что такое микропроцессор в информатике определение

Микропроцессор

что такое микропроцессор в информатике определение. Смотреть фото что такое микропроцессор в информатике определение. Смотреть картинку что такое микропроцессор в информатике определение. Картинка про что такое микропроцессор в информатике определение. Фото что такое микропроцессор в информатике определение

что такое микропроцессор в информатике определение. Смотреть фото что такое микропроцессор в информатике определение. Смотреть картинку что такое микропроцессор в информатике определение. Картинка про что такое микропроцессор в информатике определение. Фото что такое микропроцессор в информатике определение

Микропроце́ссор — процессор (устройство, отвечающее за выполнение арифметических, логических операций и операций управления, записанных в машинном коде), реализованный в виде одной микросхемы [1] или комплекта из нескольких специализированных микросхем [2] (в отличие от реализации процессора в виде электрической схемы на элементной базе общего назначения или в виде программной модели). Первые микропроцессоры появились в 1970-х годах и применялись в электронных калькуляторах, в них использовалась двоично-десятичная арифметика 4-битных слов. Вскоре их стали встраивать и в другие устройства, например терминалы, принтеры и различную автоматику. Доступные 8-битные микропроцессоры с 16-битной адресацией позволили в середине 1970-х годах создать первые бытовые микрокомпьютеры.

Долгое время центральные процессоры создавались из отдельных микросхем малой и средней интеграции, содержащих от нескольких единиц до нескольких сотен транзисторов. Разместив целый процессор на одном чипе сверxбольшой интеграции, удалось значительно снизить его стоимость. Несмотря на скромное начало, непрерывное увеличение сложности микропроцессоров привело к почти полному устареванию других форм компьютеров. В настоящее время один или несколько микропроцессоров используются в качестве вычислительного элемента во всём, от мельчайших встраиваемых систем и мобильных устройств до огромных мейнфреймов и суперкомпьютеров.

С начала 1970-х годов широко известно, что рост мощности микропроцессоров следует закону Мура, который утверждает, что число транзисторов на интегральной микросхеме удваивается каждые 18 месяцев. В конце 1990-х главным препятствием для разработки новых микропроцессоров стало тепловыделение (TDP). [3]

В настоящее время, в связи с очень незначительным распространением процессоров, не являющихся микропроцессорами, в бытовой лексике термины «микропроцессор» и «процессор» практически равнозначны.

Первые микропроцессоры

Почти одновременно появились три проекта по созданию микропроцессора: Central Air Data Computer (CADC) в Garrett AiResearch (1968), TMS 1000 в Texas Instruments (1971) и 4004 в Intel (1971).

Источник

Микропроцессор: что нужно знать начинающим электронщикам

Микропроцессор (CPU или Центральный процессор*) – устройство обработки цифровой и аналоговой информации, основная часть аппаратного контроля системы, а заодно и главный инструмент, способный проводить арифметические и логические операции, записанные с использованием машинного кода.

что такое микропроцессор в информатике определение. Смотреть фото что такое микропроцессор в информатике определение. Смотреть картинку что такое микропроцессор в информатике определение. Картинка про что такое микропроцессор в информатике определение. Фото что такое микропроцессор в информатике определение

Основных функций у ЦП* несколько – передача данных между оперативной памятью и остальными компонентами ПК, синхронизация информации на внешних и внутренних накопителях, организация многопотоковой и многопрограммной работы в бесперебойном режиме, дешифрация машинного кода, синхронизация чисел разного регистра. И хотя перечисленные функции сложно переводимы на «обывательский язык», запомнить стоит следующее – «Центральный процессор» – важнейший элемент любого персонального компьютера.

И еще на заметку удивительный факт – за все те годы развития микропроцессоров им так и не нашлось никакой альтернативы. Даже современные новинки от Intel, справляющиеся с нагрузкой в тысячу раз быстрее, чем все конкуренты из далекого прошлого, и домашние чипы, обгоняющие по скорости все компьютеры, находившиеся на базе космического корабля «Аполлон», покорившего Луну, так и остаются процессорами с одинаковыми задачами и целями…

Назначение и область применения микропроцессоров

Функционально микропроцессор предназначен для решения следующих задач:

Кроме того, важно понимать, из каких именно частей состоит любой процессор:

История развития: первый микропроцессор

Транзисторы, электромеханические реле, сердечники, вакуумные лампы – первые процессоры, старательно выполнявшие несложные арифметические и логические операции, появились еще в далеком 1940 году, но оставались ненадежными, громоздкими, да и неприменимыми в бытовых условиях (основное назначение – государственные разработки, крупные и набирающие обороты перерабатывающие фирмы) – слишком большое выделение энергии, неконтролируемая теплоотдача, низкая скорость обработки данных. Мечтать о домашнем применении подобных чипов и не приходилось, хотя бы из-за нехватки свободного места. Поставить в какой-нибудь из комнат ЭВМ с микропроцессором получилось бы лишь во дворце.

Со временем все изменилось. В 1970 году Эдвард Хофф, представлявший крупнейший отдел разработки компонентов для электронно-вычислительных машин, представил руководителям компании Intel интегральную схему, выполнявшую те же функции, что и чипы ЭВМ, но с маленьким нюансом – плата Эдварда помещалась в руке, обрабатывала 4 бита информации в секунду (конкуренты выдавали мощности в разы серьезнее – до 32 бит одновременно), и стоила в тысячу раз дешевле.

Первые калькуляторы снабжали именно процессором 4004 Эдварда Хоффа, которые появились в продаже в начале 1971 года. С этого момента, как принято считать, и началась эра новых процессоров, изменивших мир.

Дальше история развития микропроцессоров двинулась следующим путем:

Далее появились поставки многоядерных процессоров, затем появился Xeon и Intel Core, а после на мировом рынке загорелась новая звезда – модульные процессоры AMD. С тех пор (а именно с 2007 года) между двумя компаниями и ведется беспрерывная война за внимание пользователей.

На текущий момент хотя бы примерно описать состояние рынка МП невозможно – Intel Core представляет новые архитектуры микропроцессора (Coffee Lake, Skylake, Haswell, Kaby Lake) чуть ли не каждый год, а заодно меняет наименования семейства процессоров (Intel Core i3, i5, i7, i9). AMD старается удивлять низкими ценами и внушительными возможностями разгона. И кто в таком хаосе лидер – до сих пор не разобрать.

Разновидности микропроцессоров

И современные, и давно известные миру МП легко разделить на четыре части:

Основные характеристики

К основным характеристикам микропроцессора относятся:

Особенности российских микропроцессоров

С 1998 года и по сей день в отечественном сегменте разработкой микропроцессоров занимается компания «МЦСТ». Результаты впечатляющие – стабильное производство RISC систем, внедрение серии Эльбрус в применение на военно-оборонительных комплексах, космических станциях и засекреченных базах для передачи данных с максимальным уровнем шифрования. Заслуги компании «МЦСТ» серьезные, хотя многими обывателями подобные «успехи» кажутся смешными, на фоне мировых гигантов вроде Intel и AMD.

Да, достижения еще не те, но и цели совсем разные, верно? Едва ли «Эльбрус» стоит расценивать, как игровой чип, способный запустить все современные развлечения в максимальном качестве – это, в первую очередь, система для сверхбыстрой обработки данных (прежде всего, военного назначения) в полевых и даже экстремальных условиях.

История развития процессоров из России:

Источник

Что такое микропроцессор его виды назначение и характеристики?

Микропроцессор — это центральный блок персонального компьютера, предназначенный для управления работой всех остальных блоков и выполнения арифметических и логических операций над информацией.

Микропроцессор выполняет следующие основные функции:

1.чтение и дешифрацию команд из основной памяти;

2.чтение данных из основной памяти и регистров адаптеров внешних устройств;

3.прием и обработку запросов и команд от адаптеров на обслуживание внешних устройств;

4.обработку данных и их запись в основную память и регистры адаптеров внешних устройств;

5.выработку управляющих сигналов для всех прочих узлов и блоков компьютера.

В состав микропроцессора входят следующие устройства.

1. Арифметико-логическое устройство предназначено для выполнения всех арифметических и логических операций над числовой и символьной информацией.

2. Устройство управления координирует взаимодействие различных частей компьютера. Выполняет следующие основные функции:

oформирует и подает во все блоки машины в нужные моменты времени определенные сигналы управления (управляющие импульсы), обусловленные спецификой выполнения различных операций;

oформирует адреса ячеек памяти, используемых выполняемой операцией, и передает эти адреса в соответствующие блоки компьютера;

oполучает от генератора тактовых импульсов обратную последовательность импульсов.

3. Микропроцессорная память предназначена для кратковременного хранения, записи и выдачи информации, используемой в вычислениях непосредственно в ближайшие такты работы машины. Микропроцессорная память строится на регистрах и используется для обеспечения высокого быстродействия компьютера, так как основная память не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего микропроцессора.

4. Интерфейсная система микропроцессора предназначена для связи с другими устройствами компьютера. Включает в себя:

oвнутренний интерфейс микропроцессора;

oбуферные запоминающие регистры;

К микропроцессору и системной шине наряду с типовыми внешними устройствами могут быть подключены и дополнительные платы с интегральными микросхемами, расширяющие и улучшающие функциональные возможности микропроцессора. К ним относятся математический сопроцессор, контроллер прямого доступа к памяти, сопроцессор ввода-вывода, контроллер прерываний и др.

Математический сопроцессор используется для ускорения выполнения операций над двоичными числами с плавающей запятой, над двоично-кодированными десятичными числами, для вычисления тригонометрических функций. Математический сопроцессор имеет свою систему команд и работает параллельно с основным микропроцессором, но под управлением последнего. В результате происходит ускорение выполнения операций в десятки раз. Модели микропроцессора, начиная с МП 80486 DX, включают математический сопроцессор в свою структуру.

Контроллер прямого доступа к памяти освобождает микропроцессор от прямого управления накопителями на магнитных дисках, что существенно повышает эффективное быстродействие компьютера.

Сопроцессор ввода-вывода за счет параллельной работы с микропроцессором значительно ускоряет выполнение процедур ввода-вывода при обслуживании нескольких внешних устройств, освобождает микропроцессор от обработки процедур ввода-вывода, в том числе реализует режим прямого доступа к памяти.

Прерывание — это временный останов выполнения одной программы в целях оперативного выполнения другой, в данный момент более важной. Контроллер прерываний обслуживает процедуры прерывания, принимает запрос на прерывание от внешних устройств, определяет уровень приоритета этого запроса и выдает сигнал прерывания в микропроцессор.

Все микропроцессоры можно разделить на группы:

1.микропроцессоры типа CISC с полным набором системы команд;

2.микропроцессоры типа RISC с усеченным набором системы команд;

3.микропроцессоры типа VLIW со сверхбольшим командным словом;

4.микропроцессоры типа MISC с минимальным набором системы команд и весьма высоким быстродействием и др.

Важнейшими характеристиками микропроцессора являются:

1.тактовая частота. Характеризует быстродействие компьютера. Режим работы процессора задается микросхемой, называемой генератором тактовых импульсов. На выполнение процессором каждой операции отводится определенное количество тактов. Тактовая частота указывает, сколько элементарных операций выполняет микропроцессор за одну секунду. Тактовая частота измеряется в МГц;

2.разрядность процессора — это максимальное количество разрядов двоичного числа, над которым одновременно может выполняться машинная операция. Чем больше разрядность процессора, тем больше информации он может обрабатывать в единицу времени и тем больше, при прочих равных условиях, производительность компьютера;

4устройства ввода информации стандартные и не стандартные?

Процесс взаимодействия пользователя с персональным компьютером (ПК) непременно включает процедуры ввода входных данных и получение результатов обработки этих данных. Поэтому, обязательными составляющими типичной конфигурации ПК являются разнообразные устройства ввода-вывода, среди которых можно выделить стандартные устройства, без которых современный процесс диалога вообще невозможен, и периферийные, т.е дополнительные. К стандартным устройствам ввода-вывода относятся монитор, клавиатура и манипулятор мышка.

Клавиатура – это, пожалуй, самое важное и самое универсальное устройство до тех пор, пока ввод слов и символов остаётся единственным источником информации. Стандартные клавишные устройства позволяют не только осуществить ввод необходимой информации, но и подавать управляющие сигналы для компьютера, обычно реализованы дополнительными клавишами.

Манипулятор (абсолютный дигитайзер + относительные мышь, трекбол-мышь, джойстик и тачпад) – это ручные координатные устройства служащие для управления курсором.

1.Мышь — является довольно весомым аргументом, облегчающим использование интерфейса операционной системы: иначе пользователь просто на просто потеряется в интерфейсе операционной системы и ее программах (окна, иконки, боксы и пр.) Компьютерные мыши бывают с 2-мя или 3-мя кнопками; оптико-механические, оптические или инфракрасные.

2.Трекбол-мышь – это, по сути, «мышь наоборот» (само устройство остаётся неподвижным, вращается только шарик вверху). Область применения – автоматизированное проектирование, графические пакеты и разного рода приложения (требуются плавное перемещение, но четкое позиционирование курсора). Современные компьютерные мыши, а также трекболы могут похвастаться как изысканным дизайном, так и высокотехнологичным функционалом.

Сканер – это устройство для обработки и преобразования графики (текстов, фото, рисунков и т.д.) в их цифровую форму. Сканеры классифицируют на следующие разновидности: ручные или рулонные, планшетные или проекционные.

Цифровая фотокамера – это беспленочное устройство для автоматического ввода графических данных в сжатом виде при помощи USB кабеля, которую можно без труда обработать в соответствующем редакторе и распечатать на листе.

Микрофон – это устройство ввода и обработки электроакустических колебаний, используемое в звукозаписи, телефонии, радиовещании и телевидении. Сами по себе микрофоны бывают электродинамические, электростатические или электромагнитные; полупроводниковые, пьезоэлектрические или угольные.

Сенсор – это чувствительная поверхность со специальным слоем и со специальным датчиком, ввод возможен с помощью перемещения курсора обычным движением пальца.

1.Дигитайзер или цифровой преобразователь, зачастую выполненный в виде планшета, а потому его часто называют «графическим планшетом». В основном используется в узких кругах специалистов анимации, проектирования и компьютерной графики – там, где нужен самый точный ввод любой графической информации.

2.Сенсорный экран лежит в основе любого чувствительного оборудования, собирающего информацию при помощи датчиков на поверхности. Данное устройство самодостаточно, что позволяет обходиться и без мыши, и без клавиатуры, к тому же и без ущерба надежному и скоростному управлению. В промышленности и в медицине, а также в публичных местах, высокопрочные сверхчувствительные экраны котируются как альтернатива №1 другим способам получения важных данных. Данный способ ввода нужной информации широко используется в современных телефонах и смартфонах, а также в моноблоках и ноутбуках.

3.Световое перо, соединенное проводом с USB вилкой, передающее информацию за счет фотоэлемента и работающее путем прикосновения с экраном, есть разновидность манипуляторов, внешне похожих на шариковую ручку с 1 и более кнопками (по типу как у мыши). Оно может служить элементом графического планшета, но не может использоваться с обыкновенным ЖК-монитором.

На самом деле, устройства ввода информации в компьютер не ограничиваются вышеперечисленными элементами, а их многообразие в компьютерном мире не перестает удивлять. Например, двухмерную мышь и трехмерный навигатор широко используют для пространственных задач, например, для CAD-приложений. Таким образом, можно с твердой уверенностью заявить, что человек и машина сегодня просто обязаны понимать друг друга с полуслова и с первого ввода, но для этого нужны ещё и устройства вывода информации.

Статьи к прочтению:

КАК ВЫБРАТЬ ПРОЦЕССОР ДЛЯ КОМПЬЮТЕРА, НА КАКИЕ ХАРАКТЕРИСТИКИ ОБРАТИТЬ ВНИМАНИЕ

Похожие статьи:

Внешние устройства Кроме системного блока в состав персонального компьютера входит дисплей(монитор), на который выводится текстовая и графическая…

Источник

Микропроцессор, его структура и основные характеристики

по дисциплине «Микропроцессоры и микроконтроллеры»

на тему:«Классификация микропроцессоров, области применения»

Микропроцессор, его структура и основные характеристики. 4

Группы микропроцессоров: 6

Микропроцессоры типа CISC.. 6

Микропроцессоры типа RISC.. 7

Важнейшие характеристики микропроцессора: 8

Общая классификация микропроцессоров. 8

Области применения микропроцессоров. 10

В современном мире трудно найти область техники, где не применялись бы микропроцессоры. Они применяются при вычислениях, они выполняют функции управления, они используются при обработке звука и изображения. В зависимости от области применения микропроцессора меняются требования к нему. Это накладывает отпечаток на внутреннюю структуру микропроцессора. По области применения определилось три направления развития микропроцессоров:

По внутренней структуре существует два основных принципа построения микропроцессоров:

По системе команд микропроцессоры отличаются огромным разнообразием, зависящим от фирмы-производителя. Тем не менее можно определить две крайние политики построения микропроцессоров:

• Микропроцессоры с регистрами общего назначения

В микропроцессорах с регистрами общего назначения математические операции могут выполняться над любой ячейкой памяти. В зависимости от типа операции команда может быть одноадресной, двухадресной или трёхадресной.

Принципиальным отличием аккумуляторных процессоров является то, что математические операции могут производиться только над одной

особой ячейкой памяти — аккумулятором. Для того, чтобы произвести операцию над произвольной ячейкой памяти её содержимое необходимо скопировать в аккумулятор, произвести требуемую операцию, а затем скопировать полученный результат в произвольную ячейку памяти.

В настоящее время в чистом виде не существует ни та ни другая система команд. Все выпускаемые в настоящее время процессоры обладают системой команд с признаками как аккумуляторных процессоров, так и микропроцессоров с регистрами общего назначения.

В Гарвардской архитектуре принципиально различаются два вида памяти:

В Гарвардской архитектуре принципиально невозможно производить операцию записи в память программ, что исключает возможность случайного разрушения управляющей программы в случае неправильных действий над данными. Кроме того, в ряде случаев для памяти программ и памяти данных выделяются отдельные шины обмена данными. Эти особенности определили области применения этой архитектуры построения микропроцессоров. Гарвардская архитектура применяется в микроконтроллерах, где требуется обеспечить высокую надёжность работы аппаратуры и в сигнальных процессорах, где эта архитектура кроме обеспечения высокой надёжности работы устройств позволяет обеспечить высокую скорость выполнения программы, за счёт одновременного считывания управляющих команд и обрабатываемых данных, а также запись полученных результатов в память данных.

Отличие архитектуры Фон Неймана заключается в принципиальной возможности работы над управляющими программами точно так же как над данными. Это позволяет производит загрузку и выгрузку управляющих программ в произвольное место памяти процессора, которая в этой структуре не разделяется на память программ и память данных. Любой участок памяти может служить как памятью программ, так и памятью данных. Причём в разные моменты времени одна и та же область памяти может использоваться и как память программ и как память данных. Для того, чтобы программа могла работать в произвольной области памяти, её необходимо модернизировать перед загрузкой, то есть работать с нею как с обычными данными. Эта особенность архитектуры позволяет наиболее гибко управлять работой микропроцессорной системы, но создаёт принципиальную возможность искажения управляющей программы, что понижает надёжность работы аппаратуры. Эта архитектура используется в универсальных компьютерах и в некоторых видах микроконтроллеров.

Микропроцессор, его структура и основные характеристики

Микропроцессор — это центральный блок персонального компьютера, предназначенный для управления работой всех остальных блоков и выполнения арифметических и логических операций над информацией.

Микропроцессор выполняет следующие основные функции:

1. чтение и дешифрацию команд из основной памяти;

2. чтение данных из основной памяти и регистров адаптеров внешних устройств;

3. прием и обработку запросов и команд от адаптеров на обслуживание внешних устройств;

4. обработку данных и их запись в основную память и регистры адаптеров внешних устройств;

5. выработку управляющих сигналов для всех прочих узлов и блоков компьютера.

В состав микропроцессора входят следующие устройства.

1. Арифметико-логическое устройство предназначено для выполнения всех арифметических и логических операций над числовой и символьной информацией.

2. Устройство управления координирует взаимодействие различных частей компьютера. Выполняет следующие основные функции:

3. Микропроцессорная память предназначена для кратковременного хранения, записи и выдачи информации, используемой в вычислениях непосредственно в ближайшие такты работы машины. Микропроцессорная память строится на регистрах и используется для обеспечения высокого быстродействия компьютера, так как основная память не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего микропроцессора.

4. Интерфейсная система микропроцессора предназначена для связи с другими устройствами компьютера. Включает в себя:

— внутренний интерфейс микропроцессора;

— буферные запоминающие регистры;

— схемы управления портами ввода-вывода и системной шиной.

1. микропроцессоры типа CISC с полным набором системы команд;

2. микропроцессоры типа RISC с усеченным набором системы команд;

3. микропроцессоры типа VLIW со сверхбольшим командным словом;

4. микропроцессоры типа MISC с минимальным набором системы команд и весьма высоким быстродействием и др.

Микропроцессоры типа CISC

Микропроцессор CISC использует набор машинных инструкций, полностью соответствующий набору команд языка ассемблера. Вычисления разного типа в нем могут выполняться различными командами. Такая архитектура обеспечивает разнообразные и мощные способы выполнения вычислительных операций на уровне машинных команд, но для выполнения каждой команды обычно требуется большое число тактов процессора.

Для CISC-процессоров характерно:

— сравнительно небольшое число регистров общего назначения;

— большое количество машинных команд;

— большое количество методов адресации;

— большое количество форматов команд различной разрядности;

— преобладание двухадресного формата команд; наличие команд обработки типа регистр-память.

Микропроцессоры типа RISC

Микропроцессоры с архитектурой RISC ( Reduced Instruction Set Computers ) используют сравнительно небольшой (сокращённый ) набор команд, определённый в результате статистического анализа большого числа программ для основных областей применения CISC — процессоров исходной архитектуры. Все команды работают с операндами и имеют одинаковый формат. Обращение к памяти выполняется с помощью специальных команд загрузки регистра и записи. Простота структуры и небольшой набор команд позволяет реализовать полностью их аппаратное выполнение и эффективный конвейер при небольшом объеме оборудования. Арифметику RISC — процессоров отличает высокая степень дробления конвейера. Этот прием позволяет увеличить тактовую частоту (производительность) компьютера. RISC — процессоры в 2 — 4 раза быстрее имеющих ту же тактовую частоту CISC — процессоров.

Дейв Паттерсон и Карло Секуин сформулировали 4 основных принципа RISC:

1. Любая операция должна выполняться за один такт, вне зависимости от ее типа.

2. Система команд должна содержать минимальное количество наиболее часто используемых простейших инструкций одинаковой длины.

3. Операции обработки данных реализуются только в формате “регистр — регистр.

4. Состав системы команд должен быть “удобен “для компиляции операторов языков высокого уровня.

MISC (Minimum Instruction Set Computer) — Компьютер с минимальной системой команд. Последовательность простых инструкций объединяется в пакет, таким образом, программа преобразуется в небольшое количество длинных команд.

В попытке достижения компромисса между CISC и RISC были созданы микропроцессоры типа VLIW, однако они не получили широкого распространения.

Важнейшие характеристики микропроцессора:

1. тактовая частота. Характеризует быстродействие компьютера. Режим работы процессора задается микросхемой, называемой генератором тактовых импульсов. На выполнение процессором каждой операции отводится определенное количество тактов. Тактовая частота указывает, сколько элементарных операций выполняет микропроцессор за одну секунду. Тактовая частота измеряется в МГц;

2. разрядность процессора — это максимальное количество разрядов двоичного числа, над которым одновременно может выполняться машинная операция. Чем больше разрядность процессора, тем больше информации он может обрабатывать в единицу времени и тем больше, при прочих равных условиях, производительность компьютера.

Статьи к прочтению:

Процессор — что это такое?

Похожие статьи:

Микропроцессор — это центральный блок персонального компьютера, предназначенный для управления работой всех остальных блоков и выполнения арифметических…

КОМПЬЮТЕР, КАК УНИВЕРСАЛЬНОЕ СРЕДСТВО ОБРАБОТКИ ИНФОРМАЦИИ С давних времен люди пытались облегчить свой труд, создавая различные машины и механизмы,…

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *