что такое манометрическая высота

Расчет манометрической высоты

Практический пример

Требуется закачать 150 м3/час из колодца в резервуар, расположенный выше. Условия перекачки, согласно прилагаемому рисунку, следующие:

что такое манометрическая высота. Смотреть фото что такое манометрическая высота. Смотреть картинку что такое манометрическая высота. Картинка про что такое манометрическая высота. Фото что такое манометрическая высота

На = Геометрическая высота всасывания (3м)
Hi = Геометрическая высота нагнетания (34 м)
Ht = Общая геометрическая высота (37м)
La = Протяженность линии всасывания (8м)
Li = Протяженность линии нагнетания (240м)
Vp = Клапан донный, сетчатый (1 штука)
Vr = Клапан обратный (1 штука)
Vc = Шиберный затвор (1 штука)
Се = Диффузор конусный эксцентрический (1 штука)
Сс = Диффузор конусный концентрический (1 штука)
С = Изгибы: (3 штуки) на линии всасывания (7 штук) на линии нагнетания

Расчет диаметра труб делается по формуле:

что такое манометрическая высота. Смотреть фото что такое манометрическая высота. Смотреть картинку что такое манометрическая высота. Картинка про что такое манометрическая высота. Фото что такое манометрическая высота

для скоростей 1,8 и 2,5 м/сек получаем

Определив диаметр чугунных труб, мы можем подсчитать по таблице потери давления.
Трубопровод всасывания диаметром 200 мм при подаче 150 м3/час дает приблизительно 1%.
Трубопровод нагнетания диаметром 150 мм при подаче 150 м3/час дает приблизительно 4%.

Манометрическая высота всасывания

Манометрическая высота нагнетания

что такое манометрическая высота. Смотреть фото что такое манометрическая высота. Смотреть картинку что такое манометрическая высота. Картинка про что такое манометрическая высота. Фото что такое манометрическая высота

В данном случае следует применить электронасос типа FN 80-200/300 с рабочим колесом диаметром 207 мм, способный обеспечивать подачу 150 м3/час на высоту в 52,5 метра.

ПРИМЕЧАНИЕ
С учетом того, что насос будет качать на высоту в 49 метров, требуемая высота столба жидкости над всасывающим патрубком насоса NPSH составляет 4,3 метра; следовательно, выбранный насос способен всасывать приблизительно с 5,5 метра, и в данном случае мы обеспечиваем значительный запас прочности, поскольку всасывание не превышает 3,52 метра.

Источник

Высота всасывания насоса.

что такое манометрическая высота. Смотреть фото что такое манометрическая высота. Смотреть картинку что такое манометрическая высота. Картинка про что такое манометрическая высота. Фото что такое манометрическая высота

Центробежные насосы обеспечивают широкую область подач и давлений; соотношения между основными параметрами этих насосов очень разнообразны.

Высота всасывания насоса относится одному из очень важных параметров при определении положения насоса по отношению к уровню воды в источнике, из которого он будет перекачивать воду.

В промышленности выделяют геометрическую и вакууметрическую высоту всасывания.

Геометрическая высота всасывания представляет собой разность отметок двух горизонтальных плоскостей, одна из которых проходит через условную линию на всасывании насоса (как правило это ось насоса), а вторая совпадает со свободной поверхностью перекачиваемой жидкости в приемном резервуаре или источнике.

Содержание статьи

Высота всасывания и кавитация насоса

По условиям работы насоса, на стороне всасывания могут быть установлены определенные ограничения, которые обусловлены возможностью возникновения в некоторых зонах всасывающего трубопровода особого явления, называемого кавитацией.

Сущность кавитации заключается в образовании разрывов сплошности потока в тех местах, где давление снижается до величины, соответствующей давлению насыщенного пара при данной температуре жидкости. В таких местах происходит быстрое вскипание жидкости, но так как давление в потоке не бывает строго постоянным, а пузырьки пара переносятся потоком, то вслед за вскипанием происходит обратный процесс быстрой конденсации пузырьков пара.

Подробное описание явления кавитации описано здесь

Обобщенно говоря разрушение кавитацией поверхности проточной части насосов имеет весьма характерный вид, а работа кавитирующего насоса сопровождается шумом, внутренним треском, ударами и повышенной вибрацией.

Явление кавитации обычно возникает во всасывающей части насоса. В некоторых случаях кавитация может возникнуть и на напорной части в месте срыва потока с рабочих поверхностей лопаток.

Геометрическая высота всасывания

что такое манометрическая высота. Смотреть фото что такое манометрическая высота. Смотреть картинку что такое манометрическая высота. Картинка про что такое манометрическая высота. Фото что такое манометрическая высота

Для определении высоты всасывания воды и предупреждения кавитации, для обеспечения нормальной работы центробежного насоса на всасывающей стороне является определение и поддержание такого давления разрежения, при котором кавитация не появится.

Степень разряжения зависит от превышения внешнего атмосферного давления над внутренним абсолютным давлением всасывания жидкости во входной части рабочего колеса.

Для определения высоты всасывания насоса напишем уравнение сохранения энергии (уравнение Бернулли) для струйки жидкости А-Б, движущейся от поверхности нижнего уровня до входа на рабочие лопасти насоса

что такое манометрическая высота. Смотреть фото что такое манометрическая высота. Смотреть картинку что такое манометрическая высота. Картинка про что такое манометрическая высота. Фото что такое манометрическая высота

Наименьшая высота расположения точки Б входа в межлопаточные каналы над нижним уровнем, при которой возникает кавитация, называется срывная или критическая геометрическая высота всасывания.

что такое манометрическая высота. Смотреть фото что такое манометрическая высота. Смотреть картинку что такое манометрическая высота. Картинка про что такое манометрическая высота. Фото что такое манометрическая высота

Нкав – кавитационный запас

С – коэффициент, определяющий стойкость насоса к кавитационным явлениям. Он лежит в пределах 500 – 1500.

n – частота вращения насоса

Работа насоса при Нкр.вс. – практически недопустима, потому что малейшее случайное понижение давления в потоке повлечет за собой в этих условиях развитие кавитации и срыв работы насоса. Нормальная работа возможно только когда допустимая высота всасывания ниже критической (максимальной высоты всасывания).

Максимальная высота всасывания

Надежность работы насоса в кавитационном смысле обеспечивается обычно запасом около 25%, т.е.

что такое манометрическая высота. Смотреть фото что такое манометрическая высота. Смотреть картинку что такое манометрическая высота. Картинка про что такое манометрическая высота. Фото что такое манометрическая высота

Разумеется допустимая высота всасывания существенно зависит от температуры жидкости. Очевидно, что повышение температуры всасываемой жидкости уменьшает максимальную и допустимую высоты всасывания.

При высоких температурах жидкости допустимая высота всасывания может быть отрицательной, что указывает на необходимость расположения уровня всасывания жидкости выше оси насоса. Следовательно возможно два различных варианта установки насоса.

что такое манометрическая высота. Смотреть фото что такое манометрическая высота. Смотреть картинку что такое манометрическая высота. Картинка про что такое манометрическая высота. Фото что такое манометрическая высота

Установка насоса по схеме а характерна для насосов, подающих жидкости с низкой температурой, а установка по схеме б – для насосов, подающих жидкости с высокой температурой, а так же при всасывании насосами холодной воды из пространств с достаточно высоким вакуумом.

Установки выполненные по схеме б часто встречаются в теплоэнергетике в схемах регенерации и питания паровых котлов.

Видео по теме

Когда насос перекачивает горячую воду, резервуар, из которого он всасывает, приходится располагать выше насоса. Но по строительным и компоновочным соображениям иногда бывает трудно осуществить требуемую расчетом высоту. Поэтому можно уменьшить её снижением скорости воды во всасывающем трубопроводе и понижением его сопротивления.

Такое достигается увеличением диаметра всасывающего трубопровода, уменьшением его длины, а также выбором рациональной конструкции тех элементов всасывающего трубопровода, которые дают место снижению напора.

В некоторых случаях допускаемую высоту всасывания можно понизить повышением давления в резервуаре, из которого происходит всасывание.

Источник

Основные рабочие параметры насосов

Работа насосов состоит из двух процессов: всасывания и нагнетания. Насос любого вида характеризуется следующими параметрами: высотой всасывания, высотой нагнетания, полным напором, подачей, мощностью и полным коэффициентом полезного действия (КПД).

Различают теоретическую, вакуумметрическую и геометрическую (практическую) высоту всасывания.

Вакуумметрическая высота всасывания (Нв) – это величина вакуума создаваемая насосом, а в энергетическом смысле – это энергия, выраженная в метрах, которая необходима жидкости для подъёма на высоту всасывания. Нв зависит, как правило, от мощности насоса, создающего вакуум и измеряется в метрах водного столба. Показания вакуумметра, установленного на насосе, соответствуют вакуумметрической высоте всасывания. Для пожарного насоса серии ПН-40 и его аналогов Нв = 8 м. вод. ст.

Геометрической (практической) высотой всасывания Нг называется разность отметок между поверхностью воды и осью насоса. Геометрическая высота всасывания зависит от значений и величин нескольких параметров:

Прямое влияние на величину Нг оказывает атмосферное давление, которое заметно меняется в зависимости от высоты над уровнем моря. Например, при высоте над уровнем моря 0 м атмосферное давление равно 10,33 м. вод. ст., а на высоте над уровнем моря 2000 м – 7,95 м. вод. ст.

Нг сильно зависит от давления насыщенных паров всасываемой жидкости. Давление насыщенных паров – это давление, при котором жидкость при данной температуре закипает (речь идёт о давлении жидкости ниже атмосферного). Давление насыщенных паров и, следовательно, высота всасывания в значительной степени зависят от температуры и вида перекачиваемой жидкости. Известно, что с уменьшением давления понижается температура кипения жидкости. Если давление всасывания (оно естественно ниже атмосферного) Рвс будет ниже давления насыщенных паров всасываемой жидкости Рn, то начнется образование пара и произойдет срыв в работе насоса.

Таким образом, обязательным условием нормальной работы насоса является:

Рn 2 (10 м. вод. ст.), а при температуре воды 20 ºС Рn = 0,024 кг/см 2 (0,24 м. вод. ст.), следовательно, чем выше температура жидкости, тем сложнее забрать её насосом. С этим явлением связана кавитация – процесс образования пузырьков воздуха в жидкости. При кавитации происходит самовскипание жидкости, пузырьки пара увлекаются движущимся потоком и, встречая твёрдые поверхности корпуса и рабочего колеса, разрушаются («схлопываются»). При этом выделятся большая энергия, из-за чего повреждаются и даже при длительном воздействии разрушаются поверхности внутренней полости насоса (явление кавитационной эрозии). Кавитация сопровождается шумом и треском внутри насоса. Во избежание преждевременного износа рабочих органов насоса не допускается его работа в кавитационном режиме.

Кавитационные явления могут возникать в случае работы насоса с большой геометрической высотой всасывания. Поэтому высота всасывания должна быть такой, при которой возникновение кавитации невозможно.

Максимальная допустимая высота всасывания может быть определена по формуле:

что такое манометрическая высота. Смотреть фото что такое манометрическая высота. Смотреть картинку что такое манометрическая высота. Картинка про что такое манометрическая высота. Фото что такое манометрическая высота

где: Рn – давление насыщенного пара;

γ – удельный вес жидкости;

hвс – потери напора во всасывающем трубопроводе;

ΔН – кавитационный запас.

Значение кавитационного запаса устанавливается таким, чтобы не было значительного снижения напора, и была ограничена скорость кавитационной эрозии. Например, для насосов серии ПН-40 кавитационный запас составляет 3 м.

Кавитационные явления могут также возникать при больших подачах насоса, вследствие понижения давления (увеличения вакуума) во входном патрубке насоса. Поэтому при появлении кавитации необходимо уменьшить подачу насоса.

Наконец, геометрическая высота всасывания зависит от потерь напора во всасывающей линии или величины преодолеваемого сопротивления во всасывающей линии.

где: S – сопротивление всасывающей линии;

Из всего сказанного следует, что геометрическая (практическая) высота всасывания Нг определятся выражением:

где: Нв – вакууметрическая высота всасывания;

hвс – потери напора во всасываемой линии;

hрп – температурные потери напора (давление насыщенных паров);

hр.атм – потери напора, зависящие от высоты местности над уровнем моря.

Например, для пожарного насоса серии ПН-40 Нг практически не превышает 7 м при работе в нормальных условиях, т.е. при атмосферном давлении Ратм =1 кг/см 2 (10,33 м. вод. ст.) и температуре воды 20 °С.

Обычно допустимая высота всасывания указывается заводами-изготовителями насосов в паспортах изделий.

Различают геометрическую и манометрическую высоту нагнетания.

Геометрическая высота нагнетания – это расстояние в метрах по вертикали от оси насоса до наивысшей точки нагнетания Нн.

Манометрической высотой нагнетания называется давление, создаваемое насосом Нман. Манометрическая высота нагнетания (показание манометра) всегда больше геометрической высоты нагнетания (реальной точки подачи жидкости) из-за возникающих потерь в напорной линии.

где: hн – потери напора в напорной линии, hн = S·Q 2 ;

S – сопротивление напорной линии;

Для высоты нагнетания теоретически пределов не существует, а практически она ограничивается прочностью отдельных деталей насосов и трубопроводов, а также мощностью двигателей привода насосов.

Полный напор, развиваемый насосом Н расходуется на подъем жидкости, преодоление сопротивлений во всасывающем и напорном трубопроводе и на создание свободного напора.

где: Нг – геометрическая высота подъема воды (м);

hвс + hн – потери напора во всасывающей и напорной линии (м);

Нсв – свободный напор (м).

На практике полный напор, развиваемый насосом, оценивают по показаниям манометра и вакуумметра.

Подача насоса – это количество жидкости, перекачиваемое насосом в единицу времени. Различают массовую подачу (кг/с) и объёмную подачу (м 3 /мин или л/с). Чаще всего подачу пожарных насосов указывают в объёмных единицах: м 3 /мин или л/с.

Существует соотношение между количеством жидкости входящей в насос Q1 и жидкости, выходящей из насоса Q2:

где: Qу – объёмные утечки жидкости через щелевые уплотнения.

Рабочие органы насоса во время работы предают энергию потоку жидкости. Эта энергия подводится от двигателя.

Для правильной оценки энергетических показателей мотор-насосной установки следует различать полезную (эффективную) и потребляемую мощность.

Полезная (эффективная) мощность (Ne) насоса идет на совершение работы по перемещению определенного объема жидкости Q на высоту Н и определяется по формуле.

что такое манометрическая высота. Смотреть фото что такое манометрическая высота. Смотреть картинку что такое манометрическая высота. Картинка про что такое манометрическая высота. Фото что такое манометрическая высота

где: ρ – плотность жидкости, кг/м 3 ;

g – ускорение свободного падения, м/с 2 ;

Q – подача насоса, м 3 /с;

Мощность, потребляемая насосом, всегда больше, чем полезная, т.к. часть энергии затрачивается на механические, гидравлические и объемные потери в насосе. Потребляемой мощностью называется мощность N, подводимая к рабочим органам насоса. Она определяется по формуле:

где: М – крутящий момент на валу насоса (двигателя), Н•м;

При передаче энергии от насоса к перекачиваемой жидкости происходят объемные, гидравлические и механические потери энергии

Известно, что фактическая подача насоса всегда меньше теоретической подачи, т.е. количество жидкости выходящей из насоса всегда меньше количества жидкости входящей в насос. Это происходит вследствие:

§ просачивания жидкости через сальники, клапаны и поршни, причем степень просачивания зависит от точности изготовления и состояния указанных деталей насоса;

§ запоздания открытия и закрытия клапанов;

§ наличия воздуха в жидкости.

Величина объемного КПД характеризует степень герметичности насоса, и определяется по формуле:

что такое манометрическая высота. Смотреть фото что такое манометрическая высота. Смотреть картинку что такое манометрическая высота. Картинка про что такое манометрическая высота. Фото что такое манометрическая высота

где: Q – количество жидкости выходящей из насоса;

Qу – утечки жидкости в насосе;

Q + Qу – количество жидкости входящей в насос.

Гидравлический КПД – это потери напора в насосе на трение и местные сопротивления. Результатом гидравлических потерь является уменьшение напора.

Значение гидравлического КПД показывает меру расхода энергии в насосе на преодоление сопротивления движения жидкости, и определяется по формуле:

что такое манометрическая высота. Смотреть фото что такое манометрическая высота. Смотреть картинку что такое манометрическая высота. Картинка про что такое манометрическая высота. Фото что такое манометрическая высота

где: Н – действительный (развиваемый) напор насоса;

ΔН – потери напора на преодоление сопротивлений внутри насоса;

Н + ΔН – теоретический напор насоса.

Механический КПД – это потери мощности на трение в подшипниках, уплотнениях вала и т.п. Значение механического КПД характеризует качество изготовления и рациональность конструкции подшипников, сальников (манжет) и других узлов, где происходит трение деталей.

Механический КПД определяют по формуле:

что такое манометрическая высота. Смотреть фото что такое манометрическая высота. Смотреть картинку что такое манометрическая высота. Картинка про что такое манометрическая высота. Фото что такое манометрическая высота

где: N – мощность на рабочем колесе насоса;

ΔN – потери мощности на трение в подшипниках и сальниках насоса;

N + ΔN – мощность на валу насоса.

Полный КПД насоса учитывает все потери, которые возникают в нем при перекачивании жидкости. Он представляет собой произведение трех частных коэффициентов и характеризует отношение полезной мощности Nе к потребляемой N:

что такое манометрическая высота. Смотреть фото что такое манометрическая высота. Смотреть картинку что такое манометрическая высота. Картинка про что такое манометрическая высота. Фото что такое манометрическая высота

Технические требования к насосным агрегатам пожарных автомобилей

В связи с особенностями эксплуатации к насосным агрегатам пожарных автомобилей предъявляются следующие основные требования:

§ небольшие габаритные размеры и масса, что необходимо для рационального использования грузоподъемности и объема кузова пожарного автомобиля;

§ высокая надежность, в том числе при работе на загрязненной воде;

§ постоянная готовность к работе;

§ высокие кавитационные свойства;

§ пологая форма напорной характеристики, т. е. незначительное изменение напора насоса в диапазоне подач от нулевой до максимальной при постоянной частоте вращения (при крутопадающей форме напорной характеристики снижение подачи влечет за собой быстрое повышение напора, что может вызвать разрыв напорных рукавов, а повышение подачи – существенное снижение напора);

§ согласованность параметров насоса и двигателя, при отсутствии которой параметры насоса не могут быть реализованы на пожарном автомобиле;

§ минимальное время заполнения всасывающего трубопровода и насоса водой перед пуском с помощью вакуумной системы (не более 40 сек. с геометрической высоты всасывания не менее 7,5 м.);

§ простота и удобство управления насосной установкой;

§ возможность длительной непрерывной работы на максимальном режиме в установленном интервале температур окружающего воздуха (конструкция насосов нормального давления должна обеспечивать их непрерывную работу в номинальном режиме в течение не менее 6 ч., насосов высокого давления – не менее 2 ч.);

§ свободный доступ для технического обслуживания, его простота и удобство (отсутствие элементов, требующих периодической регулировки, минимальное число точек смазки и слива воды, возможность частичной разборки агрегатов непосредственно на пожарном автомобиле);

§ низкий уровень шума и отсутствие вибраций во время работы (средний уровень звука, создаваемый насосом при работе в номинальном режиме, должен быть не более 85 дБ.);

§ использование тех же сортов масел и смазок, какие применяются для агрегатов и узлов шасси пожарного автомобиля.

На пожарных автомобилях устанавливаются, как правило, насосы центробежного типа. Это обусловлено тем, что центробежные насосы обладают рядом важных достоинств: равномерностью подачи огнетушащих средств (подачей без пульсаций); способностью работать «на себя» (т.е. при перекрытии пожарного ствола, засорении или заломе пожарного рукава в системе подачи воды не повышается чрезмерно давление), простотой управления насосом и его обслуживания при эксплуатации на пожарах.

Для пожарных автомобилей важно, что центробежные насосы не требуют сложного привода от двигателя, а их габариты и массы относительно невелики.

В то же время, центробежные насосы имеют и ряд недостатков, важнейший из которых тот, что они не являются самовсасывающими – работают только после предварительного заполнения всасывающей линии и насоса водой. Этот недостаток компенсируют устройствами, позволяющими заполнять всасывающие тракты и полость насоса из цистерн. Кроме того, на пожарных автомобилях устанавливают вспомогательные насосы для заполнения полости всасывающего рукава и корпуса насоса водой. Для этой цели используют газоструйные, ротационные, поршневые и другие насосы. Вспомогательные насосы работают кратковременно, только при включении центробежного насоса в работу. Установка таких насосов усложняет конструкцию насосной установки, требует устройства дополнительного привода для их работы.

Напорная и энергетическая характеристика центробежного насосаопределяет зависимость напора, потребляемой мощности и К.П.Д. от подачи насоса. Эти зависимости изображают графически кривыми Q–H, Q–N и Q-η при постоянной частоте вращения рабочего колеса насоса n (см. рис. 3.7).

Напорную и энергетическую характеристику строят следующим образом. Регулируя степень открытия задвижки на напорном патрубке, при постоянной частоте вращения вала насоса, получают различные величины подачи Q. Каждому значению Q соответствует напор Н, мощность N и К.П.Д. η насоса. Затем на ось абсцисс наносят в принятом масштабе значения подачи, а на ось ординат – полученные значения Н, N и η. Полученные точки соединяют плавными линиями. По графику характеристики Q-η (см. рис. 3.7) видно, что

что такое манометрическая высота. Смотреть фото что такое манометрическая высота. Смотреть картинку что такое манометрическая высота. Картинка про что такое манометрическая высота. Фото что такое манометрическая высота
что такое манометрическая высота. Смотреть фото что такое манометрическая высота. Смотреть картинку что такое манометрическая высота. Картинка про что такое манометрическая высота. Фото что такое манометрическая высота

максимальному значению К.П.Д. (точка А) соответствует определённая подача QА и напор НА. Точка А называется оптимальной и соответствует оптимальному режиму работы насоса.

Влияние частоты вращения рабочего колеса на параметры работы центробежного насоса проявляется следующим образом.

Подача центробежного насоса изменяется пропорционально частоте вращения рабочего колеса: Q1/Q2 = n1/n2.

Источник

Манометрическое давление: объяснение, формулы, уравнения, примеры

Содержание:

Математическая связь между этими тремя величинами такова:

Рисунок 1 наглядно иллюстрирует эту взаимосвязь. Поскольку давление вакуума равно 0, абсолютное давление всегда положительно, то же самое происходит с атмосферным давлением Pбанкомат.

В англосаксонских единицах давление измеряется в фунтах на фут. 2 однако обычно это делается в фунтах на дюйм. 2 или psi (фунт-сила на квадратный дюйм).

Изменение давления с глубиной

Чем больше мы ныряем в воду в бассейне или в море, тем большее давление мы испытываем. Напротив, с увеличением высоты атмосферное давление падает.

Понятно, что давление и глубина (или высота) связаны. Чтобы выяснить это, в случае покоящейся жидкости (статическое равновесие) рассматривается дискообразная часть жидкости, заключенная в контейнер (см. Рисунок 2). Диск имеет площадь поперечного сечения К, вес dW и высота dy.

Следовательно, вес dW элемента:

И теперь действует второй закон Ньютона:

Решение дифференциального уравнения

Интегрируя обе стороны и учитывая, что плотность ρа также гравитация грамм постоянны, искомое выражение найдено:

Если вам нужно значение абсолютного давления, просто добавьте атмосферное давление к предыдущему результату..

Примеры

Для измерения манометрического давления устройство называется манометр, которые обычно предлагают разницу давлений. В конце будет описан принцип работы U-образного манометра, а теперь давайте рассмотрим некоторые важные примеры и следствия ранее выведенного уравнения.

Принцип Паскаля

Очевидно, каждый раз, когда он увеличивается По, увеличивает п в том же количестве, если это жидкость с постоянной плотностью. Это именно то, что предполагалось при рассмотрении ρ константу и поместите ее за пределы интеграла, решенного в предыдущем разделе.

Принцип Паскаля гласит, что любое увеличение давления удерживаемой жидкости в состоянии равновесия передается без каких-либо изменений во все точки указанной жидкости. Благодаря этому свойству можно умножить силу F1 приложите к маленькому поршню слева, и получите F2 справа.

Автомобильные тормоза работают по этому принципу: на педаль прикладывается относительно небольшое усилие, которое преобразуется в большее усилие на тормозной цилиндр на каждом колесе благодаря жидкости, используемой в системе.

Гидростатический парадокс Стевина

Гидростатический парадокс гласит, что сила, создаваемая давлением жидкости на дне контейнера, может быть равной, большей или меньшей, чем вес самой жидкости. Но когда вы ставите емкость на весы, она обычно регистрирует вес жидкости (плюс, конечно, вес емкости). Как объяснить этот парадокс?

Начнем с того, что давление на дне емкости зависит исключительно от глубины и не зависит от формы, как это было показано в предыдущем разделе.

Давайте посмотрим на несколько разных контейнеров. При общении, когда они наполняются жидкостью, все они достигают одинаковой высоты. час. Основные моменты находятся под одинаковым давлением, поскольку находятся на одной глубине. Однако сила давления в каждой точке может отличаться от веса (см. Пример 1 ниже).

Упражнения

Упражнение 1

Сравните силу давления на дно каждой из емкостей с весом жидкости и объясните, почему существуют различия, если таковые имеются.

Контейнер 1

В этом контейнере площадь основания равна A, поэтому:

Давление на дно: ρ. грамм. час

Сила от давления: F = P.A = ρ. грамм. час К

Вес и сила давления равны.

Контейнер 2

Контейнер имеет узкую часть и широкую часть. На диаграмме справа он разделен на две части, и геометрия будет использоваться для определения общего объема. Площадь А2 это внешний в контейнер, ч2 высота узкой части, h1 высота широкой части (основания).

Давление на дно: P = ρ. грамм. час

Сила на дно из-за давления: F = P. A1. грамм. час К1

Сравнение веса жидкости с силой давления показывает, что она больше веса.

Что происходит, так это то, что жидкость также оказывает силу на часть ступеньки в контейнере (см. Красные стрелки на рисунке), которые включены в вышеприведенный расчет. Эта направленная вверх сила противодействует действию вниз, и вес, регистрируемый весами, является результатом этого. Согласно этому, величина веса составляет:

Упражнение 2.

Жидкость в трубке (показана на рисунке желтым цветом) может быть водой, хотя ртуть предпочтительно используется для уменьшения размера устройства. (Разница в 1 атмосферу или 101,3 кПа требует 10,3 метра водяного столба, ничего портативного).

Просит найти манометрическое давление пм в системе S как функция высоты H столба жидкости.

Решение

Давление внизу для обоих ответвлений трубки одинаковое, так как они находятся на одинаковой глубине. Пусть PК давление в точке A, расположенной в y1 И пB те точки B, которые находятся на высоте и2. Поскольку точка B находится на границе раздела жидкости и воздуха, давление там равно Pили. В этой ветви манометра давление внизу составляет:

Со своей стороны, давление внизу для ветви слева составляет:

Ссылки

Вторичная профилактика: стратегии, шкалы, тесты

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *