что такое логическая операция
Что такое логическая операция
2) Логическое сложение или дизъюнкция:
Таблица истинности для дизъюнкции
A | B | F |
1 | 1 | 1 |
1 | 0 | 1 |
0 | 1 | 1 |
0 | 0 | 0 |
3) Логическое отрицание или инверсия:
Таблица истинности для инверсии
A | ¬ А |
1 | 0 |
0 | 1 |
4) Логическое следование или импликация:
«A → B» истинно, если из А может следовать B.
Обозначение: F = A → B.
Таблица истинности для импликации
A | B | F |
1 | 1 | 1 |
1 | 0 | 0 |
0 | 1 | 1 |
0 | 0 | 1 |
5) Логическая равнозначность или эквивалентность:
Что такое логическая операция
Тема 3. Основы математической логики 1. Логические выражения и логические операции.
2. Построение таблиц истинности и логических функций.
3. Законы логики и преобразование логических выражений.
Лабораторная работа № 3. Основы математической логики.
1. Логические выражения и логические операции
Исследования в алгебре логики тесно связаны с изучением высказываний (хотя высказывание — предмет изучения формальной логики). Высказывание — это языковое образование, в отношении которого имеет смысл говорить о его истинности или ложности (Аристотель).
Простым высказыванием называют повествовательное предложение, относительно которого имеет смысл говорить, истинно оно или ложно.
Считается, что каждое высказывание либо истинно, либо ложно и ни одно высказывание не может быть одновременно истинным и ложным.
Высказывания 1 и 3 являются истинными. Высказывание 2 – ложным , потому что число 27 составное 27=3*3*3.
Итак, отличительным признаком высказывания является свойство быть истинным или ложным, последние четыре предложения этим свойством не обладают.
С помощью высказываний устанавливаются свойства, взаимосвязи между объектами. Высказывание истинно, если оно адекватно отображает эту связь, в противном случае оно ложно.
Однако определение истинности высказывания далеко не простой вопрос. Например, высказывание «Число 1 +22 = 4294 967297 — простое», принадлежащее Ферма (1601-1665), долгое время считалось истинным, пока в 1732 году Эйлер (1707-1783) не доказал, что оно ложно. В целом, обоснование истинности или ложности простых высказываний решается вне алгебры логики. Например, истинность или ложность высказывания «Сумма углов треугольника равна 180°» устанавливается геометрией, причем в геометрии Евклида это высказывание является истинным, а в геометрии Лобачевского — ложным.
В булевой алгебре простым высказываниям ставятся в соответствие логические переменные, значение которых равно 1, если высказывание истинно, и 0, если высказывание ложно. Обозначаются логические переменные, большими буквами латинского алфавита.
Существуют разные варианты обозначения истинности и ложности логических переменных:
Сложные (составные) высказывания представляют собой набор простых высказываний (по крайней мере двух) связанных логическими операциями.
С помощью логических переменных и символов логических операций любое высказывание можно формализовать, то есть заменить логической формулой (логическим выражением).
Связки «НЕ», «И», «ИЛИ» заменяются логическими операциями инверсия, конъюнкция, дизъюнкция. Это основные логические операции, при помощи которых можно записать любое логическое выражение.
Введем перечисленные логические операции.
В алгебре множеств конъюнкции соответствует операция пересечения множеств, т.е. множеству получившемуся в результате умножения множеств А и В соответствует множество, состоящее из элементов, принадлежащих одновременно двум множествам.
Что такое логическая операция
§ 2. Логические операции. Формализация высказываний
Сейчас мы познакомимся с шестью основными логическими операциями. Каждая из них имеет несколько названий и обозначений.
Названия операции
Возможные обозначения
Конъюнкция, логическое умножение, операция И, операция AND.
`&, ^^, *,` по аналогии с алгебраическим умножением может никак не обозначаться
Дизъюнкция, нестрогая дизъюнкция, логическое сложение, операция ИЛИ, операция OR.
Строгая дизъюнкция, разделительная дизъюнкция, исключающее ИЛИ, сложение по модулю `2`.
Эквивалентность, эквиваленция, равенство, равнозначность.
Импликация, следование, следствие
Теперь для того чтобы строго определить эти логические операции, нам нужно для каждой из них выписать таблицу истинности. Все перечисленные операции кроме отрицания имеют два операнда. Знак операции в выражениях пишется между операндами (как в алгебре чисел). Операция отрицания имеет один операнд и в выражениях записывается либо в виде черты над операндом, либо в виде символа «приставка» слева от операнда.
1) `p` и `q` ложны. Это значит, что четырёхугольник не является квадратом и его стороны не равны. Это возможная ситуация.
2) `p` – ложно, `q` – истинно. Это значит, что четырёхугольник не является квадратом, но стороны у него равны. Это возможно (ромб).
3) `p` – истинно, `q` – истинно. Это значит, что четырёхугольник является квадратом и стороны у него равны. Это возможная ситуация.
4) `p` – истинно, `q` – ложно. Это значит, что четырёхугольник является квадратом, но стороны у него не равны. Это невозможная ситуация.
Очень часто вместо «присвоим логическим переменным эти высказывания» говорят «обозначим высказывания следующим образом». В дальнейшем мы тоже будем использовать этот речевой оборот.
Логические операции
В логике логическими операциями называют действия, вследствие которых порождаются новые понятия, возможно с использованием уже существующих. В более узком, формализованном смысле, понятие логической операции используется в математической логике и программировании.
Содержание
Формальная логика
Логические операции с понятиями — такие мыслительные действия, результатом которых является изменение содержания или объема понятий, а также образование новых понятий.
К операциям, которые связаны преимущественно с изменением содержания понятий, относятся:
К операциям, которые связаны преимущественно с объемами понятий, относятся:
Данные операции могут быть записаны математически с помощью теории множеств.
Переход же к математической логике связан с понятием суждений и установлением операций над ними с целью получения сложных суждений.
Математическая логика
В математической логике логические операции называют логическими связками. В качестве основных обычно называют конъюнкцию ( или &), дизъюнкцию (
), импликацию (
), отрицание (
). В смысле классической логики логические связки могут быть определены через алгебру логики.
Программирование
Логические операции в программировании как правило служат для управления программой в зависимости от значения каких-то логических выражений или переменных. Наиболее известны конъюнкция (&&), дизъюнкция (||), отрицание (!). Их нередко путают с битовыми операциями, хотя это разные вещи. Например, следующий код на языке C:
не выполнит вызов подпрограммы some_condition(), если значение логической переменной action_required ложно. При такой операции второй аргумент операции && вообще не будет вычислен.
См. также
Ссылки
Логические операции с понятиями
Изменение содержания понятия: отрицание • ограничение • обобщение • деление
Изменение объёма понятия: сложение • умножение • вычитание
2 константы: 0 • 1
Полезное
Смотреть что такое «Логические операции» в других словарях:
ЛОГИЧЕСКИЕ ОПЕРАЦИИ — логич. операторы, логич. связки, функции, преобразующие выражения логич. исчислений (формальных логич. систем); подразделяются на пропозициональные (сен тенциональные) связки, с помощью которых образуются выражения логики высказываний, и… … Философская энциклопедия
Логические операции — логические связки, логические операторы, функции, преобразующие высказывания или пропозициональные формы (т. е. выражения логики предикатов (См. Логика предикатов), содержащие переменные (См. Переменная) и обращающиеся в высказывания при… … Большая советская энциклопедия
Логические операции — [logical operations]. С какой то степенью точности можно сказать, что математическая логика занимается изучением правил вывода определенных положений без конкретизации самих этих положений (безотносительно к их содержанию), примерно так, как… … Экономико-математический словарь
логические операции — С какой то степенью точности можно сказать, что математическая логика занимается изучением правил вывода определенных положений без конкретизации самих этих положений (безотносительно к их содержанию), примерно так, как геометрия связана с наукой … Справочник технического переводчика
логические операции — операции, посредством которых из простых высказываний образуются сложные, из простых тер минов сложные, из высказываний термины, из терминов высказывания и т. д. К Л. о., позволяющим из одних высказываний получать другие высказывания, относятся… … Словарь терминов логики
Логические операции — операции, выполняемые в соответствии с правилами булевой алгебры. К ним относят операции: отрицания, логическое «и», логическое «или» и тождество (эквивалентность). На этих логических операциях основана работа вычислительных машин … Начала современного естествознания
Логические элементы — Логические элементы устройства, предназначенные для обработки информации в цифровой форме (последовательности сигналов высокого «1» и низкого «0» уровней в двоичной логике, последовательность «0», «1» и «2» в троичной логике,… … Википедия
Логические переменные — [logical variables] знаки и формулы, которые могут принимать различные значения в зависимости от содержания обозначаемых ими высказываний. Подробнее см. Логические операции … Экономико-математический словарь
логические переменные — Знаки и формулы, которые могут принимать различные значения в зависимости от содержания обозначаемых ими высказываний. Подробнее см. Логические операции. [http://slovar lopatnikov.ru/] Тематики экономика EN logical variables … Справочник технического переводчика
Логические связки — В логике логическими операциями называют действия, вследствие которых порождаются новые понятия, возможно с использованием уже существующих. В более узком, формализованном смысле, понятие логической операции используется в математической логике и … Википедия
Логическая операция
В логике логическими операциями называют действия, вследствие которых порождаются новые понятия, возможно с использованием уже существующих. В более узком, формализованном смысле, понятие логической операции используется в математической логике и программировании.
Содержание
Формальная логика
Логические операции с понятиями — такие мыслительные действия, результатом которых является изменение содержания или объёма понятий, а также образование новых понятий.
К операциям, которые связаны преимущественно с изменением содержания понятий, относятся:
К операциям, которые связаны преимущественно с объёмами понятий, относятся:
Данные операции могут быть записаны математически с помощью теории множеств.
Переход же к математической логике связан с понятием суждений и установлением операций над ними с целью получения сложных суждений.
Математическая логика
В качестве основных обычно называют конъюнкцию ( или &), дизъюнкцию (
), импликацию (
), отрицание (
). В смысле классической логики логические связки могут быть определены через алгебру логики. В асинхронной секвенциальной логике определена логико-динамическая связка в виде операции венъюнкции (
).
Программирование
Логическая операция — в программировании операция над выражениями логического (булевского) типа, соответствующая некоторой операции над высказываниями в алгебре логики. Как и высказывания, логические выражения могут принимать одно из двух истинностных значений — «истинно» или «ложно». Логические операции служат для получения сложных логических выражений из более простых. В свою очередь, логические выражения обычно используются как условия для управления последовательностью выполнения программы.
В некоторых языках программирования (например в C) вместо логического типа или одновременно с ним используются числовые типы. В этом случае считается, что отличное от нуля значение соответствует логической истине, а ноль — логической лжи.
Значение отдельного бита также можно рассматривать как логическое, если считать, что 1 означает «истинно», а 0 — «ложно». Это позволяет применять логические операции к отдельным битам, к битовым векторам покомпонентно и к числам в двоичном представлении поразрядно. Такое одновременное применение логической операции к последовательности битов осуществляется с помощью побитовых логических операций. Побитовые логические операции используются для оперирования отдельными битами или группами битов, применяются для наложения битовых масок, выполнения различных арифметических вычислений.
Среди логических операций наиболее известны конъюнкция (&&), дизъюнкция (||), отрицание (!). Их нередко путают с битовыми операциями, хотя это разные вещи. Например, следующий код на языке C:
не выполнит вызов подпрограммы some_condition(), если значение логической переменной action_required ложно. При такой операции второй аргумент операции && вообще не будет вычислен.
В языках программирования
В следующей таблице для некоторых языков программирования приведены встроенные операторы и функции, реализующие логические операции.