что такое квартиль в статистике

Квартиль

Опубликовано 16.06.2021 · Обновлено 17.06.2021

Что такое Квартиль?

Квартиль – это статистический термин, который описывает разделение наблюдений на четыре определенных интервала на основе значений данных и их сравнения со всем набором наблюдений.

Общие сведения о квартилях

Медиана является надежным средством оценки местоположения, но ничего не говорит о том, как данные по обе стороны от ее значения распространяются или рассредоточены. Вот где вступает в игру квартиль. Квартиль измеряет разброс значений выше и ниже среднего путем деления распределения на четыре группы.

Ключевые моменты

Как работают квартили

Точно так же, как медиана делит данные пополам, так что 50% измерения лежит ниже медианы, а 50% – выше нее, квартиль разбивает данные на кварталы, так что 25% измерений меньше нижнего квартиля, 50 % меньше среднего, а 75% меньше верхнего квартиля.

Квартиль делит данные на три точки – нижний квартиль, медиана и верхний квартиль – для формирования четырех групп набора данных. Нижний квартиль или первый квартиль обозначается как Q1 и является средним числом, которое находится между наименьшим значением набора данных и медианой. Второй квартиль, Q2, также является медианным. Верхний или третий квартиль, обозначаемый Q3, является центральной точкой, которая находится между медианой и наивысшим номером распределения.

Теперь мы можем выделить четыре группы, сформированные из квартилей. Первая группа значений содержит наименьшее число до Q1; во вторую группу входит Q1 до медианы; третий набор – это медиана Q3; четвертая категория включает Q3 в самую высокую точку данных всего набора.

Каждый квартиль содержит 25% от общего числа наблюдений. Как правило, данные располагаются от наименьшего к наибольшему:

Пример квартиля

Предположим, что баллы по математике в классе из 19 учеников в порядке возрастания распределены следующим образом:

59, 60, 65, 65, 68, 69, 70, 72, 75, 75, 76, 77, 81, 82, 84, 87, 90, 95, 98

Сначала отметьте медианное значение Q2, которое в данном случае является 10- м значением: 75.

Q1 – это центральная точка между наименьшей оценкой и медианой. В этом случае Q1 попадает между первым и пятым баллом: 68. [Обратите внимание, что медиана также может быть включена при вычислении Q1 или Q3 для нечетного набора значений. Если бы мы включили медианное значение по обе стороны от средней точки, то Q1 будет средним значением между первым и 10- м баллами, что является средним значением пятого и шестого баллов – (пятый + шестой) / 2 = ( 68 + 69) / 2 = 68,5].

Q3 – это среднее значение между Q2 и наивысшим баллом: 84. [Или, если вы включаете медиану, Q3 = (82 + 84) / 2 = 83].

Теперь, когда у нас есть квартили, давайте интерпретируем их числа. Оценка 68 (Q1) представляет первый квартиль и 25- й процентиль. 68 – это медиана нижней половины оценки, установленной в имеющихся данных, то есть медиана оценок от 59 до 75.

Q1 говорит нам, что 25% оценок ниже 68 и 75% оценок класса выше. Q2 (медиана) – это 50- й процентиль и показывает, что 50% оценок меньше 75, а 50% оценок выше 75. Наконец, Q3, 75- й процентиль, показывает, что 25% оценок являются больше и 75% меньше 84.

Особые соображения

Если точка данных для Q1 дальше от медианы, чем Q3 от медианы, то мы можем сказать, что существует больший разброс среди меньших значений набора данных, чем среди больших значений. Та же самая логика применяется, если Q3 дальше от Q2, чем Q1 от медианы.

В качестве альтернативы, если имеется четное количество точек данных, медиана будет средним из двух средних чисел. В нашем примере выше, если бы у нас было 20 студентов вместо 19, медиана их оценок будет средним арифметическим 10- го и 11- го числа.

Квартили используются для расчета межквартильного размаха, который является мерой изменчивости вокруг медианы. Межквартильный размах просто рассчитывается как разница между первым и третьим квартилями: Q3 – Q1. Фактически, это диапазон средней половины данных, который показывает, насколько разбросаны данные.

Для больших наборов данных в Microsoft Excel есть функция КВАРТИЛЬ для вычисления квартилей.

Источник

Расчет медианы и квартилей для дискретного ряда запросом

Что такое медиана и квартили?

Медиана — числовое значение признака, которое делит упорядоченную по возрастанию совокупность на две равных части.

Квартили — числовые значения признака, которые делят упорядоченную по возрастанию совокупность на четыре равных части.
Раз квартили делят совокупность на четыре части, то квартилей бывает три варианта: первый (нижний), второй(средний), третий (верхний). Второй квартиль это и есть медиана.

Пример

Имеем числовой ряд [1,3,5,7,9,11,13]:

Все становится немного сложнее, когда элементов, например, нечетное количество — выбрать конкретный элемент уже не получится.

Зачем все это нужно?

Медиана

Такой показатель как «среднее» знаком всем и ни у кого не возникает вопросов о его необходимости. Проблема со средним в том, что оно хорошо описывает данные, если они распределены нормально. Иначе, как правило, разумнее использовать медиану.

Самый простой пример: средняя зарплата в России. Показатель в некотором смысле отражает «среднюю температуру по больнице», так как на него оказывают сильное влияние выбросы — условно, слишком большие зарплаты олигархов. В то же время, медиана показывает такой размер зарплаты, который делит население пополам — половина получает меньше этой суммы, половина больше. В итоге, медиана почти в 1.5 раза меньше средних показателей зарплаты.

Более близкий пример к 1С: средний чек. Если хочется оценить динамику этого показателя, то лучше использовать медиану. Причина: на среднее сильно влияют выбросы — очень маленькие покупки или наоборот очень большие.

Квартили

Например, есть задача оценки адекватности закупочной цены на товар на текущий момент.

Один из вариантов — посмотреть по каким ценам продавался этот товар ранее и исходя из наценки рассчитать целевую закупочную цену. Но смотреть на среднее, как было сказано выше, плохая затея. Можно, например, попытаться определить такую цену, что 75% товара продавалось по ней или выше — это и будет 1-й квартиль. Все это, правда, будет работать, если у нас достаточно наблюдений — например, товар продавался хотя бы раз 30, чтобы было на основе чего все рассчитывать.
Безусловно, все это не может быть единственным критерием для определения разумной закупочной цены и нужно использоваться что-то еще.

Формулы

В общем случае можно посчитать порядковый номер медианы и квартилей:

В общем случае, все эти порядковые номера могут быть нецелыми (например, если количество элементов нечетно).
Если номер квартиля – нецелое число, то значением квартиля будет сумма, состоящая из значения элемента, для которого порядковый номер равен целому значению номера квартиля, и указанной части (нецелая часть номера квартиля) разности между значением этого элемента и значением следующего элемента.

Так же в общем случае, не всегда есть порядковый номер: один и тот же признак может встречаться в выборке несколько раз и пронумеровать их можно будет только условно. Например, в статье //infostart.ru/public/539316/ рассматривается как раз такой вариант решения.

В общем случае, можно использовать понятие накопленной частоты для каждого уникального элемента ряда. Подробнее про теорию можно почитать, например, тут: https://studfile.net/preview/5316597/page:3/#9. Там же есть хорошие примеры расчета.

Запрос

Постарался прокомментрировать все действия в самом запросе

Квантили

Рассмотрен расчет медианы и квартилей, но запрос легко доработать для расчета любых других квантилей, в частности децилей и перцентилей.

Источник

Обсудив меры центральной тенденции, рассмотрим подход к описанию положения статистических данных, который включает в себя определение пороговых значений, в пределах которых лежат указанные пропорции данных.

Мы знаем, что медиана делит распределение пополам. Мы можем определить другие разделительные линии, которые разбивают распределение на меньшие части.

Например, первый квартиль (Q1) делит распределение так, что 25 процентов наблюдений лежат не выше него; следовательно, 1-й квартиль также является 25-м процентилем.

Второй квартиль (Q2) представляет 50-й процентиль, а третий квартиль (Q3) представляет 75-й процентиль, потому что 75 процентов наблюдений лежат не выше него.

Имея дело с фактическими данными, мы часто обнаруживаем, что нам нужно найти приблизительное значение процентиля. Например, если нас интересует значение 75-го процентиля, мы можем обнаружить, что ни одно наблюдение не разделяет выборку так, что ровно 75 процентов наблюдений лежат не выше этого значения.

Следующая процедура, однако, может помочь нам определить или оценить процентиль. Процедура включает в себя сначала определение положения процентиля в наборе наблюдений, а затем определение (или оценку) значения, связанного с этой позицией.

Формула для позиции процентиля в массиве из n записей, отсортированных по возрастанию:

Ly = (n + 1) y / 100 (формула 8)

В качестве примера случая, когда Ly не является целым числом, предположим, что мы хотим определить 3-ий квартиль доходности за 2012 год (Q3 или P75) для 16 европейских фондовых рынков, представленных в Таблице 8.

В соответствии с Формулой 8 позиция третьего квартиля имеет вид L75 = (16 + 1) (75/100) = 12.75 или между 12-м и 13-м позициями в Таблице 9, в которой доходность представлена в порядке возрастания.

Определив «0.75» как «12.75», мы пришли бы к выводу, что P75 находится на 75% расстояния между 15.90% и 20.72%.

Подведем итоги:

1) Когда позиция Ly представляет собой целое число, она соответствует фактическому наблюдению. Например, если бы Дания не была включена в выборку, то n + 1 было бы равно 16, а при L75 = 12 третий квартиль был бы P75 = X12, где Xi определяется как значение наблюдения в i-й (i = L75) позиции данных, отсортированных в порядке возрастания (т. е. P75 = 15.90).

2) Когда Ly не является целым числом, Ly лежит между двумя ближайшими целыми числами (одно сверху и одно снизу), и мы используем линейную интерполяцию между этими двумя положениями для определения Py. Интерполяция означает оценку неизвестного значения на основе двух известных значений, которые его окружают (лежат над и под ним); термин «линейный» относится к линейной оценке.

Возвращаясь к расчету P75 для доходности капитала, мы обнаружили, что Ly = 12.75; следующее более низкое целое число равно 12, а следующее более высокое целое число равно 13.

Используя линейную интерполяцию, находим:

Как указано выше, на 12-й позиции находится доходность акций Франции, поэтому X12 = 15.90%; X13 = 20.72%, что соответствует доходности акций Австрии.

Таким образом, наша оценка методом линейной интерполяции составит:

Мы следуем этой схеме всякий раз, когда Ly не является целым числом: ближайшие целые числа ниже и выше Ly устанавливают позиции наблюдений, которые ограничивают Py, а затем используются для интерполяции.

Пример, приведенный ниже иллюстрирует расчет различных квантилей для дивидендной доходности компонентов основного европейского индекса акций.

Пример расчета процентилей, квартилей и квинтилей.

Рыночная капитализация ранжируется в порядке возрастания.

Таблица 17. Рыночная капитализация EURO STOXX 50.

Рыночная
капитализация
(млрд. Euro)

Источник

Квартиль 2021

Table of Contents:

Что такое «квартиль»

Старайтесь не путать четверть с квартикой.

BREAKING DOWN ‘Quartile’

В то время как медиана является надежной оценкой местоположения, она ничего не говорит о том, как данные по обе стороны от ее значения распространяются или распределяются. Квартал измеряет распространение значений выше и ниже среднего, разделив распределение на четыре группы. Точно так же, как медиана делит данные на половину, так что 50% измерения лежит ниже медианы и 50% лежит над ней, квартиль разбивает данные на четверти, так что 25% измерения меньше, чем нижняя квартиль, 50 % меньше среднего, а 75% меньше, чем верхний квартиль.

Каждый квартиль содержит 25% от общего количества наблюдений. Как правило, данные распределяются от самых маленьких до крупнейших, причем эти наблюдения падают ниже 25% от всех проанализированных данных, выделенных в 1-м квартиле, наблюдения падают между 25. 1% и 50% и распределяются во 2-м квартиле, тогда наблюдения падают между 51% и 75% выделены в 3-м квартиле и, наконец, остальные наблюдения, выделенные в 4-м квартиле.

Пример квартили

Давайте работать с примером.Предположим, что распределение математических баллов в классе из 19 учеников в порядке возрастания:

Если существует четное количество точек данных, медиана будет средним числом средних двух чисел. В нашем примере выше, если бы у нас было 20 учеников вместо 19, медиана их баллов будет средним арифметическим для десятого и одиннадцатого чисел.

Для больших наборов данных Microsoft Excel может использоваться для вычисления квартилей с помощью функции QUARTILE.

Источник

Статистика — это грамматика науки о данных. Часть 3

Mar 30, 2019 · 4 min read

Повторение статистики для начала путешествия по науке о данных

что такое квартиль в статистике. Смотреть фото что такое квартиль в статистике. Смотреть картинку что такое квартиль в статистике. Картинка про что такое квартиль в статистике. Фото что такое квартиль в статистике

Меры расположения

Процентили

Процентили делят упорядоченные данные на сто равных частей. В рассортированных данных процентиль — это точка, показывающая процентное отношение значений в наборе данных, находящихся ниже данной точки.

50-й процентиль — это медиана.

Например, на графике ниже показано развитие ребенка от рождения до 2 лет. Получается, что 98% развития ребенка за первый год жизни составляет в весе меньше 11,5 кг.

что такое квартиль в статистике. Смотреть фото что такое квартиль в статистике. Смотреть картинку что такое квартиль в статистике. Картинка про что такое квартиль в статистике. Фото что такое квартиль в статистике

Другим примером является ра с пределение доходов в стране. 99-й процентиль — это уровень дохода, при котором 99% населения зарабатывают меньше этого значения и 1% — больше. Так в Великобритании, как показано на графике ниже, 99-й процентиль составляет 75.000 фунтов стерлингов.

что такое квартиль в статистике. Смотреть фото что такое квартиль в статистике. Смотреть картинку что такое квартиль в статистике. Картинка про что такое квартиль в статистике. Фото что такое квартиль в статистике

Квартили

Квартили — это процентили, которые делят набор данных на четверти. Первый квартиль, Q1, равен 25-ому процентилю, третий квартиль, Q3, равен 75-ому процентилю. Медиана может быть обозначена либо вторым квартилем, Q2, либо 50-ым процентилем.

Интерквартильный размах (IQR)

IQR — число, которое показывает разброс средней половины (т.е. средние 50%) набора данных и помогает определить выбросы. IQR — это разница между Q3 и Q1.

что такое квартиль в статистике. Смотреть фото что такое квартиль в статистике. Смотреть картинку что такое квартиль в статистике. Картинка про что такое квартиль в статистике. Фото что такое квартиль в статистике

Выбросы — это, проще говоря, те значения данных, которые находятся за пределами следующих интервалов: Q1–1.5 x IQR и Q3 + 1.5 x IQR.

Диаграмма «ящик с усами»

Диаграмма «ящик с усами» показывает:

что такое квартиль в статистике. Смотреть фото что такое квартиль в статистике. Смотреть картинку что такое квартиль в статистике. Картинка про что такое квартиль в статистике. Фото что такое квартиль в статистике

Ящик с усами имеет горизонтальную и вертикальную оси и прямоугольный ящик.

«Усы» (выделенные фиолетовым цветом) начинаются с концов ящика и заканчиваются на самом минимальном или максимальном значениях данных. Также бывают ящики с усами, у которых есть отмеченные значения выбросов (выделены красным цветом). В таких случаях, усы не достигают минимального и максимального значений.

Ящики с усами на графике нормального распределения Ящики с усами на нормальных распределениях имеют некоторые особенности: Несмотря на то, что первый и третий квартили (Q1 и Q3) имеют такие названия, они, на самом деле, не составляют 25% от числа данных! Они показывают 34,135%. Также второй квартиль (Q2) составляет не 50%, а 68,27%.

что такое квартиль в статистике. Смотреть фото что такое квартиль в статистике. Смотреть картинку что такое квартиль в статистике. Картинка про что такое квартиль в статистике. Фото что такое квартиль в статистике

Моменты случайной величины

Моменты случайно величины описывают различные аспекты характера и формы нашего распределения.

#1 — первый момент случайной величины — среднее значение данных, которое показывает место распределения.

#2 — второй момент случайной величины — дисперсия, которая показывает разброс распределения. Большие значения имеют больший размах, чем маленькие.

#3 — третий момент случайной величины — коэффициент асимметрии — мера того, насколько неравномерным является распределение. Коэффициент асимметрии положителен, если распределение наклонено влево и левый хвост короче правого. То есть среднее значение находится правее. И наоборот:

что такое квартиль в статистике. Смотреть фото что такое квартиль в статистике. Смотреть картинку что такое квартиль в статистике. Картинка про что такое квартиль в статистике. Фото что такое квартиль в статистике

#4 — четвертый момент случайной величины — коэффициент эксцесса, который описывает то, насколько толстый хвост и насколько острый пик распределения. Этот коэффициент показывает, насколько вероятно найти точки экстремума в данных. Чем выше значение, тем вероятнее выбросы. Это похоже на разброс (дисперсию), но между ними есть отличия.

что такое квартиль в статистике. Смотреть фото что такое квартиль в статистике. Смотреть картинку что такое квартиль в статистике. Картинка про что такое квартиль в статистике. Фото что такое квартиль в статистике

Как видно на графике, чем выше значение пики, тем выше коэффициент эксцесса, т.е. у верхней кривой коэффициент эксцесса выше, чем у нижней.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *