что такое местное сопротивление
Местные гидравлические сопротивления
Местными гидравлическими сопротивлениями называются участки трубопроводов (каналов), на которых поток жидкости претерпевает деформацию вследствие изменения размеров или формы сечения, либо направления движения. Простейшие местные сопротивления можно условно разделить на расширения, сужения, которые могут плавными и внезапными, и повороты, которые также могут плавными и внезапными.
Но большинство местных сопротивлений являются комбинациями указанных случаев, так как поворот потока может привести к изменению его сечения, а расширение (сужение) потока — к отклонению от прямолинейного движения жидкости (см. рисунок 3.21, б). Кроме того, различная гидравлическая арматура (краны, вентили, клапаны и т.д.) практически всегда является комбинацией простейших местных сопротивлений. К местным сопротивлениям также относят участки трубопроводов с разделением или слиянием потоков жидкости.
Необходимо иметь в виду, что местные гидравлические сопротивления оказывают существенное влияние на работу гидросистем с турбулентными потоками жидкости. В гидросистемах с ламинарными потоками в большинстве случаев эти потери напора малы по сравнению с потерями на трение в трубах. В данном разделе будут рассмотрены местные гидравлические сопротивления при турбулентном режиме течения.
Потери напора в местных гидравлических сопротивлениях называются местными потерями.
Несмотря на многообразие местных сопротивлений, в большинстве из них потери напора обусловлены следующими причинами:
— искривлением линий тока;
— изменением величины скорости вследствие уменьшения или увеличения живых сечений;
— отрывом транзитных струй от поверхности, вихреобразованием.
Несмотря на многообразие местных сопротивлений, в большинстве из них изменение скоростей движения приводит к возникновению вихрей, которые для своего вращения используют энергию потока жидкости (см. рисунок 3.21, б). Таким образом, основной причиной гидравлических потерь напора в большинстве местных сопротивлений является вихреобразование. Практика показывает, что эти потери пропорциональны квадрату скорости жидкости, и для их определения используется формула Вейсбаха
.
При вычислении потерь напора по формуле Вейсбаха наибольшей трудностью является определение безразмерного коэффициента местного сопротивления . Из-за сложности процессов, происходящих в местных гидравлических сопротивлениях, теоретически найти
удается только в отдельных случаях, поэтому большинство значений этого коэффициента получено в результате экспериментальных исследований. Рассмотрим способы определения коэффициента
для наиболее распространенных местных сопротивлений при турбулентном режиме течения.
Для внезапного расширения потока (см. рисунок 3.21, б) имеется теоретически полученная формула Борда для коэффициента , который однозначно определяется соотношением площадей до расширения (S1) и после него (S2):
. (3.35)
Следует отметить частный случай, когда жидкость вытекает из трубы в бак, т. е. когда площадь сечения потока в трубе S1 значительно меньше таковой в баке S2. Тогда из формулы (3.35) следует, что для выхода трубы в бак = 1. Для оценки коэффициента потерь напора при внезапном сужении
используется эмпирическая формула, предложенная И.Е. Идельчиком, которая также учитывает соотношение площадей до расширения (S1) и после него (S2):
. (3.36)
Для внезапного сужения потока тоже необходимо отметить частный случай, когда жидкость вытекает из бака по трубе, т. е. когда площадь сечения потока в трубе S2 значительно меньше таковой в баке S1. Тогда из (3.36) следует, что для входа трубы в бак = 0,5.
Значения коэффициентов для плавного расширения и плавного сужения
находят с введением поправочных коэффициентов в формулы (3.35) и (3.36):
и
.
Поправочные коэффициенты kp и kc имеют численные значения меньше единицы, зависят от углов α, а также от плавности переходов в сечениях и 1‘-1‘ и 2‘-2‘. Их значения приводятся в справочниках.
Весьма распространенными местными сопротивлениями являются также повороты потоков. Они могут быть с внезапным поворотом трубы (рисунок 3.21, д) или с плавным поворотом (рисунок 3.21, е).
Внезапный поворот трубы (или колено) вызывает значительные вихреобразования и поэтому приводит к существенным потерям напора. Коэффициент сопротивления колена определяется в первую очередь углом поворота δ и может быть выбран из справочника.
Коэффициенты потерь других местных сопротивлений, встречающихся в гидравлических системах, также могут быть определены по справочнику.
Гидравлическое сопротивление
Гидравлическое сопротивление или гидравлические потери – это суммарные потери при движении жидкости по водопроводящим каналам. Их условно можно разделить на две категории:
Потери трения – возникают при движении жидкости в трубах, каналах или проточной части насоса.
Потери на вихреобразование – возникают при обтекании потоком жидкости различных элементов. Например, внезапное расширение трубы, внезапное сужение трубы, поворот, клапан и т. п. Такие потери принято называть местными гидравлическими сопротивлениями.
Содержание статьи
Коэффициент гидравлического сопротивления
Гидравлические потери выражают либо в потерях напора Δh в линейных единицах столба среды, либо в единицах давления ΔP:
где ρ — плотность среды, g — ускорение свободного падения.
В производственной практике перемещение жидкости в потоках связано с необходимостью преодолеть гидравлическое сопротивление трубы по длине потока, а также различные местные сопротивления:
Поворотов
Диафрагм
Задвижек
Вентилей
Кранов
Различных ответвлений и тому подобного
На преодоление местных сопротивлений затрачивается определенная часть энергии потока, которую часто называют потерей напора на местные сопротивления. Обычно эти потери выражают в долях скоростного напора, соответствующего средней скорости жидкости в трубопроводе до или после местного сопротивления.
Аналитически потери напора на местные гидравлические сопротивления выражаются в виде.
где ξ – коэффициент местного сопротивления (обычно определяется опытным путем).
Данные о значении коэффициентов различных местных сопротивлений приводятся в соответствующих справочниках, учебниках и различных пособиях по гидравлике в виде отдельных значений коэффициента гидравлического сопротивления, таблиц, эмпирических формул, диаграмм и т.д.
Исследование потерь энергии (потери напора насоса), обусловленных различными местными сопротивлениями, ведутся уже более ста лет. В результате экспериментальных исследований, проведенных в России и за рубежом в различное время, получено огромное количество данных, относящихся к разнообразнейшим местным сопротивлениям для конкретных задач. Что же касается теоретических исследований, то им пока поддаются только некоторые местные сопротивления.
В этой статье будут рассмотрены некоторые характерные местные сопротивления, часто встречающиеся на практике.
Местные гидравлические сопротивления
Как уже было написано выше, потери напора во многих случаях определяются опытным путем. При этом любое местное сопротивление похоже на сопротивление при внезапном расширении струи. Для этого имеется достаточно оснований, если учесть, что поведение потока в момент преодоления им любого местного сопротивления связано с расширением или сужением сечения.
Гидравлические потери на внезапное сужение трубы
Сопротивление при внезапном сужении трубы сопровождается образованием в месте сужения водоворотной области и уменьшения струи до размеров меньших, чем сечение малой трубы. Пройдя участок сужения, струя расширяется до размеров внутреннего сечения трубопровода. Значение коэффициента местного сопротивления при внезапном сужении трубы можно определить по формуле.
Значение коэффициента ξвн. суж от значения отношения (F2/F1)) можно найти в соответствующем справочнике по гидравлике.
Гидравлические потери при изменении направления трубопровода под некоторым углом
В этом случае вначале происходит сжатие, а затем расширение струи вследствие того, что в месте поворота поток по инерции как бы отжимается от стенок трубопровода. Коэффициент местного сопротивления в этом случае определяется по справочным таблицам или по формуле
ξ поворот = 0,946sin(α/2) + 2.047sin(α/2) 2
где α – угол поворота трубопровода.
Местные гидравлические сопротивления при входе в трубу
В частном случае вход в трубу может иметь острую или закругленную кромку входа. Труба, в которую входит жидкость, может быть расположена под некоторым углом α к горизонтали. Наконец, в сечении входа может стоять диафрагма, сужающая сечение. Но для всех этих случаев характерно начальное сжатие струи, а затем её расширение. Таким образом и местное сопротивление при входе в трубу может быть сведено к внезапному расширению струи.
Если жидкость входит в цилиндрическую трубу с острой кромкой входа и труба наклонена к горизонту под углом α, то величину коэффициента местного сопротивления можно определить по формуле Вейсбаха:
ξвх = 0,505 + 0,303sin α + 0,223 sin α 2
Местные гидравлические сопротивления задвижки
На практике часто встречается задача расчета местных сопротивлений, создаваемых запорной арматурой, например, задвижками, вентилями, дросселями, кранами, клапанами и т.д. В этих случаях проточная часть, образуемая разными запорными приспособлениями, может иметь совершенно различные геометрические формы, но гидравлическая сущность течения при преодолении этих сопротивлений одинакова.
Гидравлическое сопротивление полностью открытой запорной арматуры равно
ξвентиля = от 2,9 до 4,5
Величины коэффициентов местных гидравлических сопротивлений для каждого вида запорной арматуры можно определить по справочникам.
Гидравлические потери диафрагмы
Процессы, происходящие в запорных устройствах, во многом похожи на процессы при истечении жидкости через диафрагмы, установленные в трубе. В этом случае также происходит сужение струи и последующее её расширение. Степень сужения и расширения струи зависит от ряда условий:
режима движения жидкости
отношения диаметров отверстия диафрагмы и трубы
конструктивных особенностей диафрагмы.
Для диафрагмы с острыми краями:
Местные гидравлические сопротивления при входе струи под уровень жидкости
Преодоление местного сопротивления при входе струи под уровень жидкости в достаточно большой резервуар или в среду, не заполненную жидкостью, связано с потерей кинетической энергии. Следовательно, коэффициент сопротивления в этом случае равен единице.
Видео о гидравлическом сопротивлении
На преодоление гидравлических потерь затрачивается работа различных устройств (насосов и гидравлических машин)
Для снижения влияния гидравлических потерь рекомендуется в конструкции трассы избегать использования узлов способствующих резким изменениям направления потока и стараться применять в конструкции тела обтекаемой формы.
Даже применяя абсолютно гладкие трубы приходится сталкиваться с потерями: при ламинарном режиме течения(по Рейнольдсу) шероховатость стенок не оказывает большого влияния, но при переходе к турбулентному режиму течения как правило возрастает и гидравлическое сопротивление трубы.
Что такое местное сопротивление
К местным гидравлическим сопротивлениям относятся различные устройства и элементы, устанавливаемые на трубопроводах, в которых происходит нарушение нормального движения потока в результате его деформации с изменением направления и значения средней скорости и возникновением вихреобразования. В результате деформации турбулентного потока происходит интенсивное перемешивание частиц и обмен количеством движения между частицами жидкости.
К элементам и устройствам относятся фасонная и трубопроводная арматура: отводы (колена), переходники, тройники, крестовины, диафрагмы, сетки, запорные регулирующие вентили (краны), задвижки, затворы, предохранительные и регулирующие клапаны, всасывающие наконечники, устанавливаемые на входе в трубу насосов, и т.д.
Самые простые местные гидравлические сопротивления можно разделить по направлению вектора средней скорости.
1.Скорость переменна при неизменном направлении движения потока жидкости.
Например, расширение трубы (русла) может быть плавное или внезапное; сужение трубы (русла) — плавное или внезапное.
2.Скорость постоянна при изменении направления движения потока.
Например, поворот трубы (русла) в виде плавного или резкого (см. рис.).
К более сложным местным сопротивлениям относятся сопротивления, в которых вектор скорости изменяется по значению и направлению, а также при слиянии или разделении потоков. Например, задвижки, клапаны, вентили и т.д., а также тройники, крестовины (см. рис.).
В таких сопротивлениях в результате резких изменений направления и скорости происходит весьма значительная деформация потока с возникновением интенсивного вихреобразования.
Местными потерями напора называют затраты удельной механической энергии, обусловленные работой сил трения и вихреобразованием на преодоление потоком жидкости местного сопротивления. На поддержание вихрей в определенной зоне затрачивается энергия потока.
Вейсбах предложил местные потери напора определять по формуле:
h-потеря напора здесь она измеряется в метрах. ζ-Это коэффициент сопротивления, он будет находится дополнительными формулами о которых напишу ниже. V-скорость потока жидкости. Измеряется [Метр/секунда]. g-ускорение свободного падения равен 9,81 м/с 2 |
Коэффициент ζ, показывает количество скоростного напора, затрачиваемого на преодоление какого-либо местного сопротивления. В местном сопротивлении потери механической энергии при движении потока через него превращаются в тепловую энергию.
Коэффициент местных сопротивлений зависит:
В общем виде коэффициент ζ, можно представить в следующем виде:
В — безразмерный коэффициент, зависящий от вида местного сопротивления при ламинарной и переходной области сопротивления; Re — число Рейнольдса; ζкв — коэффициент местных сопротивлений для квадратичной области, т.е. не зависящий от Re. |
Для квадратичной области сопротивления ζ = ζкв. Обычно при гидравлических расчетах принимается ζкв.
Коэффициент ζ, находится опытным путем, а значения ζкв для различных местных сопротивлений, В приводятся в гидравлических справочниках.
Ниже мы разберем основные встречающиеся задачи по местным сопротивлениям, которые следует учитывать.
Рассмотрим два варианта местных сопротивлений это варинты закругления трубы:
1. Закругленным углом (а)
Разберем сначала второй вариант, так как он вызывает большое гидравлическое сопротивление нежели с закругленным углом.
Для нахождения коэффициента местного сопротивления ввиде коленного поворота(см.рис.[б]), используем формулу:
ζ-коеффициент местного сопротивления. β-угол отвода(колена). |
Также для наглядного понимания приведу таблицу:
Видно что при 90° коеффициент местного сопротивления приблизительно равен единице.
Полученный коэффициент местного сопротивления вставляем в формулу:
И получаем потерю напора в метрах.
Не мало важная формула для нахождения местного сопротивления на отводах с закруленным углом(см.рис.[а]). Это могут быть и гнутые трубы под определенным радиусом и определенным углом.
d-внутренний диаметр трубы, в переводе на метры. R-радиус скругления угла, в переводе на метры. β-угол сгибания трубы. |
Для тех, кто хочет сделать теплый водяной пол своими рукам, вот здесь подробнее: Водяной теплый пол своими руками.
Таблица: (Значение коэффициента сопротивления ζ для отвода на 90° при различных закруглениях).
Я думаю вы уже запомнили, что полученный коэффициент вставляем в формулу:
и получаем потерю напора на местном сопротивлении. Если их много, а их много особенно в теплых полах. Просто необходимо найти потерю напора на одном местном сопротивлении и полученный ответ помножить на количество поворотов.
местное сопротивление
3.22 местное сопротивление: Трубопроводная арматура или другой элемент трубопровода, изменяющий кинематическую структуру потока (задвижка, кран, колено, диффузор и т.д.).
3.4.4 местное сопротивление: Трубопроводная арматура или другой элемент трубопровода, изменяющий кинематическую структуру потока (задвижка, кран, колено, диффузор и т.д.).
3.1.2 местное сопротивление: Фитинги, запорная арматура, фильтры и другие элементы измерительного трубопровода, искажающие кинематическую структуру потока.
3.5.2 местное сопротивление: Фитинг, запорная арматура, фильтр и другие элементы измерительного трубопровода, искажающие кинематическую структуру потока газа.
Смотри также родственные термины:
13. Местное сопротивление потоку
Сопротивление, оказываемое потоку любым элементом в трубопроводе или конфигурацией самого трубопровода, влияющих на профиль скорости набегающего на расходомер потока, на прямом участке
Полезное
Смотреть что такое «местное сопротивление» в других словарях:
местное сопротивление — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN form loss … Справочник технического переводчика
местное сопротивление потоку — Сопротивление, оказываемое потоку любым элементом в трубопроводе или конфигурацией самого трубопровода, влияющих на профиль скорости набегающего на расходомер потока, на прямом участке. [ГОСТ 15528 86] Тематики измерение расхода жидкости и газа… … Справочник технического переводчика
Местное сопротивление потоку — 13. Местное сопротивление потоку Сопротивление, оказываемое потоку любым элементом в трубопроводе или конфигурацией самого трубопровода, влияющих на профиль скорости набегающего на расходомер потока, на прямом участке Источник: ГОСТ 15528 86:… … Словарь-справочник терминов нормативно-технической документации
местное волновое сопротивление — 3.11 местное волновое сопротивление (local characteristic impedance): Волновое сопротивление электрически короткого участка цепи кабеля. Источник: ГОСТ Р 53880 2010: Кабели коаксиальные для сетей кабельного телевидения. Общие технические условия … Словарь-справочник терминов нормативно-технической документации
ГОСТ 15528-86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения — Терминология ГОСТ 15528 86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения оригинал документа: 26. Акустический преобразователь расхода D. Akustischer Durch flußgeber E. Acoustic flow transducer F … Словарь-справочник терминов нормативно-технической документации
МИ 3082-2007: Государственная система обеспечения единства измерений. Выбор методов и средств измерений расхода и количества потребляемого природного газа в зависимости от условий эксплуатации на узлах учета. Рекомендации по выбору рабочих эталонов для их поверки — Терминология МИ 3082 2007: Государственная система обеспечения единства измерений. Выбор методов и средств измерений расхода и количества потребляемого природного газа в зависимости от условий эксплуатации на узлах учета. Рекомендации по выбору… … Словарь-справочник терминов нормативно-технической документации
ГОСТ 8.586.1-2005: Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 1. Принцип метода измерений и общие требования — Терминология ГОСТ 8.586.1 2005: Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 1. Принцип метода измерений и общие требования оригинал… … Словарь-справочник терминов нормативно-технической документации
ПР 50.2.019-2006: Государственная система обеспечения единства измерений. Методика выполнения измерений при помощи турбинных, ротационных и вихревых счетчиков — Терминология ПР 50.2.019 2006: Государственная система обеспечения единства измерений. Методика выполнения измерений при помощи турбинных, ротационных и вихревых счетчиков: 7.4 Измерение температуры газа 7.4.1 Температуру газа измеряют… … Словарь-справочник терминов нормативно-технической документации
ГОСТ Р 8.740-2011: Государственная система обеспечения единства измерений. Расход и количество газа. Методика измерений с помощью турбинных, ротационных и вихревых расходомеров и счетчиков — Терминология ГОСТ Р 8.740 2011: Государственная система обеспечения единства измерений. Расход и количество газа. Методика измерений с помощью турбинных, ротационных и вихревых расходомеров и счетчиков оригинал документа: 3.2.1 вспомогательные… … Словарь-справочник терминов нормативно-технической документации
Маки (Вторая мировая война) — Члены одной из групп маки. У этого термина существуют и другие значения … Википедия