что такое лигнин в древесине
Лигнин
Лигнинами называют группу сложных ароматических полимерных соединений. Лигнин – вещество натурального происхождения. Встречается во всех растениях, имеющих твёрдую структуру. Именно это вещество отвечает за одеревенение клеточных структур, растительных волокон, и в конечном итоге растений. Больше всего лигнина в деревьях (на латыни «lignum» означает «дерево»). Меньше – в кустарниках (джут) и травянистых растениях (лён) – соответственно. В грибах, мхах и водорослях лигнинов нет вообще.
В естественном состоянии в растениях лигнин связан с целлюлозой и образует с ней структуру подобную по физико-механическим свойствам железобетону (в первую очередь – прочностью).
Структура «лигнин + целлюлоза». Лигнин подобен бетону, микроволокна целлюлозы – арматуре.
В контексте строительства срубов о лигнине вспоминают, поскольку он содержится в пеньке, льне и джуте, в пакле и полотне из этих растений, то есть в материалах, которые используют при конопачении межвенцевых щелей.
В джутовой пакле лигнина в разы больше, чем в льняной. Порой, эту особенность джута выставляют как преимущество: мол, благодаря высокому содержанию лигнина джут со временем одеревенеет в щелях и образует однородную массу, которая плотно «срастётся» с древесиной бревен. Однако это не так.
Во-первых, ни в джутовой, ни в другой пакле со временем лигнина больше не станет, для его образования нужно, чтобы растение было живым.
Во-вторых, естественный лигнин, содержащийся в джутовой и т.п. пакле в однородную массу не склеится, он работает только на клеточном уровне, и «работа» его уже завершена, поскольку эти самые клетки уже мертвы и никаких биохимических процессов в них не протекает.
Лигнин, тем не менее, отвечает за твёрдость и ломкость материала. Плотно законопаченная джутовая пакля образует более твёрдый и прочный слой. Однако ломкость материала может проявиться недостатком, поскольку сруб понемногу «ведёт» в течение всего срока эксплуатации, и незаметные сдвиги будут постепенно разрушать малопластичный слой джутовой пакли.
Стопроцентное джутовое полотно (войлок) вообще не производят, поскольку ломкость джута из-за высокого содержания лигнина не позволяет этого сделать технологически. Проблему решают, добавляя лён, в котором лигнина меньше. Большинство войлочных уплотнителей содержат лён и джут 50/50%.
Бактерицидные, биозащитные свойства натурального лигнина не выражены, то есть говорить о них особо и как-то подчёркивать нет смысла. Однако лигнин обладает гидрофобными свойствами, и в этом смысле джутовая пакля, пожалуй, имеет преимущество перед льняной или пеньковой.
Сравнительная характеристика состава волокон лубяных растений.
Использование лигнина
Лигнин – органическое полимерное соединение, содержащееся в клеточных оболочках растений. Вызывает их одревеснение. Содержание – в хвойных породах — до 50%, лиственных – (20-30 %). Лигнин считается нежелательным компонентом бумаги, поскольку он способствует её пожелтению. Чтобы избежать этого, требуются значительные усилия для его удаления из древесной массы.
Лигнин является одним из наиболее механически и химически стойких природных полимеров и обладает очень интересными свойствами.
Лигнин — второй по распространенности природный полимер на Земле, уступая только целлюлозе. Это органическое вещество, которое при встраивании в клеточную стенку растения вызывает одревеснение клетки. Содержание лигнина в хвойных деревьях выше, чем в лиственных. Благодаря лигнину древесина обладает с высокой прочностью на сжатие и растяжение.
Лигнин химически нестоек, легко окисляется, взаимодействует с хлором, растворяется при нагревании в щелочах, водных растворах сернистой кислоты и её кислых солей.
Состав золы лигнина: Al2O3 – 1%; SiO2 – 93,4%; P2O5 – 1,5 %; CaO – 1,5%; Na2O – 0,3%; K2O – 0,3%; MgO – 0,3%; TiO2 – 0,1%.
В промышленности главным образом образуются два вида лигнина: гидролизный (бессернистый лигнин) и сульфатный (сернистый лигнин).
Гидролизный лигнин
В огромных аппаратах, куда засыпаны опилки и щепки, идет процесс гидролиза. Древесина отдавая глюкозу, превращается в коричневый порошок — лигнин.
Гидролизный лигнин представляет собой твердый (пастообразный) остаток после обработки древесины или другого растительного сырья раствором серной кислоты. Содержит измененный (после химической реакции) лигнин растительной клетки, моносахара, минеральные и органические кислоты, зольные элементы (соотношение перечисленных компонентов зависит от применяемого сырья и колеблется в широких пределах).
Из него можно получить редкие и ценные химикаты. Из лигнина экономически выгодно получать в промышленном масштабе:
Лигнин имеет способность переходить в вязкопластичное состояние, богат азотом (0,5 кг свободного азота на тонну).
Норматив образования лигнина — 0,3-0,4 т/т продукции гидролизного производства.
Сульфатный лигнин
Сульфатный лигнин образуется при сульфатной варке древесины. Сульфатный лигнин в большой степени используется в качестве топлива в энергетических установках целлюлозных заводов.
Для производства коллактивитов сульфатный лигнин влажностью не выше 6 % обрабатывают в течение 10 мин 95 — 96 % — ной серной кислотой при температуре 200 С. Количество кислоты составляет 400 % массы сухого лигнина.
Направления использования
По осветляющим свойствам коллактивит из лигнина равноценен активному углю, а по себестоимости значительно дешевле.
Гранулированный лигниновый уголь по своей реакционной способности ничуть не уступает древесному, а производство его более рентабельно благодаря сокращению потерь и уменьшению расходов на транспортировку. Ведь его можно производить вблизи потребителей.
Лигнин отличается способностью переходить в вязкопла-стическое состояние при давлении порядка 100 МПа. Это обстоятельство предопределило одно из перспективных направлений использования гидролизного лигнина в виде брикетированного энергетического биотоплива. Топливные лигнобрикеты представляют собой высококачественное, высококалорийное, до 5500 ккал/кг, малодымное биотопливо с низким содержанием золы (13%).
Проблемы использования лигнина
Научно-исследовательские работы в области промышленного использования лигнина проводились во многих научно-исследовательских организациях, однако координации этих исследований не было. В результате разрешение ряда важных вопросов не вышло за пределы лабораторных и в отдельных случаях экспериментальных полузаводских работ.
Перспективы использования лигнина
Существует много типов лигнина с разными свойствами, применением и ценностями. Например, исследователи рассматривают лигнин как материал, который может применяться в строительной и автомобильной промышленности.
Лигнин, содержащий одновременно ароматические и алифатические фрагменты, может служить сырьем для получения различных химикатов. Например, лигнин хвойных пород при окислении в щелочной среде образует ванилин, а из лиственного лигнина наряду с ванилином может быть получен сиреневый альдегид, органические кислоты.
В процессе пиролиза, терморастворения и гидрогенизации лигнина получается жидкое топливо.
Наиболее крупнотоннажным направлением использования гидролизного лигнина является получение различных сорбентов.
Лигнин гидролизный
Лигнин является сложным (сетчатым) ароматическим природным полимером, который входит в состав наземных растительных организмов, продуктом биосинтеза. Лигнин занимает втрое место после целлюлозы по распространенности среди полимеров на земле. Он играет очень важную роль в естественном круговороте углерода. Образование лигнина стало возможным вследствие эволюционного перехода растений от водного к наземному образу жизни для того, чтобы обеспечить жесткость и устойчивость стеблей и стволов (как хитин у членистоногих).
Происхождение лигнина
В составе растительной ткани преобладает целлюлоза, гемицеллюлоза и лигнин. Древесина хвойных пород содержит примерно 23-38 % лигнина, в то время как лиственные породы содержат от 14 до 25%, солома злаков включает примерно 12-20% от массы. Лигнин содержится в клеточных стенках, а также в пространстве между клетками. Таким образом, он скрепляет волокна целлюлозы.
Совместно с гемицеллюлозами он отвечает за показатель механической прочности ствола и стебля. Благодаря лигнину достигается герметичность клеточных стенок, а вследствие наличия красителей в лигнине древесина имеет свой характерный цвет.
Различают:
Примечательно, что лигнин не производят специально. Он, как и его химически модифицированные формы, представляет собой отходы биохимического производства. Во время физико-химических методов переработки растительных волокон молекулярная масса лигнина снижается в несколько раз, но растет его химическая активность.
Получение лигнина
Лигнин, который получается в ходе сульфатного производства, называют сульфатным лигнином. Он в больших количествах степени утилизируется в энергетических установках целлюлозных предприятий.
В сульфитной промышленности получаются смеси сульфитных лигнинов (лигносульфонатов), определенный объем которых скапливается в лигнохранилищах, а остаток попадает со сточными водами завода в акватории рек и озер.
Физические свойства лигнина
Лигнин имеет уровень плотности в пределах 1,25-1,45 г/см3, при этом коэффициент преломления составляет 1,6. Гидролизный лигнин отличается теплотворной способностью, составляющей у абсолютно сухого лигнина 5500-6500 ккал/кг. Теплотворная способность лигнина с уровнем влажности 18-25% достигает 4400-4800 ккал/кг, а у лигнина с уровнем влажности 65% этот показатель составляет лишь 1500-1650 ккал/кг.
Структура частиц гидролизного лигнина – это не плотное тело, а развитая система микро- и макропор. Показатель его внутренней поверхности очень сильно зависит от уровня влажности, например, влажный материал имеет поверхность 760-790 м2/г, а сухой лишь 6 м2/г.
Средневесовая молекулярная масса лигнинов древесины ели, выделенных различными методами
Вид лигнина
Метод определения
Растворитель
Молекулярная масса
Щелочной из солянокислотного
Использование лигнина
Широкое применение лигнина обусловлено его свойствами. Ниже представлены самые востребованные сферы использования гидролизного лигнина:
Брикеты из лигнина
Среди основных достоинств таких брикетов можно выделить:
Лигнин. Что такое лигнин, происхождение, получение, свойства и применения лигнина
Происхождение и получение лигнина
Вместе с гемицеллюлозами он определяет механическую прочность стволов и стеблей. Лигнин обеспечивает герметичность клеточных стенок ( для воды и питательных веществ) и благодаря содержащимся в нем красителям определяет цвет одревесневевшей ткани.
Лигнин прочно физически и химически инкорпорирован в структуре растительной ткани и эффективное выделение его оттуда промышленными методами представляет весьма сложную инженерную задачу.
В гидролизной промышленности получают порошковый т.н. гидролизный лигнин.
В целлюлозном производстве образуются водорастворимые формы лигнина. Существуют две основные технологии варки целлюлозы, более распространенная сульфатная варка (щелочная) и менее употребляемая сульфитная (кислотная) варка.
Формула и химические свойства лигнина
Принято считать, что молекула лигнина состоит из атомов углерода, кислорода и водорода.
В литературе встречается несколько вариантов формулы лигнина.
Общей структурной единицей всех видов лигнина является фенилпропан (C9H10), а различия связаны с разным содержанием функциональных групп.
Утилизация лигнина в природе
Деградация полимерного лигнина происходит под воздействием внеклеточных ферментов-оксидоредуктаз грибов. К данным ферментам в первую очередь относятся лининолитические пероксидазы: лигнин-пероксидаза и Mn-пероксидза, а так же внеклеточная оксидаза – лакказа. Так же лигнинолитичекий комплекс грибов содержит вспомогательные ферменты, в первую очередь производящие перекись водорода для пероксидаз и активные фермы кислорода. Сюда включают такие ферменты как пиранозооксидаза, глюкзооксидаза, глиоксальоксидаза, алклгольарилоксидаза и целлобиозозодегидрогеназа.
Экономическое значение лигнина
Ежегодно в мире получается около 70 млн. тонн технических лигнинов. В энциклопедиях пишут о том, что лигнин является ценным источником химического сырья. К сожалению, пока это сырье организационно, экономически и технически не слишком и не всегда доступно.
Например, разложение лигнина на более простые химические соединения (фенол, бензол и т.п.) при сравнимом качестве получаемых продуктов обходится дороже их синтеза из нефти или газа. По данным International Lgnin Institute в мире используется на промышленные, сельскохозяйственные и др. цели не более 2 % технических лигнинов. Остальное сжигается в энергетических установках или захоранивается в могильниках.
В некоторых исследованиях отмечается мутагенная активность технических лигнинов.
Таким образом в народохозяйственном балансе технические лигнины пока представляют собой значительную и постоянно растущую отрицательную величину.
Свойства гидролизного лигнина
Состав золы лигнина: Al2O3 – 1%; SiO2 – 93,4%; P2O5 – 1,5 %; CaO – 1,5%; Na2O – 0,3%; K2O – 0,3%; MgO – 0,3%; TiO2 – 0,1%.
Лигнин нетоксичен, обладает хорошей сорбционной способностью.
Лигносульфонаты
Сульфатный лигнин
Представляет собой раствор натриевых солей, характеризующихся высокой плотностью и химической стойкостью. Сульфатный лигнин в сухом виде представляет собой порошок коричневого цвета. Размер частиц лигнина, колеблется в широком интервале от 10 (и менее) мкм до 5 мм. Он состоит из отдельных пористых шарообразных частиц и их комплексов с удельно поверхностью до 20 м2/г.
Термическая обработка сульфатного лигнина вызывает его разложение с образованием летучих веществ начиная с температуры 190 оС.
Сульфатный лигнин отнесен к практически нетоксичным продуктам, применяемый в виде влажной пасты не пылит и не пожароопасен.
Литература о лигнине и его применениях
Лигнину и техническим лигнинам посвящена очень большая литература ( десятки книг, сотни диссертационных работ и тысячи журнальных статей) на всех основных языках. Многие из них доступны и в интернете, см. например, «Лигнин» статья в Википедии http://en.wikipedia.org/wiki/Lignin или http://de.wikipedia.org/wiki/Lignin
Для получения первого впечатления можно использовать, например, следующие имеющиеся в сети книги:
Химия лигнина, Ф.Э. Браунс, Д.А. Браунс, М. Лесная промышленность, 1964
Химия древесины и целлюлозы В.М.Никитин, А.В.Оболенская, В.П. Щеголев М. Лесная промышленность, 1978
Переработка сульфатного и сульфитного щелоков, под ред. П.Д. Богомолова и С.А. Сапотницкого, М. Лесная промышленность, 1989
Конструкционные материалы из лигнинных веществ, В.А. Арбузов, М. Экология, 1991
Уровень потребления и производства целлюлозы, бумаги и др. продуктов биохимии считаются для крупных стран важнейшими показателями развитости экономики в целом. Разумеется не биохимики вносят решающий вклад в загрязнение природы разнообразными отходами и вредными веществами, но там где есть крупные биохимические предприятия их вклад в загрязнение атмосферы и водных ресурсов может быть весьма существенным.
Очевидно, что руководители лесохимической подотрасли на протяжении десятилетий вполне успешно шантажировали государство; кажется что это явление продолжается и сейчас. Заложниками, как всегда, становятся работники предприятий, местные жители и «братья наши меньшие». Закрытие и перепрофилирование Приозерского ЦБК уже принесло заметное улучшение экологии Ладожского озера, однако большое количество приозерцев остаются без работы и по сей день, а город Приозерск находится в депрессивном состоянии.
Отрицать возможность использования лигнина в промышленности и сельском хозяйстве было бы неправильно. Десятилетиями сотни научных организаций во всем мире занимаются исследованиями и разработками в области утилизации свежеизвлеченного и хранимого лигнина. Многие из них в разные годы уже внедрены в промышленности. Дополнительную актуальность эти работы получают в свете возросшего в последние годы интереса к решению экологических проблем и к промышленному использованию всей гаммы растительных ресурсов (biorefinery).
Скорее всего решить проблемы рационального развития биохимических производств без государственного внимания не удастся, ибо рынок головы не имеет, а его нервные узлы как у дождевого червяка расположены в желудке. Что, собственно говоря, в очередной раз доказал «начавшийся в 2008 г.» экономический кризис. Произошел ли он при помощи знаменитой невидимой его руки или другого сокрытого члена значения не имеет.
Лигнин. Что такое лигнин, происхождение, получение, свойства и применение лигнина
Происхождение и получение лигнина
Вместе с гемицеллюлозами он определяет механическую прочность стволов и стеблей. Лигнин обеспечивает герметичность клеточных стенок ( для воды и питательных веществ) и благодаря содержащимся в нем красителям определяет цвет одревесневевшей ткани.
Лигнин прочно физически и химически инкорпорирован в структуре растительной ткани и эффективное выделение его оттуда промышленными методами представляет весьма сложную инженерную задачу.
В гидролизной промышленности получают порошковый т.н. гидролизный лигнин.
В целлюлозном производстве образуются водорастворимые формы лигнина. Существуют две основные технологии варки целлюлозы, более распространенная сульфатная варка (щелочная) и менее употребляемая сульфитная (кислотная) варка.
Лигнин получаемый в сульфатном производстве, т.н. сульфатный лигнин в большой степени утилизируется в энергетических установках целлюлозных заводов.
В сульфитном производстве образуются растворы сульфитных лигнинов (лигносульфонатов), часть которых накапливается в лигнохранилищах, а часть уходит со сточными водами предприятия в реки и озера.
В английской литературе выделяют также:
В той или иной степени утилизацией лигнина занимаются сами производящие его предприятия, но гидролизный лигнин, сульфатный лигнин и лигносульфонаты присутствуют на рынке и как товарные продукты. Международных или российских стандартов на технические лигнины не существует и они поставляются по различным заводским техническим условиям.
Формула и химические свойства лигнина
Принято считать, что молекула лигнина состоит из атомов углерода, кислорода и водорода.
В литературе встречается несколько вариантов формулы лигнина.
Лигнины получаемые из разных растений значительно отличаются друг от друга по химическому составу.
Молекула лигнина неопределенно велика и имеет много разнообразных функциональных групп.
Общей структурной единицей всех видов лигнина является фенилпропан (C9H10), а различия связаны с разным содержанием функциональных групп.
При нормальных условиях лигнин плохо растворяется в воде и органических растворителях. В химических технологиях и в окружающей среде лигнин может участвовать в самых разнообразных химических рекациях и превращениях. Обладает биологической активностью.
Лигнин проявляет пластические свойства при повышенном давлении и температуре, особенно во влажном состоянии.
Утилизация лигнина в природе
Деградация полимерного лигнина происходит под воздействием внеклеточных ферментов-оксидоредуктаз грибов. К данным ферментам в первую очередь относятся лининолитические пероксидазы: лигнин-пероксидаза и Mn-пероксидза, а так же внеклеточная оксидаза – лакказа. Так же лигнинолитичекий комплекс грибов содержит вспомогательные ферменты, в первую очередь производящие перекись водорода для пероксидаз и активные фермы кислорода. Сюда включают такие ферменты как пиранозооксидаза, глюкзооксидаза, глиоксальоксидаза, алклгольарилоксидаза и целлобиозозодегидрогеназа.
Экономическое значение лигнина
Ежегодно в мире получается около 70 млн. тонн технических лигнинов. В энциклопедиях пишут о том, что лигнин является ценным источником химического сырья. К сожалению, пока это сырье организационно, экономически и технически не слишком и не всегда доступно.
Например, разложение лигнина на более простые химические соединения (фенол, бензол и т.п.) при сравнимом качестве получаемых продуктов обходится дороже их синтеза из нефти или газа. По данным International Lgnin Institute в мире используется на промышленные, сельскохозяйственные и др. цели не более 2% технических лигнинов. Остальное сжигается в энергетических установках или захоранивается в могильниках.
В некоторых исследованиях отмечается мутагенная активность технических лигнинов.
Таким образом в народохозяйственном балансе технические лигнины пока представляют собой значительную и постоянно растущую отрицательную величину.
Свойства гидролизного лигнина
Лигнин нетоксичен, обладает хорошей сорбционной способностью.
Некоторые направления применения гидролизного лигнина:
— производство топливных брикетов, в т.ч. в смеси с опилками, угольной и торфяной пылью;
— производства топливного газа, в т.ч. с выработкой электроэнергии в газопоршневых газогенераторах;
— производство брикетированных восстановителей для металлов и кремния;
— производство углей, в т.ч.активированных;
— сорбенты для очистки городских и промышленных стоков, сорбенты для разлитых нефтепродуктов, сорбенты тяжелых металлов, технологические сорбенты;
— сорбенты медицинского и ветеринарного назначения («Полифепан» и т.п.);
— порообразователь в производстве кирпича и др. керамических изделий (взамен опилок и древесной муки);
— сырье для выработки нитролигнина (понизителя вязкости глинистых растворов, применяемых при бурении скважин);
— наполнитель для пластмасс и композиционных материалов, связующее для композиционных материалов («Арбоформ», лигноплиты и т.п.);
— приготовление органических и органо-минеральных удобрений, структурообразователей для естественных и искусственных почв, гербицид при возделывании некоторых культур (бобовых);
— сырье для производства фенола, уксусной и щавелевой кислот;
— добавка в асфальтобетоны (приготовление лигнино-битумных смесей и пр).
Товарные лигносульфонаты получают упариванием обессахаренного сульфитного щелока и выпускают в виде жидких и твердых концентратов сульфитно-спиртовой барды (мол. масса от 200 до 60 тыс. и более), содержащих 50-90% сухого остатка. Лигносульфонаты имеют высокую поверхностную активность, что позволяет использовать их в качестве ПАВ в различных отраслях промышленности, например:
— в строительстве для укрепления низкопрочных материалов и грунтов, а также для обеспыливания покрытий дорожных покрытий, в качестве эмульгатора в дорожных эмульсиях;
— в сельском и лесном хозяйстве для противоэррозиооной обработки почв;
— в качестве сырья для производства ванилина;
— добавка для гранулирования пылящих материалов, антислеживатель.
Представляет собой раствор натриевых солей, характеризующихся высокой плотностью и химической стойкостью. Сульфатный лигнин в сухом виде представляет собой порошок коричневого цвета. Размер частиц лигнина, колеблется в широком интервале от 10 (и менее) мкм до 5 мм. Он состоит из отдельных пористых шарообразных частиц и их комплексов с удельно поверхностью до 20 м 2 /г.
В сульфатном лигнине промышленной выработки в среднем содержится, %: золы — 1,0—2,5, кислоты в расчете на серную — 0,1—0,3, водорастворимых веществ — 9, смолистых веществ — 0,3—0,4, лигнина Класона — около 85. Лигнин имеет достаточно постоянный функциональный состав. В сульфатном лигнине присутствует сера, массовое содержание которой составляет 2,0—2,5%, в том числе несвязанной — 0,4—0,9 %.
Термическая обработка сульфатного лигнина вызывает его разложение с образованием летучих веществ начиная с температуры 190 о С.
Сульфатный лигнин отнесен к практически нетоксичным продуктам, применяемый в виде влажной пасты не пылит и не пожароопасен.
Направления использования сульфатного лигнина:
— сырье для производства фенолоформальдегидных смол и пластиков;
— связующее для бумажных плит, картонов, древесностружечных и волокнистых плит;
— стабилизатор химических пен;
— пластификатор бетонов, керамических и огнеупорных изделий;
— сырье для производства активных осветляющих углей «типа коллактивита».
Литература о лигнине и его применениях
Лигнину и техническим лигнинам посвящена очень большая литература (десятки книг, сотни диссертационных работ и тысячи журнальных статей) на всех основных языках. Многие из них доступны и в интернете, см. например, «Лигнин» статья в Википедии.
Для получения первого впечатления можно использовать, например, следующие имеющиеся в сети книги:
— Химия лигнина, Ф.Э. Браунс, Д.А. Браунс, М. Лесная промышленность, 1964;
— Химия древесины и целлюлозы В.М.Никитин, А.В. Оболенская, В.П. Щеголев М. Лесная промышленность, 1978;
— Переработка сульфатного и сульфитного щелоков, под ред. П.Д. Богомолова и С.А. Сапотницкого, М. Лесная промышленность, 1989;
— Конструкионные материалы из лигнинных веществ, В.А. Арбузов, М. Экология, 1991.
Примечание. Существующие технологии переработки и делигнификации целлюлозного сырья связаны с большими капиталовложениями и не вполне совершенны с точки зрения экологии и др. факторов. Ученые давно изыскивают другие, более эффективные способы организации целлюлозных и биохимических производств, но пока эти разработки не нашли широких промышленных применений.
Уровень потребления и производства целлюлозы, бумаги и др. продуктов биохимии считаются для крупных стран важнейшими показателями развитости экономики в целом. Разумеется не биохимики вносят решающий вклад в загрязнение природы разнообразными отходами и вредными веществами, но там где есть крупные биохимические предприятия их вклад в загрязнение атмосферы и водных ресурсов может быть весьма существенным.
Очевидно, что руководители лесохимической подотрасли на протяжении десятилетий вполне успешно шантажировали государство, кажется что это явление продолжается и сейчас. Заложниками, как всегда, становятся работники предприятий, местные жители и «братья наши меньшие». Закрытие и перепрофилирование Приозерского ЦБК уже принесло заметное улучшение экологии Ладожского озера, однако большое количество приозерцев остаются без работы и по сей день, а город Приозерск находится в депрессивном состоянии.
Отрицать возможность использования лигнина в промышленности и сельском хозяйстве было бы неправильно. Десятилетиями сотни научных организаций во всем мире занимаются исследованиями и разработками в области утилизации свежеизвлеченного и хранимого лигнина. Многие из них в разные годы уже внедрены в промышленности. Дополнительную актуальность эти работы получают в свете возросшего в последние годы интереса к решению экологических проблем и к промышленному использованию всей гаммы растительных ресурсов (biorefinery).
Скорее всего решить проблемы рационального развития биохимических производств без государственного внимания не удастся, ибо рынок головы не имеет, а его нервные узлы как у дождевого червяка расположены в пищеводе. Что, собственно говоря, в очередной раз доказал «начавшийся в 2008 г.» экономический кризис. Произошел ли он при помощи знаменитой невидимой его руки или другого сокрытого члена значения не имеет.