что такое микрофарады в конденсаторе и для чего нужны
Что такое конденсатор и как он работает?
Если вы рассмотрите печатную плату даже самого простого электронного устройства, то обязательно увидите конденсатор, а чаще всего встретите множество этих элементов. Присутствие этих изделий на различных электронных схемах объясняется свойствами данных радиоэлементов, широким диапазоном функций, которые они выполняют.
В настоящее время промышленность поставляет на рынок конденсаторную продукцию различных видов (рис. 1). Параметры изделий варьируются в широких пределах, что позволяет легко подобрать радиодеталь для конкретной цели.
Рис. 1. Распространённые типы конденсаторов
Рассмотрим более подробно конструкции и основные параметры этих вездесущих радиоэлементов.
Что такое конденсатор?
В классическом понимании конденсатором является радиоэлектронное устройство, предназначенное для накопления энергии электрического поля, обладающее способностью накапливать в себе электрический заряд, с последующей передачей накопленной энергии другим элементам электрической цепи. Устройства очень часто используют в различных электрических схемах.
Конденсаторы способны очень быстро накапливать заряд и так же быстро отдавать всю накопленную энергию. Для их работы характерна цикличность данного процесса. Величина накапливаемого электричества и периоды циклов заряда-разряда определяется характеристиками изделий, которые в свою очередь зависят от типа модели. Параметры этих величин можно определить по маркировке изделий.
Конструкция и принцип работы
Простейшим конденсатором являются две металлические пластины, разделённые диэлектриком. Выступать в качестве диэлектрика может воздушное пространство между пластинами. Модель такого устройства изображена на рис. 2.
Если на конструкцию подать постоянное напряжение, то образуется кратковременная замкнутая электрическая цепь. На каждой металлической пластине сконцентрируются заряды, полярность которых будет соответствоать полярности приложенного тока. По мере накопления зарядов ток будет ослабевать, и в определенный момент цепь разорвётся. В нашем случае это произойдёт молниеносно.
При подключении нагрузки накопленная энергия устремится через нагрузочный элемент в обратном направлении. Произойдёт кратковременный всплеск электрического тока в образованной цепи. Количество накапливаемых зарядов (ёмкость, C) прямо зависит от размеров пластин.
Конструкции современных конденсаторов отличаются от рассматриваемой нами модели. С целью увеличения ёмкости вместо пластин используют обкладки из алюминиевой, ниобиевой либо танталовой фольги, разделённой диэлектриками. Эти слоеные ленты туго сворачивают в цилиндр и помещают в цилиндрический корпус. Принцип работы не отличается от описанного выше.
Существуют также плоские конденсаторы, конструктивно состоящие из множества тонких обкладок, спрессованных между слоями диэлектрика в форме параллелепипеда. Такие модели можно представить себе в виде стопки пластин, образующих множество пар обкладок, соединённых параллельно.
В качестве диэлектриков применяют:
Отдельную группу составляют изделия, у которых одна обкладка выполнена из металла, а в качестве второй выступает электролит. Это класс электролитических конденсаторов (пример на рисунке 3 ниже). Они отличаются от других типов изделий большой удельной ёмкостью. Похожими свойствами обладают оксидно-полупроводниковые модели. Второй анод у них – это слой полупроводника, нанесённый на изолирующий оксидный слой.
Рис. 3. Конструкция радиального электролитического конденсатора
Электролитические модели, а также большинство оксидно-полупроводниковых конденсаторов имеют униполярную проводимость. Их эксплуатация допустима лишь при наличии положительного потенциала на аноде и при номинальных напряжениях. Поэтому следует строго соблюдать полярность подключения упомянутых радиоэлектронных элементов.
На корпусе такого прибора обязательно указывается полярность (светлая полоска со значками «–», см. рис. 4) или значок «+» со стороны положительного электрода на корпусах старых отечественных конденсаторов.
Рисунок 4. Обозначение полярности выводов
Срок службы электролитического конденсатора ограничен. Эти приборы очень чувствительны к высоким напряжениям. Поэтому при выборе радиоэлемента старайтесь, чтобы его рабочее напряжение было значительно выше номинального.
Свойства
Из описания понятно, что для постоянного тока конденсатор является непреодолимым барьером, за исключением случаев пробоя диэлектрика. В таких электрических цепях радиоэлемент используется для накопления и сохранения электричества на его электродах. Изменение напряжения происходит лишь в случаях изменений параметров тока в цепи. Эти изменения могут считывать другие элементы схемы и реагировать на них.
В цепях синусоидального тока конденсатор ведёт себя подобно катушке индуктивности. Он пропускает переменный ток, но отсекает постоянную составляющую, а значит, может служить отличным фильтром. Такие радиоэлектронные элементы применяются в цепях обратной связи, входят в схемы колебательных контуров и т. п.
Ещё одно свойство состоит в том, что переменную емкость можно использовать для сдвига фаз. Существуют специальные пусковые конденсаторы (рис.5), применяемые для запусков трёхфазных электромоторов в однофазных электросетях.
Основные параметры и характеристики
Ёмкость.
Важным параметром конденсатора является его номинальная ёмкость. Для плоского конденсатора справедлива формула:
С = (ε*ε0*S) / d,
где ε – диэлектрическая проницаемость диэлектрика, S – размеры обкладок (площадь пластин), d – расстояние между пластинами (обкладками).
Реальная емкость отдельных элементов обычно невелика, но можно получить конструкцию ёмкостью в несколько фарад, если параллельно соединить огромное число обкладок. В этом случае реальная ёмкость равняется сумме всех ёмкостей обкладок.
Максимальные емкости некоторых конденсаторов могут достигать нескольких фарад.
Удельная ёмкость.
Величина, характеризующая отношение ёмкости к объёму или к массе радиодетали. Данный параметр важен в микроэлектронике, где размеры деталей очень важны.
Номинальное напряжение.
Одной из важных электрических характеристик является номинальное напряжение – значение максимальных напряжений, при которых конденсатор может работать без потери значений других его параметров. При превышении критической величины равной напряжению пробоя происходит разрушение диэлектрика. Поэтому номинальное напряжение подбирают заведомо большее любых возможных максимальных амплитуд синусоидального тока в цепи конденсатора.
Существуют характеристики, такие как тангенс угла потерь, температурный коэффициент ёмкости, сопротивление утечки, диэлектрическая абсорбция и др., которые интересны только узким специалистам, а их параметры можно узнать из специальных справочников.
Классификация
Основные параметры конденсаторных изделий определяются типом диэлектрика. От материала зависит стабильность ёмкости, тангенс диэлектрических потерь, пьезоэффект и другие. Исходя из этого, классификацию моделей целесообразно осуществлять именно по виду диэлектрика.
По данному признаку различают следующие типы изделий:
В твёрдотельных моделях срок службы больший, чем у жидко-электролитических и составляет около 50 000 часов. У них меньшее внутренне сопротивление, то есть ЭПС почти не зависит от температуры, они не взрываются.
Классифицируют изделия и по другому важному параметру – изменению ёмкости. По данному признаку различают:
Все существующие конденсаторы можно условно разделить на общие и специальные. К изделиям общего назначения относятся самые распространённые низковольтные конденсаторы (см. рис. 6). К ним не предъявляют особых требований.
Рис. 6. Конденсаторы общего назначения
Все остальные ёмкостные радиоэлементы принадлежат к классу специального назначения:
Изображённые на фото устройства могут работать в высоковольтных цепях сравнительно низкой частоты.
Маркировка
Для маркировки отечественных изделий применялась буквенная система. Сегодня распространена цифровая маркировка. В буквенной системе применялись символы:
В данной системе маркировки иногда первую букву опускали.
В новой системе маркировки на первом месте может стоять буква К, а после неё идёт буквенно-цифровой код. Для обозначения номинала, вида диэлектрика и номера разработки используют цифры. Пример такой маркировки показан на рисунке 8. Обратите внимание на то, что на корпусе электролитического конденсатора обозначена полярность включения.
Обозначение на схемах
Каждое семейство конденсаторов имеет своё обозначение, позволяющее визуально определить его тип (см. рис. 9).
Рис. 9. Обозначение на схемах
Соединение конденсаторов
Существует два способа соединения: параллельное и последовательное. При параллельном соединении общая ёмкость равна сумме ёмкостей отдельных элементов: Собщ. = С1 + С2 + … + Сn.
Для последовательного соединения расчёт ёмкости рассчитывается по формуле: Cобщ. = ( C1* C2 *…* Cm ) / ( C1 + C2+…+Cn )
Чтобы быстро посчитать общую емкость соединенных конденсаторов лучше воспользоваться нашими калькуляторами:
Применение
Конденсаторы применяются почти во всех областях электротехники. Перечислим лишь некоторые из них:
С помощью этого радиоэлектронного элемента можно получать импульсы большой мощности, что используется, например, в фотовспышках, в системах зажигания карбюраторных двигателей.
F.A.Q. №4 Конденсаторы мифы и реальность. Все что я знаю.
Решил в общем я все таки поднять эту тему в отдельной записи БЖ. О надобности накопителя в цепи питания, о его пользе, вреде и т.д. в интернете ведется масса споров. К сожалению споры эти бесполезны ввиду того что их ведут люди абсолютно не знающие курс школьной физики и просто декламирующие рекламные лозунги и псевдонаучные статьи. В этой записи я хочу изложить все мои наработки по данному вопросу и предлагаю обсудить справедливость или же спорность моих выводов…Итак начнем.
Самое первое что нам стоит сделать это отброс ить подальше познания из подобных статей: avtsound.net.ru/2008/06/0…tor.-mify-i-realnomt.html
Самая большая глупость этих статей- рекомендации конденсаторов к усилителям из расчета столько то фарад на 1 киловатт. Откуда такие рекомендации остается загадкой.В том что такие опусы находятся также далеко от реальности как мы от Гоналулу мы убедимся ниже. Гораздо полезнее обратиться к тем начальным знаниям которые мы с вами получали на уроках физики.Попутно будем развеивать мифы о конденсаторах.
Аксиома №1 Конденсатор является ПОТРЕБИТЕЛЕМ в сети. То есть он НЕ способен вырабатывать электроэнергию! Он способен ее НАКАПЛИВАТЬ и частично ПОТРЕБЛЯТЬ на собственные утечки и потери в конденсаторах. А это значит что он ПО ОПРЕДЕЛЕНИЮ не может ни продлить жизнь аккумулятору ни облегчить ему жизнь.
Аксиома №2 Конденсатор служит для накопления энергии и отдачи этой энергии потребителю. При этом обладая крайне низким внутренним сопротивлением он отдает энергию потребитель очень быстро и накапливает соответственно тоже. При этом он работает совсем не как аккумулятор. Пик отдачи приходится на первое мгновение потребления, после этого заряд начнет резко падать, скорость его отдачи падает вместе с зарядом.
Теперь давайте научимся отличать ИОНИСТОР от КОНДЕНСАТОРА.
Об этих терминах вы можете почитать в википедии, я же просто подытожу в двух словах. То что ездит в багажнике 90 процентов любителей звука под марками пролоджи, мистери, NRG и т.д. по вполне приемлимым ценам это есть ничто иное как ионистор Отличается он от конденсатора тем что имеет гораздо большие потери внутри себя, имеет большое внутреннее сопротивление и гораздо линивее отдает заряд. Ну и тем что стоит в десятки раз дешевле от конденсатора той же емкости. Ввиду чрезвычайной распространенности ионисторов остановимся подробнее на нем.А конкретнее на мифе о том что конденсатор в цепи питания в случаях просадок обеспечит энергией усилитель саба.Причин просадок бывает много.Рассмотрим основные. Но перед этим прикинем на что ж способен то наш накопитель и сделаем эксперимент расчета в чистом виде. то есть зарядим и потом запустим от накопителя усилитель:
Цитата из википедии:magnitola.info/index.php?…8%D1%81%D1%82%D0%BE%D1%80
» Из школьного курса физики
1ампер X 1сек = 1 кулон,
1ампер X 1вольт = 1 ватт,
1ампер X 1ом = 1 вольт,
1фарада X 1вольт = 1 кулон.
Таким образом в конденсаторе запасается
1фарад Х 12 вольт = 12 кулон
1000 ватт усилитель это 12 вольт Х 83 Ампер = то есть за 1 секунду 83 кулона 12 \ 83 = за 0,15 секунды разрядится ионистор до ноля».
Это и будет максимальное время работы ионистора. То есть в различных вариантах максимальной работа системы от него не превысит секунды. Но не стоит забывать что на 8.9 вольт усилитель прекратит работать. То есть время работы сократится втрое.
Фуух с теорией разобрались. Теперь к практике. Конденсатро был одним из первых автозвуковых девайсов который у меня появился.Вернее ионистором пролоджи 1.5 фарада в старом исполнении когда вместо вольтметра на накопители устанавливали дистрибьюторы питания. Соответственно на его веку у меня уже сменилась одна машина и несколько раз полный состав системы включая питание. Расскажу жизни своей системы с нашим сегондяшним героем.
9ка карбюратор 95 года выпуска. родной генератор и аккумулятор 50ач. Усилитель пролоджи контроль 3004 + мистери 2.75. Провода мистери. На раскачке просадка напряжения была конской. вплоть до 10в с 12.5 на заведенной машине. Диод в цепь регулятора дал прибавку в 1 в но все равно не хватало. На клеммах усилителя с заглушеной машиной было 12в без музыки 10.6 с музыкой на всю. на заведенной 12.9 без музыки. до 10в на музыке. в среднем 11.3в. Устанавливаю накопитель как можно ближе к усилителю. Замеры. заглушеная машина 12.1в без музыки. с музыкой 10.6в. На заведенной без музыки 13.2 без музыки. С музыкой до9.9. в среднем 11.4в. То есть никак он не спасал положение о чем красноречиво говорила отсутствие разницы в звуке и вялый бас.
Замена проводов мистери на кг-16. остальная аппаратура таже. замеры Заглушеная машина 12.6в, с музыкой 10.9. Заведенная машина без музыки 13.3, с музыкой до 10.1, в среднем 11.7в. То есть замена провода дала чуть ли не втрое больше толку чем накопитель. Но это все было не то. Хотя после замены разница в звуке была ощутимо заметна.Также провод музыки уже нельзя было просто так никинуть на клемму аккума. Пролетала дикая искра от заряда накопителя говорящая об координальном увеличении пропускной способности силы.
12шка. аккум 55а, родной генератор. Музыка таже практически. И поскольку система питания в ней мало отличалась от девятошной то и цифры были схожи. заглушеная машина 12.3. С музыкой 10.7. На заведеной 13.6в. С музыкой 11в. в среднем 11.9в. Небольшое улучшение ситуации было изза того что инжектор на заведенной машине контролирует обороты движка не давая им падать, тем самым поддерживая обороты генератора в тонусе. Установка конденсатора в систему во всех случаях дала прирост на работающей музыке 0.1-0.3в. что никак не спасало ситуацию.
ТАкое положение вещей меня никак не устраивало так как я уже начал в ней строить систему «на вырост». Тут помог случай, вернее неприятность. В генераторе на ходу оторвало крыльчатку которой размолотило весь генератор а короткое замыкание с генератора осыпало пластины на уставшем аккумуляторе.
Оба ушли под замену. На их места стали аккумулятор 62ач и генератор 95а. с повышеной производительностью на низких оборотах. Первые тесты: заглушеная машина без особых изменений. Заведенная машина 14.0в без музыки, 13.9в С МУЗЫКОЙ НА ВСЮ! С музыкой на всю, включенными фарами, дворниками и печкой на всю 13.4в! Вот где прибавка. После произошло пополнение аппаратуры. Установил сабовый усь кикс 27. Вместе с ним под замену ушли все клеммы. Переделал массу питания на усилителях. разнес ее с общего болта на разные. Установил силовой провод кг-35, таким же проводом проложил массу от уха генератора на кузов в место соединения минуса аккума с кузовом. После каждого апгрейда мерял прибавки.
Чистая установка уся: 13.9в без музыки, 12.2в с музыкой на всю.
Замена провода на кг-35 13.9в и 13.0в соответственно.
Замена всех клемм + 0.1в.
Разнесение массы +0.3в.
Установка дополнительного провода массы на генератор: + 0.2в.
Итого на заведенной машине с музыкой на всю 3 усилителя дают просадку с 14.0 до 13.5-13.6в.
Максимальная просадка на злых неграх с постоянными синусами порядка 30гц кратковременно до 12.9в, при этом холостые обороты падают на 100-150 об/мин. в правильный 1 вольт просадки практически уложился:)
Вот такая вот практика.
Теперь напишу о пользе конденсаторов и ионисторов. 🙂 Да да в них есть польза! 🙂 правда со звуком она имеет мало общего.
1)Например если у вас слабое питание и от музыки моргают фары. На самом деле это очень раздражает. Установка кондера устранит моргание. Проблему это не решит. Фары перестанут моргать но притухнут на среднем значении просадок. Проблема решится но это не выход.
2) Накопитель является мощным фильтром сетевых помех. Установив его вы не услышите в динамиках щелчки на включении вентиляторов и другой аппаратуры авто. Фильтры конечно устанавливаются щас во многих усилках но если у вас есть такая проблема накопитель ее решит.
4) с накопителем в сети ремню генератора живется гораздо комфортнее. Он сглаживает рывки генератора на ударах баса. Например в 12шке я сменил 2 ремня генератора без накопителя. третий после установки живет до сих пор.
РАссказы о псевдопользе накопителя также встречаются в интернете но они не несут систематичный или обоснованый характер. Например многие утверждают что при установке конденсатора на слабое питание бас становится лучше. На самом же деле может просто менятся характер искажений возникающий от нехватки питания. Но этот измененный бас будет также далек от правильного как и тот который качал до накопителя. Также многие утверждают что просадки уменьшились втрое! Но нсли уточнить у них то оказыается что напряжение они смотрели на конденсатроном вольтметре. Но во перых за достовернось его измерений никто не ручается во второых он показывает просадки на клеммах накопителя а вовсе не реальные. Реальные будут непосредственно на клеммах усилителя и только там!
Из всего вышеизложенного пусть каждый делает выводы для себя сам, я лишь рекомендую поставить кондер в сеть если вам он достается за недорого и с питанием все в порядке. Но если есть выбор то потратьте эту сумму на улучшение элементов питания авто и на провода. Это будет куда полезнее.
P.S. Тема открыта для обновления и обсуждения. С удовольствием выслушаю ваши наблюдения, возражения, дополнения.Спасибо что дочитали эту кучу букаф до конца 🙂
+ дополнение от flipwho
…хочу сказать что в роли потребителей в ионисторах являются схемы вольтметра и автозаряда. Кароче брать, если брать, стоит ТОЛЬКО ПУСТОЙ конденсатор и обращаться с ним очень осторожно (правильно заряжать и т.п).
+ дополнение к пользе накопителя 🙂
Когда необходимо заменить аккумулятор то при снятии клемм с него магнитола, часы в панели и настройки бортового компа не сбрасываются. Накопитель будет их держать минут 10 точно. За это время вы спокойнее все поменяете. Еще одного заряда накопителя зватает чтоб закрыть или открыть 4 центральных замка от брелка сигналки 🙂 мож кому сгодится 🙂
+ к инфе. Как зарядить накопитель не имеющий системы заряда. Просто между плюсовым проводом питания и конденсатором подкльчите лампочку с габаритов например. Она загорится и тут же начнет гаснуть, как погасла полность. тогда соединяйте напрямую кондер заряжен. Тоже самое нужно делать если вы надолго скидывали клемму с аккумулятора.
Основы автоэлектрики. Часть5. Электрическая ёмкость и конденсаторы
Сегодня мы коснёмся темы накопителей заряда, именуемых конденсаторами.
Конденсатор — пассивный электронный компонент, состоящий из двух полюсов, накапливающий заряд.
Электрическая ёмкость — это отношение электрического заряда к разности потенциалов между полюсами конденсатора (или иного другого электронного компонента). Единица измерения — Фарад и его производные (пикоФарад, наноФарад, микроФарад). Обозначается ёмкость латинской буквой С.
Мы уже обсуждали, что ток — это есть скорость перемещения заряда, а напряжение — это разность потенциалов. Мы всегда удобно проводить некие параллели, поэтому напряжение ассоциируется с разницей давления в жидкости или газе, а ток — с объёмной скоростью жидкости или газа. Поэтому конденсатор можно представить себе как некий сосуд, который наполняют жидкостью или газом давлением, которое выше чем в сосуде. Наполнение сосуда будет происходить до тех пор, пока давление подачи не уровняется с давлением в сосуде. Так и работает конденсатор: по мере наполнения зарядом растет напряжение. Чем ближе будет напряжение в конденсаторе к напряжению заряжающего источника, тем меньше будет скорость заряда. Это аналогично тому, как наполняется сосуд. Если мы заполнили сосуд, затем открыли кран у него — ток начинает утекать, тем самым снижая количество заряда и понижая напряжение.
Если рассматривать провод или резистор как трубу, а конденсатор — как сосуд, многое становится понятно на интуитивном уровне. Ну, и проще понять реактивные сопротивления, о которых мы говорили ранее. Но надо понимать, что сосуд — это сосуд, а конденсатор — это конденсатор=)
Итак, в простейшем виде конденсатор представляет собой две параллельные пластины, между которыми находится некий диэлектрик. Самый простой диэлектрик — это воздух. Конечно, сегодня воздушные конденсаторы уже и не встретить, но я ещё несколько лет назад использовал переменный воздушный конденсатор для сборки радиоприёмника=) Правда, в этом конденсаторе пластин было гораздо больше двух, и выглядел примерно вот так:
Вращая ручку, можно было изменять значение электрической ёмкости.
На, а вот так обычно представляют простейший конденсатор:
В случае такого конденсатора ёмкость вычисляется следующим образом:
Сегодня конденсаторов огромное множество. Наиболее популярные — керамические, электролитические и танталовые. Отличие последних двух в том, что они полярны, и крайне не рекомендую включать их в схему обратной полярностью=)
Основными параметрами конденсатора являются:
— Электрическая ёмкость,
— Максимально допустимое напряжение на его обкладках (немаловажный параметр, при подачи бОльшего напряжения можно увидеть много весёлых, но крайне не безопасных эффектов:-), особенно на конденсаторах большой ёмкости),
— Полярность (т.е. полярный или неполярный),
— Допустимые отклонения от номинального значения ёмкости (обычно в процентах),
— Диапазон рабочих температур,
— Тип корпуса.
Полярность, допустимые отклонения и диапазон температур напрямую зависят от применяемого диэлектрика. Как правило, конденсаторы большой ёмкости — электролитические, т.е. в качестве диэлектрика — электролит. А электролитические конденсаторы по физике процессов сильно напоминают всем знакомые свинцово-кислотные аккумуляторы и аналогично им имеют полярность, что приводит к некоторым ограничениям. Кроме того, они имеют свойство высыхать. И именно они являются частой причиной выхода из строя бытовой и промышленной электроники, в результате чего страдают и иные компоненты. Выглядят электролитические конденсаторы так:
Танталовые конденсаторы были некогда призваны заменить электролитические, но и те имеют ряд ограничений и так и не достигли приличных ёмкостей. Кроме того, взрываются они не менее весело=) Выглядят они вот так:
Спешу обрадовать, что развитие электроники не стоит на месте и сегодня вполне можно приобрести обычные керамические конденсаторы с ёмкостью, сравнимой с танталовыми, а некоторые достигают ёмкости 330 мкФ при допустимом напряжении в 4 В. И это всё в малом чип-корпусе 1206!
Кстати, размеры основных корпусов чип-конденсаторов:
Ну, и не все конденсаторы в чипах, поэтому существуют и выводные конденсаторы:
Причина такому прорыву — отличный диэлектрик под кодовым названием X5R. 330 мкФ при 4В — не густо конечно. Но на большие напряжения ёмкости также достигли впечатляющих значений — на те же 16В найти 100 мкФ не проблема, на 25 В — на 22 мкФ, на 35-50 В пока не больше 10 мкФ. Тем не менее, во многих и многих приложениях электроники появляется возможность отказаться от электролитов и танталов.
Вернемся к основным свойствам. Если рассматривать глубже, то параметров конденсаторов гораздо больше:
— Температурная зависимость параметров,
— Входное сопротивление (ESR),
— Внутреннее сопротивление,
— Время наработки на отказ (очень интересный параметр, которому реально посвятить целую статью),
— многие другие.
Расписывать здесь все детали не вижу смысла, так эти параметры важны тем, кто глубоко занимается электроникой. Тем не менее счел важным упомянуть о них. Кому захочется капнуть — можно порыться в сети.
Помимо указанных выше конденсаторов следует немного сказать о плёночных конденсаторах. Выглядят они вот так:
Их основное отличие от предыдущих — это поражающая надежность и способность работать в силовых цепях, особенно в цепях с высоким напряжением.
Наверное, сегодня краткого обзора будет достаточно. О применении конденсаторов поговорим в следующих статьях.
В прошлой статье писал, но и здесь напомню, что конденсаторы на схемах обозначаются так:
На сим всё;)
Продолжение следует=)
___________________________________________________________________________