет моном x 3 y. Соответственно, и степень трехчлена также равна 4.

Если же рассматривается полином, не находящийся в стандартном виде, то для вычисления его степени сначала надо привести полином к этому виду.

Оказалось, что подобные мономы c 6 и – с 6 сократились. Получившийся полином состоит из двух мономов, ac 2 и 9, чьи степени равны 3 и 0 соответственно. Значит, и степень всего двучлена равна трём.

Определение степени полинома потребуется для решения уравнений в старших классах. Если в одной части уравнения стоит полином, например, третьей степени, в другой части – ноль, то его называют уравнением третьей степени:

Аналогично выделяют уравнения первой, второй, четвертой и любой другой степени.

В зависимости от степени уравнения используются различные методы их решения. Ранее (ссылка на урок уравнения) мы уже научились решать линейные уравнения, которые являются уравнениями 1-ой степени. Обычно чем выше степень уравнения, тем сложнее его решать. Также существует интересная зависимость – количество корней уравнения не превышает его степень (за исключением одного частного случая, при котором есть бесконечное множество решений).

Особое значение в алгебре имеют те полиномы, в которых содержится только одна переменная, например:

Их называют полиномами с одной переменной. Обычно их принято записывать по мере убывания степеней одночленов. То есть впереди пишется моном с максимальной степенью, а в самом конце – число без буквенной части:

То число, которое стоит перед одночленом в наибольшей степени, называют старшим коэффициентом, а число, не имеющее буквенной части – свободным членом (реже свободным коэффициентом):

Для некоторых полиномов с одной переменной есть особое название. Так, многочлен второй степени называют квадратным трехчленом. Дело в том, вторую степень в математике часто называют квадратом, а состоит квадратный трехчлен из трех монов. В качестве примера можно привести:

Конечно, квадратный многочлен может содержать и меньше трех одночленов:

В этом случае иногда бывает удобно добавить «недостающее» слагаемое, поставив перед ним коэффициент, равный нулю:

В общем случае квадратным трехчленом называют выражение вида

где x – произвольная переменная, а, b и c являются произвольными действительными числами. При этом a не должно равняться нулю, иначе получится полином уже только 1-ой степени.

Квадратные трехчлены будут изучены подробнее в старших классах при изучении темы «Квадратные уравнения».

Сложение и вычитание многочленов

Полиномы можно складывать друг с другом, а также вычитать. При этом, возможно, придется приводить подобные слагаемые.

Пример. Произведите сложение многочленов 8z 2 + 3z +12 и 2z 4 + 9z.

Решение. Запишем интересующую нас сумму:

Если перед скобками стоит знак «+», то можно просто опустить скобки:

Осталось привести полином к стандартному виду. Здесь есть лишь одна пара подобных одночленов, 3z и 9z:

При вычитании многочленов надо учитывать следующее правило:

Пример. Вычтите из полинома x 5 + 3x 3 – 7y 3 + 9x 2 + 17 трехчлен 2y 4 + 0,4y 3 – 25.

Запишем разность полиномов:

Осталось привести подобные слагаемые:

Стоит заметить, что при сложении и вычитании полиномов их степени не могут увеличиться. Так, если складываются два полинома 5-ой и 4-ой степени, то в результате получится многочлен, чья степень будет не больше 5.

Рассмотрим более сложный пример с вложенными (внутренними) скобками. Необходимо упростить выражение

Решение. Раскроем первые скобки. Перед ними стоит минус, поэтому знаки слагаемых должны поменяться на противоположные. Однако обратите внимание, что здесь есть вложенные скобки (2a 2 b – ab) и (ab 2 + 2a 2 b). Менять следует только знак перед ними, а знаки внутри вложенных скобок не меняются! Они рассматриваются как единые, неизменяемые слагаемые:

Теперь раскроем оставшиеся две скобки:

Умножение одночлена на многочлен

Напомним распределительный закон умножения:

Используя этот закон, можно производить умножение одночлена на многочлен.

Решение: Запишем произведение выражений:

Такое раскрытие скобок можно объяснить с помощью «метода фонтанчика»:

От множителя 5v 2 строят линии (синего цвета к) КАЖДОМУ слагаемому в скобке. Каждой такой линии соответствует отдельное произведение в получаемом полиноме.

После раскрытия скобок получили два произведения одночлена на одночлен, которые считаем по отдельности (см. урок 3):

Можно сформулировать следующее правило умножения многочлена на одночлен:

Ещё один пример. Перемножьте полином 2x 2 y + 4xy 2 – 1 и моном – 3ху.

Здесь метод «фонтанчика» будет выглядеть так:

Можно заметить, что после умножения монома на полином получится столько одночленов, сколько их было в исходном полиноме. Это правило можно использовать для самоконтроля.

Умножение многочлена на многочлен

Пусть нам надо перемножить два полинома, a+bи c+d. Запишем их произведение:

Заменим выражение a + b переменной k:

Теперь исходное произведение можно выразить как произведение монома и полинома:

Проведем обратное преобразование, заменив k на a + b:

Наконец, раскроем скобки в этом выражении:

Эту формулу можно проиллюстрировать геометрически. Рассмотрим прямоугольник со сторонами a + b и c + d:

Площадь этого прямоугольника, как и любого другого, равна произведению его сторон, то есть(a + b)(c + d).С другой стороны, она состоит из 4 прямоугольников, чьи площади также вычисляются как произведения их сторон, и составляют ac, bc, ad и bd. Поэтому можно записать равенство

Получается, что для умножения многочлена на многочлен нужно перемножать попарно все мономы, входящие в их состав, после чего сложить их.

Если в одном полиноме содержится m слагаемых, а в другом n, то результатом их перемножения окажется новый полином, содержащий m•n мономов (до приведения подобных слагаемых). Для перемножения многочленов также используется метод «фонтанчика».

Пример. Найдем произведение выражений 3a 2 – 4ab + b 2 и 2a– b.

Решение: В первом полиноме содержится 3 монома, а во втором – 2, поэтому после их перемножения мы получим сумму 3•2 = 6 одночленов:

Раскрытие скобок «фонтанчиком» будет выглядеть так:

В результате действительно получилась сумма 6 мономов. Осталось вычислить каждый из них, после чего привести подобные слагаемые:

Заметим, что при перемножении полиномов происходит сложение степеней многочленов. Действительно, в рассмотренном выше примере мы умножили полином второй степени 3a 2 – 4ab + b 2 на полином первой степени 2a– b, и получили в результате многочлен 3-ей (2+1) степени.

Также возможно умножение многочленов в столбик. Особенно это удобно делать в случае с полиномами с одной переменной.

Пример. Найдите произведение выражений 2x 3 + 3x 2 +5x + 9 и x 2 + 4x + 7.

Решение: Запишем полиномы в столбик, один под другим:

Далее умножим самый правый моном второго многочлена, то есть число 7, на первый полином, и запишем его ниже:

Далее умножим следующий моном, 4х, на первый полином, и запишем результат ещё ниже, причем сместим запись чуть влево, чтобы подобные члены оказались друг под другом:

Осталось сложить подобные слагаемые (то есть переменные х с одинаковыми степенями), которые записаны друг под другом:

Ещё раз цветом выделим подобные слагаемые и результаты их суммирования:

Ответ: 2х 5 + 11х 4 + 31х 3 + 50х 2 + 71х +63.

Источник

Многочлены. Действия с многочленами.

теория по математике 📈 алгебраические выражения

Многочлен – это сумма одночленов. Одночлены, которые составляют многочлен, называют членами данного многочлена. Если многочлены состоят из двух или трех слагаемых, то их можно называть двучленами или трехчленами соответственно.

Стандартный вид многочлена

Многочлен называется приведенным к стандартному виду, если он не имеет подобных слагаемых, и каждый его член имеет также стандартный вид.

Вспомним, что слагаемые, содержащие одинаковую буквенную часть или не имеющие буквенной части называют подобными. Если такие слагаемые есть, то их нужно сложить или вычесть, это действие называют приведением подобных слагаемых.

13х 2 –6х+ 11х 2

13х 2 –6х+11х 2 =24х 2 –6х

6а 3 с 4 + 32х –9а 3 с 4 + 45х –16

Данный многочлен имеет две группы подобных слагаемых, одна выделена красным цветом, вторая синим цветом, слагаемое –16 не имеет подобных, поэтому его просто перепишем. Приводим подобные слагаемые и получаем многочлен стандартного вида:

6а 3 с 4 + 32х –9а 3 с 4 + 45х –16= –3а 3 с 4 +77х–16

Степень многочлена

Степенью многочлена стандартного вида называют наибольшую из степеней входящих в него одночленов. При этом многочлен должен быть записан в стандартном виде. Рассмотрим на примерах, как определить степени многочленов.

4с 6 +7а 9 –18х

Степень многочлена, записанного в стандартном виде, равна 9, так как одночлен 7а 9 имеет степень равную 9 и она наибольшая по сравнению со степенями одночленов 4с 6 и –18х. Пример №5.

13х 4 у 7 +12х 3 у 6 –13

степень данного многочлена стандартного вида находим по наибольшей степени каждого одночлена: одночлен 13х 4 у 7 имеет 11 степень, так как складываем показатели 4 и 7; одночлен 12х 3 у 6 имеет соответственно 9 степень, а –13 имеет степень равную нулю (не содержит переменных). Таким образом, получается, что наибольшая степень равна 11, значит и степень всего многочлена равна 11.

6а 5 +8ас+2а 5 –11ас

Данный многочлен не является многочленом стандартного вида, поэтому сначала приведем подобные слагаемые, получим 6а 5 +8ас+2а 5 –11ас=8а 5 –3ас. Теперь найдем степень у каждого одночлена: у 8а 5 пятая степень, у 3ас – вторая (каждая переменная имеет первую степень). Значит, у многочлена 6а 5 +8ас+2а 5 –11ас степень равна 5.

Сложение и вычитание многочленов

Многочлены можно как складывать, так и вычитать. То есть сумму или разность многочленов можно представить в виде многочлена стандартного вида. Рассмотрим на примерах сложение и вычитание многочленов.

Пример №7. Выполним сложение многочленов:

6х 2 +8х–11 и –9х 2 +3х+19

Сначала составим их сумму (6х 2 +8х–11) + (–9х 2 +3х+19), теперь раскроем скобки, помня о том, что, если перед скобками стоит знак «плюс», то знаки у слагаемых в скобках не изменяются:

6х 2 +8х–11–9х 2 +3х+19

Теперь приведем подобные слагаемые и получим многочлен стандартного вида:

Пример №8. Выполним вычитание многочленов:

7х 5 +12х 3 –24 и 2х 5 +36х 3 –11

Составим разность многочленов (7х 5 +12х 3 – 24) – (2х 5 +36х 3 –11), раскроем скобки, помня о том, что, если перед скобками стоит «минус», то надо изменить знаки у слагаемых в скобках на противоположные:

7х 5 +12х 3 – 24 – 2х 5 –36х 3 +11

Приведем подобные слагаемые и получим многочлен:

Умножение одночлена на многочлен

Чтобы умножить одночлен на многочлен, нужно умножить этот одночлен на каждый член многочлена.

Пример №9. Умножим одночлен 7х на многочлен 6х 2 +3х–5. Запишем в виде произведения:

выполним умножение 7х на каждое слагаемое в скобках: 7х•6х 2 +7х•3х–7х•(–5) и получим:

Запись данного выражения можно делать короче, выполняя промежуточные действия устно:

7х•(6х 2 +3х–5)= 42х 3 +21х 2 +35х

92с(–2с+10а 6 )= –184с 2 +920са 6

Здесь выполнение умножения одночлена на многочлен выполнено без записи промежуточных действий умножения.

Умножение многочлена на многочлен

Чтобы умножить многочлен на многочлен, нужно каждый член одного многочлена умножить на каждый член другого многочлена.

Пример №11. Умножим многочлен (а+с) на многочлен (х+с).

Составим произведение (а+с)(х+с); умножим сначала а на (х+с), затем с на (х+с); получим:

Получили многочлен в стандартном виде. Здесь были даны простые многочлены, не содержащие степеней. Запись выражения выглядит так:

Пример №12. Умножим многочлен 8х 3 –12х на многочлен 3х 5 –10х. Имеем:

(8х 3 –12х)(3х 5 –10х)=8х 3 •3х 5 +8х 3 •(–10х)–12х•3х 5 –12х•(–10х)=24х 8 –80х 4 –36х 6 +120х 2

Здесь были даны многочлены, содержащие степень, поэтому промежуточное решение лучше расписывать, чтобы не допустить ошибок.

Разложение многочлена на множители

Существуют такие способы для разложения многочлена на множители, как вынесение общего множителя за скобки и разложение на множители способом группировки.

Способ №1. Вынесение общего множителя за скобки.

Вынесение общего множителя за скобки – это представление многочлена в виде произведения одночлена и многочлена.

6х 4 – 20х 2 =2х 2 (3х 2 –10)

При вынесении за скобки степеней помним правило, что при делении степеней с одинаковым основанием показатели вычитаем, а основание оставляем прежним.

Пример №14. Разложим на множители многочлен:

12с 5 х 7 –36с 6 х 2 +72асх 3

12с 5 х 7 –36с 6 х 2 +72асх 3 =12сх 2 (с 4 х 5 –3с 5 +6ах)

Сделаем вывод, что вынесение общего множителя за скобки – это выполнение действия деления каждого члена многочлена на его общий делитель.

Способ №2. Способ группировки.

Чтобы выполнить разложение на множители способом группировки необходимо следовать определенному алгоритму (ключевое слово в данном способе – группировка). Группировка слагаемых выполняется таким образом, чтобы в каждой группе можно было выполнить вынесение общего множителя за скобки, а в скобках оставались одинаковые выражения, это обычно определяется устно.

Пример №15. Разложим на множители многочлен:

Сгруппируем, например, слагаемые первое с последним, а второе с третьим (можно было первое с третьим, а второе с последним):

Теперь видим, что в каждой группе есть множитель, который можно вынести за скобки:

В полученном выражении видно, что в обеих скобках есть сумма х и d, вынесем эту сумму снова за скобки:

Таким образом, мы получили произведение двух выражений, то есть разложили данный многочлен на множители.

Пример №16. Разложим на множители многочлен:

Сгруппируем по порядку, чтобы знаки у слагаемых в скобках были одинаковые:

Вынесем общий множитель в каждой группе:

Вынесем за скобки одинаковые выражения:

Пример №17. Разложим на множители многочлен:

Сгруппируем по порядку, обращая внимание на знак перед х 2 :

х 5 –х 3 –х 2 +1 =(х 5 –х 3 )–(х 2 –1)

Если перед первым слагаемым, которое мы заключаем в скобки, стоит знак «минус», то мы ставим его перед скобкой, а знаки у слагаемых в скобках изменяем на противоположные. Тогда у нас в обеих скобках получатся одинаковые знаки.

Выносим за скобки общий множитель. В данном случае он есть только в первых скобках:

х 5 –х 3 –х 2 +1 =(х 5 –х 3 )–(х 2 –1)= х 3 (х 2 –1)–(х 2 –1)

Выносим за скобки одинаковые выражения, обращая внимание на то, что перед второй скобкой не записан общий множитель, значит, он равен 1:

х 5 –х 3 –х 2 +1 =(х 5 –х 3 )–(х 2 –1)= х 3 (х 2 –1)–(х 2 –1)=(х 2 –1)(х 3 –1)

Источник

Алгебра

План урока:

Многочлен, вычисление значений многочлена

В предыдущем уроке мы познакомились с понятием одночлена. При записи одночленов не используется операция сложения. Если же возникает необходимость сложить несколько одночленов, то в результате получается многочлен.

В качестве примера многочленов можно привести следующие выражения:

Стоит обратить внимание, что в записи многочлена может использоваться и знак минус, при этом его всё равно можно считать суммой одночленов, а не разностью. Дело в том, что можно условно считать, что знак минус относится к коэффициенту одночлена, например:

Для некоторых видов многочленов существуют особые названия. Если многочлен состоит из двух одночленов, то его называют двучленом. Многочлен, состоящий из 3 одночленов, называют трехчленом.

Иногда в литературе используются такие термины, как «моном» (синоним «одночлена»), «бином» (синоним «двучлена»), «полином» (синоним «многочлена»).

Если известно значение переменных, входящих в полином, то возможно вычисление значения многочлена.

Пример. Найдем значение полинома x 3 +2x 2 +5y+1 при значении x=2 и y = 3.

Пример. Вычислим значение полинома v 4 – d 4 при значении переменных v = 4 и d = 3.

Стандартный вид многочлена

Иногда некоторые мономы, входящие в состав полинома, имеют одинаковую буквенную часть. Например, в выражении

первый и третий мономы отличаются лишь своими коэффициентами. Такие слагаемые называются подобными.

У подобных слагаемых одинаковый набор переменных, и при этом они возведены в одинаковые степени. Так, подобными являются мономы:

Также подобными слагаемыми можно считать и числа без буквенной части, например 8 и 2.

В качестве примеров неподобных слагаемых можно привести:

Подобные слагаемые можно складывать друг с другом. В этом случае буквенная часть останется неизменной, а коэффициенты сложатся друг с другом. Например:

Такое действие называется приведением подобных слагаемых.

Пример. Приведите подобные слагаемые полинома:

Решение. В данном полиноме есть три пары подобных слагаемых:

Сгруппируем подобные слагаемые друг с другом, после чего сложим их:

Если в полиноме нет подобных слагаемых, а все входящие в него мономы записаны в стандартном виде, то его называют многочленом стандартного вида.

Что такое одночлен стандартного вида, можно узнать из ранее изученного урока. Примерами полиномов стандартного вида являются:

Далее рассмотрим понятие степени многочлена. Каждый из входящих в полином мономов имеет свой показатель степени(см. урок 3). Степенью полинома стандартного вида называется наибольшая из всех степеней одночленов, входящих в его состав.

Рассмотрим пример. Дан трехчлен 2y 2 + x 3 y + 5y 2 x, требуется найти его степень.

Решение. Рассматриваемый трехчлен находится в стандартном виде. Он состоит из трех мономов:

Найдем степень каждого из них:

Получается, что максимальную степень, равную 4, имеет моном x 3 y. Соответственно, и степень трехчлена также равна 4.

Если же рассматривается полином, не находящийся в стандартном виде, то для вычисления его степени сначала надо привести полином к этому виду.

Оказалось, что подобные мономы c 6 и – с 6 сократились. Получившийся полином состоит из двух мономов, ac 2 и 9, чьи степени равны 3 и 0 соответственно. Значит, и степень всего двучлена равна трём.

Определение степени полинома потребуется для решения уравнений в старших классах. Если в одной части уравнения стоит полином, например, третьей степени, в другой части – ноль, то его называют уравнением третьей степени:

Аналогично выделяют уравнения первой, второй, четвертой и любой другой степени.

В зависимости от степени уравнения используются различные методы их решения. Ранее (ссылка на урок уравнения) мы уже научились решать линейные уравнения, которые являются уравнениями 1-ой степени. Обычно чем выше степень уравнения, тем сложнее его решать. Также существует интересная зависимость – количество корней уравнения не превышает его степень (за исключением одного частного случая, при котором есть бесконечное множество решений).

Особое значение в алгебре имеют те полиномы, в которых содержится только одна переменная, например:

Их называют полиномами с одной переменной. Обычно их принято записывать по мере убывания степеней одночленов. То есть впереди пишется моном с максимальной степенью, а в самом конце – число без буквенной части:

То число, которое стоит перед одночленом в наибольшей степени, называют старшим коэффициентом, а число, не имеющее буквенной части – свободным членом (реже свободным коэффициентом):

Для некоторых полиномов с одной переменной есть особое название. Так, многочлен второй степени называют квадратным трехчленом. Дело в том, вторую степень в математике часто называют квадратом, а состоит квадратный трехчлен из трех монов. В качестве примера можно привести:

Конечно, квадратный многочлен может содержать и меньше трех одночленов:

В этом случае иногда бывает удобно добавить «недостающее» слагаемое, поставив перед ним коэффициент, равный нулю:

В общем случае квадратным трехчленом называют выражение вида

где x – произвольная переменная, а, b и c являются произвольными действительными числами. При этом a не должно равняться нулю, иначе получится полином уже только 1-ой степени.

Квадратные трехчлены будут изучены подробнее в старших классах при изучении темы «Квадратные уравнения».

Сложение и вычитание многочленов

Полиномы можно складывать друг с другом, а также вычитать. При этом, возможно, придется приводить подобные слагаемые.

Пример. Произведите сложение многочленов 8z 2 + 3z +12 и 2z 4 + 9z.

Решение. Запишем интересующую нас сумму:

Если перед скобками стоит знак «+», то можно просто опустить скобки:

Осталось привести полином к стандартному виду. Здесь есть лишь одна пара подобных одночленов, 3z и 9z:

При вычитании многочленов надо учитывать следующее правило:

Пример. Вычтите из полинома x 5 + 3x 3 – 7y 3 + 9x 2 + 17 трехчлен 2y 4 + 0,4y 3 – 25.

Запишем разность полиномов:

Осталось привести подобные слагаемые:

Стоит заметить, что при сложении и вычитании полиномов их степени не могут увеличиться. Так, если складываются два полинома 5-ой и 4-ой степени, то в результате получится многочлен, чья степень будет не больше 5.

Рассмотрим более сложный пример с вложенными (внутренними) скобками. Необходимо упростить выражение

Решение. Раскроем первые скобки. Перед ними стоит минус, поэтому знаки слагаемых должны поменяться на противоположные. Однако обратите внимание, что здесь есть вложенные скобки (2a 2 b – ab) и (ab 2 + 2a 2 b). Менять следует только знак перед ними, а знаки внутри вложенных скобок не меняются! Они рассматриваются как единые, неизменяемые слагаемые:

Теперь раскроем оставшиеся две скобки:

Умножение одночлена на многочлен

Напомним распределительный закон умножения:

Используя этот закон, можно производить умножение одночлена на многочлен.

Решение: Запишем произведение выражений:

Такое раскрытие скобок можно объяснить с помощью «метода фонтанчика»:

От множителя 5v 2 строят линии (синего цвета к) КАЖДОМУ слагаемому в скобке. Каждой такой линии соответствует отдельное произведение в получаемом полиноме.

После раскрытия скобок получили два произведения одночлена на одночлен, которые считаем по отдельности (см. урок 3):

Можно сформулировать следующее правило умножения многочлена на одночлен:

Ещё один пример. Перемножьте полином 2x 2 y + 4xy 2 – 1 и моном – 3ху.

Здесь метод «фонтанчика» будет выглядеть так:

Можно заметить, что после умножения монома на полином получится столько одночленов, сколько их было в исходном полиноме. Это правило можно использовать для самоконтроля.

Умножение многочлена на многочлен

Пусть нам надо перемножить два полинома, a+bи c+d. Запишем их произведение:

Заменим выражение a + b переменной k:

Теперь исходное произведение можно выразить как произведение монома и полинома:

Проведем обратное преобразование, заменив k на a + b:

Наконец, раскроем скобки в этом выражении:

Эту формулу можно проиллюстрировать геометрически. Рассмотрим прямоугольник со сторонами a + b и c + d:

Площадь этого прямоугольника, как и любого другого, равна произведению его сторон, то есть(a + b)(c + d).С другой стороны, она состоит из 4 прямоугольников, чьи площади также вычисляются как произведения их сторон, и составляют ac, bc, ad и bd. Поэтому можно записать равенство

Получается, что для умножения многочлена на многочлен нужно перемножать попарно все мономы, входящие в их состав, после чего сложить их.

Если в одном полиноме содержится m слагаемых, а в другом n, то результатом их перемножения окажется новый полином, содержащий m•n мономов (до приведения подобных слагаемых). Для перемножения многочленов также используется метод «фонтанчика».

Пример. Найдем произведение выражений 3a 2 – 4ab + b 2 и 2a– b.

Решение: В первом полиноме содержится 3 монома, а во втором – 2, поэтому после их перемножения мы получим сумму 3•2 = 6 одночленов:

Раскрытие скобок «фонтанчиком» будет выглядеть так:

В результате действительно получилась сумма 6 мономов. Осталось вычислить каждый из них, после чего привести подобные слагаемые:

Заметим, что при перемножении полиномов происходит сложение степеней многочленов. Действительно, в рассмотренном выше примере мы умножили полином второй степени 3a 2 – 4ab + b 2 на полином первой степени 2a– b, и получили в результате многочлен 3-ей (2+1) степени.

Также возможно умножение многочленов в столбик. Особенно это удобно делать в случае с полиномами с одной переменной.

Пример. Найдите произведение выражений 2x 3 + 3x 2 +5x + 9 и x 2 + 4x + 7.

Решение: Запишем полиномы в столбик, один под другим:

Далее умножим самый правый моном второго многочлена, то есть число 7, на первый полином, и запишем его ниже:

Далее умножим следующий моном, 4х, на первый полином, и запишем результат ещё ниже, причем сместим запись чуть влево, чтобы подобные члены оказались друг под другом:

Осталось сложить подобные слагаемые (то есть переменные х с одинаковыми степенями), которые записаны друг под другом:

Ещё раз цветом выделим подобные слагаемые и результаты их суммирования:

Ответ: 2х 5 + 11х 4 + 31х 3 + 50х 2 + 71х +63.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *