что такое межклеточная жидкость и ее функции

Лимфатическая система

Лимфатическая система – важная часть сердечно-сосудистой системы человека и дополняет её.

В отличие от кровеносной системы, лимфатическая система не имеет своего насоса и открыта. Лимфа, циркулирующая в ней, движется медленно и под небольшим давлением. Лимфа – жидкость, постоянно образующаяся путём дренажа межклеточной жидкости в лимфатические капилляры.

что такое межклеточная жидкость и ее функции. Смотреть фото что такое межклеточная жидкость и ее функции. Смотреть картинку что такое межклеточная жидкость и ее функции. Картинка про что такое межклеточная жидкость и ее функции. Фото что такое межклеточная жидкость и ее функции

В структуру лимфатической системы входят:

• лимфатические капилляры
• лимфатические сосуды
• лимфатические узлы
• лимфатические стволы и протоки

Из капилляров лимфа поступает в лимфатические сосуды, а затем в протоки и стволы: слева в грудной проток (самый большой проток), левый яремный и левый подключичный стволы; справа в правый лимфатический проток, правый яремный и правый подключичный стволы. Протоки и стволы впадают в крупные вены шеи, а затем в верхнюю полую вену. Таким путем лимфа переносится из межтканевых пространств обратно в кровь.

Лимфатические сосуды проходят через лимфатические узлы. Они объединены в несколько групп и располагаются по ходу сосудов. Множество приносящих сосудов несут лимфу в узел, а вытекает она оттуда только по одному или двум выносящим сосудам. Лимфатические узлы представляют собой небольшие образования округлой, овальной, бобовидной, реже лентовидной формы до 2 см длиной. Здесь лимфа отфильтровывается, инородные включения отделяются и уничтожаются, и здесь же вырабатываются лимфоциты для борьбы с инфекцией. Лимфатические узлы, выполняющие барьерную и иммунную роль.

что такое межклеточная жидкость и ее функции. Смотреть фото что такое межклеточная жидкость и ее функции. Смотреть картинку что такое межклеточная жидкость и ее функции. Картинка про что такое межклеточная жидкость и ее функции. Фото что такое межклеточная жидкость и ее функции

Основные функции лимфатической системы:

Транспортная функция – проведение лимфы, продуктов обмена от тканей в венозное русло.

Дренажная функция – возвращение белков, воды, солей, токсинов и метаболитов из тканей в кровь. Выведение жидкости, гноя, выпота из раны, полостей. Стабильность работы „капиллярного лимфатического насоса”

Лимфоцитопоэз, кроветворная функция – образование, созревания, дифференцировка лимфоцитов, участвующих в иммунных реакциях.

• Иммунная, защитная функции – формирование иммунной защиты организма, обезвреживание, попадающих в организм инородных частиц, бактерий, вирусов, грибов, простейших. фильтрация от примесей, опухолевых частиц и клеток.

Любой сбой или закупорка лимфатических сосудов или узлов влечет за собой опухоль или отек тканей, возникают лимфадениты, рожистые воспаления, лимфостаз. Специалисты не без оснований полагают, что лимфа могла бы рассказать о том, о чем кровь «умалчивает», потому что многие продукты жизнедеятельности клеток сначала поступают в лимфу, а затем уже в кровь.

Если в борьбе со многими болезнями нам могут помочь большинство врачей, то диагностировать и лечить нарушения в лимфатической системе могут только отдельные врачи – лимфологи.

По статистике самих медиков, в СНГ – есть только единицы лимфологов – специалистов по лимфатической системе.

Лимфологи говорят: Ваше здоровье – это чистота вашей лимфатической системы!

Будьте здоровы и счастливы!

Источник

Что такое межклеточная жидкость и ее функции

Всю жидкость в организме в основном подразделяют на внеклеточную и внутриклеточную (рисунок ниже); внеклеточную жидкость — на тканевую (межклеточную) жидкость и плазму крови.

что такое межклеточная жидкость и ее функции. Смотреть фото что такое межклеточная жидкость и ее функции. Смотреть картинку что такое межклеточная жидкость и ее функции. Картинка про что такое межклеточная жидкость и ее функции. Фото что такое межклеточная жидкость и ее функцииСводная схема основных составных частей жидких сред организма и разделяющих их мембран. Значения приведены для человека массой 70 кг

К особому типу внеклеточной жидкости обычно относят и еще одну небольшую часть, называемую трансцеллюлярной жидкостью, несмотря на то, что в некоторых случаях она значительно отличается по составу от межклеточной жидкости или плазмы. Общее содержание ее в организме составляет около 1-2 л, она представлена синовиальной, перитонеальной, перикардиальной, внутриглазной и цереброспинальной жидкостями.

У взрослого человека массой 70 кг жидкость в среднем составляет 60% массы тела, т.е. около 42 л. В зависимости от возраста, пола и степени ожирения это процентное соотношение может меняться. С возрастом, отчасти из-за того, что процентная доля жировой ткани увеличивается, количество жидкости в организме постепенно снижается. Поскольку женский организм в норме содержит больше жировой ткани, чем мужской, то общее количество жидкости по отношению к массе тела у женщин меньше, чем у мужчин. Таким образом, средние показатели содержания жидкости в различных средах организма имеют множество вариантов, зависящих от возраста, пола и относительного содержания жировой ткани.

а) Внутриклеточная жидкость. Около 28 л жидкости из 42 л (приблизительно 40% массы тела) находится внутри 75×10 12 клеток организма. Эту жидкость называют внутриклеточной.

Жидкость внутри каждой клетки представляет собой особую смесь различных компонентов, однако ее содержание во всех клетках одинаково. Более того, состав внутриклеточной жидкости у различных живых существ сходен, начиная от самых примитивных микроорганизмов и заканчивая человеком. По этой причине жидкость внутри различных клеток рассматривают как отдельную жидкую среду.

б) Внеклеточная жидкость. Вся жидкость, которая находится вне клетки, носит название внеклеточной жидкости. В совокупности она составляет около 20% массы тела, что в норме у человека массой 70 кг составляет около 14 л. Более 3/4 внеклеточной жидкости представлено межклеточной жидкостью, и почти 1/4 объема (около 3 л) — плазмой. Плазма — жидкая часть крови, лишенная форменных элементов. Она участвует в постоянном обмене веществ с межклеточной жидкостью через поры мембран капилляров. Поры высокопроницаемы практически для любых растворенных веществ, за исключением белков, поэтому состав внеклеточной жидкости вследствие ее постоянного перемешивания практически одинаков.

Главное отличие состоит в содержании белка, наибольшая концентрация которого отмечается в плазме.

что такое межклеточная жидкость и ее функции. Смотреть фото что такое межклеточная жидкость и ее функции. Смотреть картинку что такое межклеточная жидкость и ее функции. Картинка про что такое межклеточная жидкость и ее функции. Фото что такое межклеточная жидкость и ее функции

Объем крови

Кровь содержит жидкие среды: внеклеточную жидкость (плазму) и внутриклеточную жидкость (внутри эритроцитов). Поскольку кровь находится в собственном резервуаре — сосудистой системе, ее рассматривают как отдельную среду организма. Объем крови особенно важен для регуляции гемодинамических показателей. Общий объем крови в организме в среднем составляет 7% массы тела взрослых (около 5 л). Приблизительно 60% объема крови представлено плазмой, 40% составляют эритроциты, хотя у разных лиц в зависимости от пола, веса и других факторов эти значения немного отличаются.

Гематокрит (объем «упакованных» эритроцитов). Гематокритом называют часть объема крови, состоящую из плотного осадка эритроцитов, который образовался в результате центрифугирования в специальном «гематокритном капилляре». Истинное значение гематокрита составит 96% измеренного, поскольку «упаковать» эритроциты отдельно невозможно: в пространстве между клетками остается около 3-4% плазмы.

У мужчин показатель гематокрита составляет 0,40, у женщин — 0,36. При тяжелой анемии гематокрит может снижаться до уровня, едва совместимого с жизнью — 0,1. Напротив, при некоторых состояниях, связанных с избыточным образованием эритроцитов (полицитемии), гематокрит возрастает до 0,65.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Источник

ГДЗ биология 8 класс Колесов, Маш, Беляев Дрофа Задание: 17 Кровь и остальные компоненты внутренней среды организма

Стр. 106. Вопросы в начале параграфа

№ 1. Из чего состоит внутренняя среда организма?

Внутренняя среда организма включает в себя несколько составляющих:

№ 2. Как связаны компоненты внутренней среды: кровь, тканевая жидкость и лимфа?

Из жидкой части крови – плазмы, которая проникает через стенки кровеносных сосудов в межклеточное пространство, образуется тканевая жидкость. Далее между кровью и межклеточной жидкостью происходит обмен веществами. Также часть тканевой жидкости попадает и в лимфатические сосуды, благодаря чему образуется лимфа, движущаяся по лимфатическим сосудам.

№ 3. Каков состав плазмы крови?

Плазма крови состоит из воды (92-93%), в которой растворены белки (около 7-8% от общей массы), минеральные и органические соединения. Среди минеральных и органических соединений – аминокислоты, молочная кислота, кислород, углекислый газ, глюкоза, мочевина.

№ 4. Каковы функции эритроцитов, лейкоцитов и тромбоцитов?

Эритроциты – это многочисленные форменные элементы – красные кровяные клетки, которые отвечают за транспортировку кислорода к тканям, а углекислого газа к легким.

Лейкоциты являются частью иммунной системы, которые способны к выходу за пределы кровяного потока в ткани. Главная их функция – защита, ведь они принимают участие в иммунных реакциях, вырабатывают антитела, которые борются с вирусами и различными вредными веществами.

Тромбоциты – это ограниченные клеточной мембраной фрагменты цитоплазмы гигантских клеток костного мозга мегакариоцитов. Они обеспечивают свертывание крови, тем самым препятствуют прекращению кровотечений и защищают организм от кровопотери.

Стр. 114. Вопросы

№ 1. Почему клеткам для процессов жизнедеятельности необходима жидкая среда?

Для нормальных процессов жизнедеятельности клеткам необходима жидкая среда. Именно в ней лучше всего могут происходить разные химические реакции.

№ 2. Из каких компонентов состоит внутренняя среда организма? Как они связаны между собой?

Внутренняя среда организма – это совокупность всех жидкостей организма, которые находятся внутри него – в естественных условиях, в сосудах и никогда не сталкивались с окружающей средой. Это кровь, лимфа, тканевая и спинномозговая жидкости. Резервуаром для спинномозговой жидкости служат желудочки мозга, спинномозговой канал, подпаутинное пространство. Для крови и лимфы резервуарами являются кровеносные и лимфатические сосуды. У тканевой жидкости нет резервуара, поэтому она находится в тканях тела между клетками. Все вместе они обеспечивают организму гомеостаз.

№ 3. Какие функции выполняют кровь, тканевая жидкость и лимфа?

Кровь является средством транспортировки кислорода и питательных веществ по всему организму. Она также несет углекислый газ и вредные вещества к органам, которые отвечают за вывод их из организма.

Тканевая жидкость находится среди тканей. Так как она образуется из плазмы крови, то принимает из нее все питательные вещества, а продукты распада выводит из клеток.

Лимфа является излишком тканевой жидкости. Она очищает клетки организма и выводит в кровь вредные вещества, соли и т.д.

№ 4. Объясните, что такое лимфатические узлы, что в них происходит. Покажите на себе, где находятся некоторые из них.

Лимфатические узлы – это периферические органы лимфатической системы, выполняющие функцию биологического фильтра. Через них протекает лимфа, которая поступает от органов и частей тела человека. На теле много лимфатических узлов: подколенные, подключичные, внутригрудные, локтевые, бедренные и паховые, брыжеечные, подвздошные, шейные, затылочные, передние ушные, грудные и подмышечные.

№ 5. В чём проявляется взаимосвязь строения эритроцита с его функцией?

Эритроциты – это красные кровяные тельца, которые переносят кислород и углекислый газ по крови. Благодаря отсутствию ядра и продолговатой форме они легко проходят по капиллярам.

№ 6. Каковы функции лейкоцитов?

Функция лейкоцитов заключается в защите организма от патогенов, а также в удалении продуктов разрушения тканей.

Стр. 114. Задания

№ 1. Начертите схему состава крови, используя слова: плазма, форменные элементы: эритроциты, лейкоциты, тромбоциты.

что такое межклеточная жидкость и ее функции. Смотреть фото что такое межклеточная жидкость и ее функции. Смотреть картинку что такое межклеточная жидкость и ее функции. Картинка про что такое межклеточная жидкость и ее функции. Фото что такое межклеточная жидкость и ее функции

2. Прокомментируйте рисунок 54, изображающий процесс фагоцитоза. Какая клетка изображена на рисунке: эритроцит, лейкоцит или тромбоцит?

На рисунке я вижу процесс фагоцитоза, в котором участвует лейкоцит.

№ 3. При ранении кожи кровотечение через некоторое время прекращается и образуется тромб. Почему он красного цвета, ведь образовавшийся из фибриногена фибрин под действием ферментов, вызванных разрушением тромбоцитов, белый? Вспомним, что в крови имеются ещё и белые кровяные тельца, лейкоциты, которые тоже белые. Ответьте на вопрос, найдите неточности в высказывании.

Образовавшийся из фибриногена фибрин это растворенный белок плазмы крови. Его в составе тромба очень мало, потому он не влияет на цвет. Основой тромба являются отмершие красные кровяные тельца – эритроциты.

№ 4. Рассмотрите рисунок 50, Б. Объясните, почему художник изобразил на рисунке три типа стрелок. Что они обозначают?

С помощью стрелок на рисунке показаны типы движения крови. Так как их три, значит, нужны три стрелки. Красная стрелка показывает движение артериальной крови, синяя – венозной крови и желтая – лимфы.

Источник

Что такое межклеточная жидкость и ее функции

Местные отеки могут возникать в результате экссудации или транссудации.

Жидкость невоспалительной природы именуется транссудат, а воспалительной природы – экссудат.

В патогенезе местных отеков (в зоне воспаления, тромбоза, эмболии, сдавления венозных или лимфатических сосудов) ведущая роль отводится изменению соотношения гидродинамического и коллоидно-осмотического давления в артериальном и венозном сегментах капилляров, повышению проницаемости сосудистой стенки и возрастанию гидрофильности тканей.

Этиология и патогенез экссудации

Экссудация – выход жидкой части крови вместе с форменными элементами в зону альтерации при развитии воспалительного процесса.

В зависимости от особенностей этиологического фактора, степени повреждения сосудистой стенки и, соответственно, состава отечной жидкости выделяют следующие виды экссудатов: серозный, фибринозный, гнойный, гнилостный, геморрагический. Экссудат – высокоактивная биологическая жидкость (особенно гнойный, гнилостный и геморрагический), содержащая большое количество лизосомальных ферментов, лизоцима, лактоферрина, фагоцитирующих лейкоцитов, продуктов их жировой дегенерации. Последнее определяет двоякую роль экссудации в организме: с одной стороны, деградирующий эффект на клеточные элементы и межклеточное вещество соединительной ткани, а с другой, – защитная функция в связи с наличием иммуноглобулинов и ряда факторов неспецифической резистентности. Касаясь механизмов развития экссудации следует остановиться на закономерностях развития воспаления.

Как известно, воспаление – типовой патологический процесс, возникающий под влиянием различных патогенных факторов инфекционной и неинфекционной природы и характеризующийся развитием типового комплекса сосудистых и тканевых изменений. Сосудистые изменения проявляются в зоне острого воспаления в виде последовательной смены спазма сосудов, артериальной и венозной гиперемией с развитием престаза и стаза.

Тканевые изменения включают стадии альтерации, экссудации и пролиферации. Следует отметить, что стадия экссудации формируется на фазе венозной гиперемии, когда в зоне воспаления накапливаются чрезмерно-высокие концентрации вазоактивных медиаторов альтерации. Как известно, медиаторы альтерации имеют гуморальное происхождение (активированные фракции компллемента, системы свертывания крови, фибринолиза, калликреин-кининовой системы), а также образуются в клетках различной морфофункциональной организации. Медиаторы клеточного происхождения играют важную роль в повышении проницаемости сосудистой стенки, активации ее тромбогенных эффектов. Среди вазоактивных медиаторов клеточного происхождения следует отметить такие, как нейропептиды, гистамин, серотонин, лейкотриены, простагландины, свободные радикалы, а также ряд провоспалительных цитокинов, лизосомальных ферментов. Важная роль в повышении проницаемости сосудистой стенки отводится развитию метаболического ацидоза. В связи с этим очевидно, что ведущим патогенетическим фактором экссудации является мембраногенный фактор, который характеризуется существенным повышением проницаемости стенок сосудов микроциркуляторного русла для воды, мелко- и крупномолекулярных веществ. Если в норме через стенку капилляров проходят молекулы диаметром менее 5 нм, то при воспалении начинают проходить более крупные частицы. Причины повышения проницаемости сосудистых стенок: ацидоз, активация гидролитических ферментов, перерастяжение стенок сосуда, изменение формы клеток эндотелия. Повышение проницаемости сосудов ( венул и капилляров ) зоне воспаления развивается в результате воздействия медиаторов воспаления и в ряде случаев самого воспалительного агента.

Касаясь молекулярно-клеточных механизмов развития экссудации под влиянием ряда медиаторов альтерации, в частности гистамина, следует отметить, что источником этого биологически активного соединения являются тучные клетки и базофилы крови.

Гистамин. Образуется из аминокислоты гистидина под влиянием фермента гистидиндекарбоксилазы, депонируется в гранулах лаброцитов и базофилов в комплексе с гепарином, ФАТ и другими соединениями. Освобождение гистамина из клеток может возникать в результате физиологического экзоцитоза или при повреждении и распаде клеток. В качестве либераторов гистамина могут выступать бактериальные, вирусные патогенные факторы, разнообразные антигены, С3 и С5 фракции комплемента, катионные белки полиморфноядерных лейкоцитов, химические, физические, термические воздействия, индуцирующие процесс альтерации.

Высвобождение гистамина из клеток – одна из первых реакций ткани на повреждение наряду с интенсификацией выделения сенсорных нейропептидов (субстанция Р, пептид гена, родственный кальцитонину). Эффект этого медиатора на сосудистую стенку в зоне острого воспаления реализуется главным образом через Н1-рецепторы в виде вазодилатации и повышения проницаемости. Кроме того, в очаге острого воспаления гистамин вызывает боль, повышает адгезивные свойства эндотелия сосудов, способствует эмиграции лейкоцитов. Вследствие быстрого разрушения гистамина под влиянием фермента гистаминазы биологические эффекты его на микроциркуляцию кратковременны и в последующем пролонгируются другими медиаторами воспаления.

Из гранул лаброцитов и базофилов освобождаются в зону альтерации хемотаксический фактор эозинофилов (ФХЭ), хемотаксический фактор нейтрофилов (ФХН), фактор активации тромбоцитов (ФАТ), нейтральные протеазы и др.

Другой вазоактивный медиатор воспаления – серотонин представляет собой производное аминокислоты триптофана, значительная часть серотонина депонируется в тромбоцитах. Однако серотонин обнаружен и в других клетках, в частности в нейронах мозга, лаброцитах, базофилах, энтерохромаффинных клетках пищеварительного тракта. Под влиянием различных активаторов – коллагена, тромбина, АДФ, ФАТ – происходит секреция серотонина из тромбоцитов и хромаффинных клеток, одновременно из тучных клеток освобождается гистамин. В умеренных концентрациях серотонин вызывает расширение артериол, сокращение миоцитов в стенках венул и венозный застой. В высоких концентрациях серотонин обусловливает спазм артериол, а в случае их повреждения способствует остановке кровотечения.

Важное значение в развитии воспаления имеют медиаторы воспаления, образуемые полиморфноядерными лейкоцитами. Так, катионные белки, фактор активации тромбоцитов вызывают дегрануляцию тучных клеток и тем самым повышают проницаемость микроциркуляторных сосудов. Способствуют повышению проницаемости также активные метаболиты кислорода (супероксид радикал, синглетный кислород, перекись водорода).

При воспалении в результате повреждения эндотелия сосудов происходит активация фактора Хагемана, который запускает кининогенез и идет превращение прекалликреина в калликреин. Активация калликреина приводит к образованию брадикинина и каллидина. Кинины расширяют кровеносные сосуды и повышают их прницаемость, причем в большей степени, чем гистамин.

Важная роль в повышении проницаемости сосудистой стенки отводится простагландинам и эйкозаноидам.

Механизмы реализации мембраногенного фактора:

1) облегчение фильтрации воды из крови в интерстициальное пространство. Этот механизм может быть сбалансирован повышением реабсорбции воды в посткапиллярах в связи с истончением их стенок;

2) увеличение выхода молекул белка из плазмы крови в межклеточную жидкость ведёт к включению онкотического фактора. Такой механизм лежит в основе развития отёка при воспалении, местных аллергических реакциях, укусах насекомых и змей.

Возрастание проницаемости при воспалении, как правило, является двухфазным и включает немедленную (раннюю) и замедленную (позднюю) фазы.

Первая фаза – ранняя, немедленная, развивается вслед за действием альтерирующего агента и завершается в среднем в течение 15-30 мин. Эта фаза обусловлена в первую очередь действием гистамина, а также лейкотриена Е4, серотонина, брадикинина на венулы диаметром не более чем 100 мкм. Проницаемость капилляров при этом практически не меняется. Повышение проницаемости на территории венул связано с сокращением эндотелиоцитов сосуда, округлением клеток, образованием межэндотелиальных щелей, через которые происходит выход жидкой части крови и клеток.

Вторая фаза – поздняя, замедленная, развивается постепенно, достигает максимума через 4-6 ч, когда происходит фиксация лейкоцитов к эндотелию сосудов и длится иногда до 100 часов в зависимости от вида и интенсивности воспаления. Для этой фазы характерно стойкое увеличение проницаемости сосудов (артериол, капилляров, венул), обусловленное главным образом продуктами, освобождаемыми лейкоцитами – лизосомальными ферментами, активными метаболитами кислорода, простагландинами, комплексом лейкотриенов, водородными ионами. Кроме того при воспалении возможно повышение проницаемости в результате структурных изменений сосудистой стенки, вызванное лизосомальными протеазами, активацией процессов перекисного окисления липидов.

В механизмах развития экссудации, помимо увеличения проницаемости сосудов, определенная роль принадлежит пиноцитозу – процессу активного захватывания и проведения через эндотелиальную стенку мельчайших капелек плазмы крови. В связи с этим экссудацию можно рассматривать как своеобразный микросекреторный процесс, обеспечиваемый активными транспортными механизмами. Активация пиноцитоза в эндотелии микрососудов в очаге воспаления предшествует увеличению проницаемости сосудистой стенки за счет сокращения эндотелиоцитов.

Нарушение проницаемости сосудистой стенки лежит в основе развития отеков в зоне воспаления в случаях развития декомпенсированного метаболического ацидоза, а также неврогенных отеков (при поражениях задних корешков и столбов спинного мозга).

Проницаемость сосудистой стенки может повышаться под влиянием токсических соединений бактериальной природы (токсины дифтерийный, сибиреязвенный и др.), при действии экзогенных химических веществ (хлор, фосген и др.), при действии некоторых ядов различных насекомых и пресмыкающихся (комары, пчелы, шершни, осы, змеи и др.). Под влиянием воздействия этих агентов, помимо повышения проницаемости сосудистой стенки, происходит нарушение тканевого обмена и образование продуктов, усиливающих набухание коллоидов и повышающих осмотическую концентрацию тканевой жидкости. Возникающие при этом отеки называются токсическими.

Таким образом, одним из ведущих патогенетических факторов развития местного отека является мембраногенный фактор, связанный с повышением проницаемости сосудистой стенки.

Как отмечено ранее, механизмами реализации мембранногенного фактора развития отека являются облегчение фильтрации жидкости в микрососудах, избыточный транспорт белков, ионов из микрососудов в интерстициальную жидкость. Осмотическому и онкотическому факторам принадлежит большое значение в развитии воспалительного отека.

Гиперосмия тканей в очаге воспаления обусловлена повышением в них концентрации осмоактивных частиц – ионов, солей, органических соединений с низкой молекулярной массой. К факторам, вызывающим гиперосмию, относятся усиленная диссоциация солей вследствие ацидоза тканей (лактатный ацидоз типа А), выход из клеток калия и сопутствующих ему макромолекулярных анионов, повышенный распад сложных органических соединений на менее сложные, мелкодисперсные, а также сдавление и тромбоз лимфатических сосудов, препятствующие выведению осмолей из очага воспаления.

Одновременно с увеличением осмотического давления наблюдается увеличение и онкотического давления в тканях очага воспаления, в то время как в крови онкотическое давление снижается. Последнее обусловлено выходом из сосудов в ткани, в первую очередь, мелкодисперсных белков – альбуминов, а по мере повышения проницаемости сосуда – глобулинов и фибриногена. Кроме этого, в самой ткани под влиянием лизосомальных протеаз происходит распад сложных белковых макромолекул на более мелкие, что также способствует повышению онкотического давления в тканях очага воспаления. Это вызывает снижение эффективной онкотической всасывающей силы плазмы крови.

Возрастание гидростатического давления в фазу венозной гиперемии имеет место в связи с развитием тромбоза, эмболии, престаза, приводящих к нарушению оттока венозной крови. В то же время экссудат при воспалении вызывает сдавление венозных и лимфатических сосудов и усугубляет нарушение оттока крови. При этом площадь и интенсивность пропотевания плазмы крови на территории сосудов микроциркуляторного русла увеличивается.

Таким образом, при возрастании гидростатического давления в сосудах микроциркуляторного русла (при воспалении, тромбозах, эмболии, беременности и др.) возникают условия для развития отеков.

В развитии местного отека также играет роль снижение внутрисосудистого коллоидно-осмотического давления за счет локальной гипопротеинемии связанной с повышением проницаемости сосудистой стенки в зоне альтерации.

Гиперонкия, гиперосмия тканей в зоне альтерации, повышение их гидрофильности в связи с плазмопотерей в зону альтерации в комплексе с белками, а также развитием цитолиза, выходом внутриклеточных электролитов и белков также способствует развитию отека. Происходит уменьшение резорбции жидкости из интерстиция в посткапиллярах и венулах.

Впервые экспериментальные доказательства значения онкотического фактора в развитии отеков были получены Э.Старлингом (1896).

В ряде случаев в развитии местных отеков лежит нарушение лимфодинамики. Лимфогенный (лимфатический) фактор развития местного отека характеризуется затруднением оттока лимфы от тканей вследствие либо механического препятствия, либо избыточного образования лимфы. Причинами включения лимфогенного фактора являются:

1) врождённая гипоплазия лимфатических сосудов и узлов;

2) сдавление лимфатических сосудов (например, опухолью, рубцом);

3) эмболия лимфатических сосудов (например, клетками опухоли, паразитами);

4) опухоль лимфоузла, а также метастазы в лимфоузел опухолей других органов;

5) значительное увеличение образования лимфы в тканях, приводящее к перегрузке лимфатических сосудов и замедлению оттока от тканей.

В зависимости от особенностей этиологического фактора, степени повреждения сосудистой стенки и, соответственно, состава отечной жидкости выделяют следующие виды экссудатов: серозный, фибринозный, гнойный, гнилостный, геморрагический.

Механизмы развития, характеристика транссудации

Транссудация – выход жидкости из сосудистого русла в неповрежденную ткань; имеет место в условиях нормы, обеспечивает обмен между кровью и тканями электролитами, трофическими субстанциями, газообразными соединениями, продуктами метаболизма.

В связи с тем, что транссудация жидкости в ткани в условиях нормы и при ряде форм патологии происходит через неповрежденную сосудистую стенку или на фоне незначительного возрастания ее проницаемости, транссудат по химическому составу и биологической активности значительно отличается от экссудата. Так, удельная плотность транссудата ниже, чем экссудата. Это обусловлено высоким содержанием белка и форменных элементов в экссудате. Транссудат содержит белка менее 30 г/л, и общее количество клеток в нем, как правило, не превышает 100, в то время как в экссудате содержание белка превышает 30 г/л, а клеточных элементов более 3000. Экссудат содержит значительное количество иммуноглобулинов, факторов свертывания крови, лейкоцитов, эритроцитов, медиаторов воспаления, в связи с чем является биологически активной жидкостью, обеспечивающей одномоментное развитие как защитно-приспособительных реакций в зоне воспаления, так и дезорганизации, деградации структур клеток и межклеточного вещества.

Резюмируя вышеизложенное, следует заключить доминирующую роль мембраногенного фактора в инициации местных отеков воспалительного генеза с последующим присоединением онкотического фактора и возрастанием гидродинамического давления в зоне тромбоза и эмболии сосудов при венозной гиперемии.

Активация процессов транссудации в нормальную по структуре и функции не поврежденную ткань связана с инициирующим воздействием возрастания гидростатического давления в сосудах микроциркуляторного русла и увеличением площади трассудации, нарушением обратного траспорта тканевой жидкости в систему микроциркуляции.

Чрезмерная транссудация лежит в основе ряда местных и системных нарушений распределения внутри- и внесосудистой внутриклеточной и внеклеточной жидкости.

Таким образом, при возрастании гидростатического давления в сосудах микроциркуляторного русла (при тромбозах, эмболии, беременности) возникают усиление транссудации, развитие застойных отеков.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *