что такое мнимая часть
Числа. Комплексные (мнимые) числа.
Множество всех комплексных чисел с арифметическими операциями есть поле и обычно обозначают как .
Мнимое число (либо чисто мнимое число) — комплексное число с действительной частью, равной нулю. Раньше этим термином обозначали комплексные числа.
Комплексные числа изображаются на комплексной плоскости:
Например, построим на комплексной плоскости следующие комплексные числа:
,
,
,
,
,
,
,
,
,
.
Действия над комплексными числами.
означает, что a = c и b = d (2 комплексных числа равны между собой только в том случае, если равны их действительные и мнимые части).
(a + bi) + (c + di) = (a + c) + (b + d)i.
Для того чтобы сложить 2 комплексных числа нужно сложить их действительные и мнимые части:
(a + bi) – (c + di) = (a – c) + (b – d)i.
Действие аналогично сложению, отличие только в том, что вычитаемое берем в скобки, а потом – как обычно раскрываем их со сменой знака:
У числа, которое мы получили 2, а не 3 части. Так как действительная часть является составной: . Что было понятней ответ перепишем так:
.
Рассчитываем 2-ю разность:
Здесь действительная часть тоже составная: .
Приведем короткий пример с «нехорошей» мнимой частью: . В этом случае без скобок никак не обойтись.
Найдем произведение комплексных чисел ,
Раскрываем скобки, как обычно. Обратите внимание, что и будьте внимательны.
Напомним: Чтобы умножить многочлен на многочлен надо все члены 1-го многочлена умножить на каждый член другого многочлена.
Очевидно, что .
Как и в сумме, в произведении комплексных чисел работает перестановочный закон: .
Произведение 2-х сопряжённых комплексных чисел равно положительному действительному числу.
Если делитель ненулевой, деление всегда возможно.
Есть комплексные числа ,
. Найдем частное
.
Деление чисел производится способом умножения знаменателя и числителя на сопряженное знаменателю выражение.
Напомним, что и смотрим на наш знаменатель:
. В знаменателе уже имеется
, поэтому сопряженным выражением в данном случае оказывается
, т.е.
.
Из правила, знаменатель необходимо домножить на , и, чтобы ничего не изменилось, умножить числитель на такое же число
:
Дальше в числителе раскрываем скобки. А в знаменателе пользуемся формулой (при
).
Часто перед делением дробь лучше упростить.
Свойства комплексных чисел.
1. Основная теорема алгебры.
У всех, не являющихся константой многочленов (от одной переменной) с комплексными коэффициентами есть как минимум 1 корень в поле комплексных чисел.
2. Формула Муавра и извлечение корней из комплексных чисел.
Эта формула помогает возводить в целую степень комплексное число, не равное нулю, которое представлено в тригонометрической форме.
Формула Муавра имеет вид:
где r — модуль, а φ — аргумент комплексного числа.
Аналогичная формула применяется также и при вычислении корней n-ой степени из комплексного числа, не равного нулю:
Заметим, что корни n-й степени из комплексного числа, не равного нулю, всегда есть, и их чило равно n. На комплексной плоскости, как видно из формулы, все эти корни оказываются вершинами правильного n-угольника, который вписан в окружность радиуса с центром в начале координат.
Например, корни 5-ой степени из единицы (вершины пятиугольника):
Введение в комлексные числа
Выяснив, что многие знакомые программисты не помнят комплексные числа или помнят их очень плохо, я решил сделать небольшую шпаргалку по формулам.
А школьники могут что-то новое узнать 😉
// Всех кого заинтересовал прошу под кат.
Итак, комплексные числа эта такие числа, которые можно записать как
Где x, y вещественные числа(т.е привычные всем числа), а i — число, для которого
выполняется равенство
x называется действительной частью, y — мнимой.
Это алгебраическая форма записи комплексного числа.
Существует также тригонометрическая форма записи комплексного числа z:
С введением, пожалуй, все.
Переходим к самому интересному — операциям над комплексными числами!
Для начала рассмотрим сложение.
У нас есть два таких комплексных числа:
Как же их сложить?
Очень просто: сложить действительную и мнимую части.
Получим число:
Все просто, не так ли?
Вычитание выполняется аналогично сложению.
Нужно просто вычесть из действительной части 1 числа действительную часть 2 числа,
а потом проделать тоже с мнимой частью.
Получим число
Умножение выполняется вот так:
Напомню, x это действительная часть, y — мнимая.
Деление выполняется вот так:
Кстати, поддержка комплексных чисел есть в стандартной библиотеке Python:
Вместо i используется j.
Кстати, это потому что Python принял конвенцию инженеров-электриков, у которых
буква i обозначает электрический ток.
Задавайте свой вопросы, если они есть, в комментариях.
Надеюсь, вы узнали для себя что-то новое.
UPD: В комментариях просили рассказать о практическом применении.
Так вот комплексные числа нашли широкое практическое применение в авиации
(подъемная сила крыла) и в электричестве.
Как видете, очень нужная вещь 😉
Комплексные числа — простое объяснение. Сложение, вычитание, умножение и деление комплексных чисел
Комплексные числа не так сложны, как могло бы показаться. В начале они назывались невозможными числами. Также их еще называли мнимыми или воображаемыми, поскольку действительно чтобы их представить, требуется немного воображения. В данном обзоре постараемся в доступной форме с наглядными примерами разобраться с данными числами.
Комплексные числа — простое объяснение
Для того, чтобы разобраться с комплексными числами, следует для начала рассмотреть множество действительных чисел. К этому множеству относятся целые числа, и дроби, и иррациональные числа. При этом каждой точке числовой прямой обязательно соответствует некоторое действительное число.
Рассмотрим две точки на прямой А = 1 и Б = 2. Сложим эти две точки. Их сумма эта третья точка В = 1+2 = 3.
Точки также можно перемножать. Посмотрим, например, как действует умножения на минус 2. Данное действие преобразует точку 1 в минус 2. Если мы снова умножим на минус 2, то нужно будет повторить аналогичное передвижение на прямой, поменять стороны относительно начала координат и удвоить расстояние до него. В результате получим 4.
Умножение на минус 1 устроено просто. Каждая точка переходит в симметричную ей относительно начала координат. Другими словами нужно сделать пол оборота (повернуть на 180°). Повторение умножения на минус 1 приводит в исходное положение. Умножение на минус 1 переводит 1 в минус 1. Если еще раз умножить на минус 1, мы вернемся обратно в 1.
На данном этапе можно выделить правило, что если умножить число на себя, результат всегда будет положительным. Другими словами минус 1 не имеет квадратного корня. Но только не в случае с комплексными числами.
В начале 19 века Робер Арган высказал следующую идею. Поскольку умножить на минус 1 означает повернуть на 180°, то квадратный корень из минус 1 означает повернуть на половину (90°). Если повернуть дважды на четверть оборота, вы сделаете пол оборота. Квадрат четверти оборота — это пол оборота (минус 1). То есть квадратный корень из минус 1 отвечает точке, в которую минус 1 переходит при повороте на 90°. Поскольку такое построение, выходящее за пределы горизонтальной прямой, выглядит странным, говорят, что такая точка, являющаяся квадратным корнем из минус 1 — это мнимое число. И в математике оно обозначается — i.
С выходом за пределы прямой, все последующие действия производятся легко. Можно отметить числа 2i, 3i и так далее. Каждой точке плоскости отвечает комплексное число. И наоборот — всякое комплексное число задает точку на плоскости.
Операции с комплексными числами
Так же как и для вещественных чисел, для комплексных чисел определены операции сложения, вычитания, умножения и деления. Однако многие свойства комплексных чисел отличаются от свойств вещественных чисел. Например, нельзя указать, какое из двух комплексных чисел больше или меньше.
Сложение и вычитание комплексных чисел
Комплексные числа могут складываться и вычитаться как обычные.
Рассмотрим точку, обозначающую число 1+2i. Прибавим к нему число 3+1i. Можно сложить столбиком и получить 4+3i. Геометрически это обычное сложение векторов.
Разность комплексных чисел, записанных в алгебраической форме, представляет собой комплексное число, действительная часть которого и коэффициент при мнимой части равны соответственно разности действительных частей и разности коэффициентов при мнимой части уменьшаемого и вычитаемого.
В общем виде вычитание комплексных чисел z1 = a+bi и z2 = c+di можно записать так: z1-z2 = (a+bi)-(c+di) = (a-c)+(b-d)i.
Несколько примеров вычитания:
Умножение и деление комплексных чисел
Комплексные числа перемежаются точно также, как и действительные числа. Рассмотрим несколько примеров.
2×(1+1i) = 2+2i. Геометрически умножение на два выглядит как растягивание прямой с точкой на плоскости в два раза.
Частное комплексных чисел z1 = x1+y1i и z2 = x2+y2i в алгебраической форме находится путем домножения числителя и знаменателя на сопряженное число к знаменателю:
z1÷z2 = (x1+y1i)÷(x2+y2i) = ((x1+y1i)×(x2-y2i))÷((x2+y2i)×(x2-y2i)) = ((x1×x2+y1×y2)÷(x2²+y2²)) + (i×(x2×y1-x1×y2)÷(x2²+y2²)).
Комплексные числа — тригонометрическая форма
Казалось бы, плоскость двухмерная, так как для описания произвольной точки нужны два числа. На самом же деле можно обойтись одним числом. Для этого используется тригонометрическая форма представления. То есть z = a+bi можно представить как z = [z]×(cosφ+i×sinφ), где:
По теореме Пифагора легко вывести формулу для нахождения модуля комплексного числа: [z] = √(a²+b²). Данная формула справедлива для любых значений a и b.
Для нахождения аргумента (φ или argz) нужно воспользоваться следующими формулами:
Как видно, комплексные числа не так сложны, как могло бы показаться на первый взгляд. Ознакомившись с простым объяснением и методикой работы с ними, вы научитесь складывать, вычитать, умножать и делить комплексные числа. Также вы сможете переводить комплексные числа из алгебраической формы в тригонометрическую.
Что такое мнимая часть
VII .1. Формы записи комплексных чисел и действия над ними
где x и y – действительные числа, а i так называемая мнимая единица. Соотношение для мнимой единицы
Понятия «больше» и «меньше» для комплексных чисел не вводятся.
Числа z = x + iy и называются комплексно сопряженными.
Алгебраической формой комплексного числа называется з апись числа z в виде z = x + iy.
Модуль r и аргумент φ можно рассматривать как полярные координаты вектора , изображающего комплексное число z = x + iy (см. рис. 7.1). Тогда из соотношений сторон в прямоугольном треугольнике получаем
Равенство (7.3) есть тригонометрическая форма комплексного числа. Модуль r = |z| однозначно определяется по формуле
Аргумент определяется из формул:
Используя формулу Эйлера
комплексное число можно записать в так называемой показательной (или экспоненциальной) форме
где r =| z | — модуль комплексного числа, а угол ( k =0;–1;1;–2;2…).
Пример 7.1. Записать комплексные числа в тригонометрической и показательной формах.
На множестве комплексны х чисел определен ряд операций.
Из (7.11) следует важнейшее соотношение i 2 = –1. Действительно,
Видно, что при умножении комплексных чисел в тригонометрической форме их модули перемножаются, а аргументы складываются. Это правило распространяется на любое конечное число множителей. Нетрудно видеть, что если есть n множителей и все они одинаковые, то частным случаем равенства (7.12) является формула возведения комплексного числа в натуральную степень:
(7.13) называется первой формулой Муавра.
Произведение двух комплексных чисел в показательной (экспоненциальной) форме имеет вид:
На практике при нахождении частного двух комплексных чисел удобно умножить числитель и знаменатель дроби на число, сопряженное знаменателю, с дальнейшим применением равенства i 2 = –1 и формулы разности квадратов.
Деление комплексных чисел осуществляется также и в тригонометрической форме, при этом имеет место формула:
Видно, что при делении комплексных чисел их модули делятся, а аргументы вычитаются соответственно.
Частное двух комплексных чисел в показательной (экспоненциальной) форме имеет вид:
Пользуясь формулой (7.11), вычислим их произведение
На основании формулы (7.14) вычислим их частное
Решение. Используя (7.4) и (7.5), получаем:
Аналогично, для z 2 можно записать:
По формулам (7.12) и (7.16) получим в тригонометрической форме:
Пользуясь формулами (7.14) и (7.17), получим в показательной форме:
в натуральную степень, определенному ранее формулой (7.13).
(7.18) называется второй формулой Муавра.
Пример 7.4. Найти все корни уравнения z 4 +16=0.
Теорема 7.1 (основная теорема алгебры). Для всякого многочлена с комплексными коэффициентами
Приведем еще одну теорему, имеющую место над множеством комплексных чисел.
Таким образом, произведение линейных множителей, соответствующих сопряженным корням, можно заменить квадратным трехчленом с действительными коэффициентами, а соответствующее квадратное уравнение будет иметь отрицательный дискриминант.