что такое квантовая физика простыми словами кратко и ясно
Квантовая физика для начинающих
Квантовая физика является молодой наукой, что не мешает появлению в ней фантастических гипотез. Перспективы квантовой физики способны поразить любое сознание. Вот лишь несколько примеров: появление квантовой криптографии, основанной на передаче информации отдельными фотонами, и развитие квантового компьютера, который использует квантовую суперпозицию и квантовую запутанность для работы с информацией.
Хотите понять квантовую физику? Не пытайтесь ассоциировать эту науку с классической физикой. Тогда вы сможете взглянуть на мир иначе.
Квантовая гипотеза Планка
Днём рождения квантовой физики считается 14 декабря 1900 года, когда Макс Планк предложил теоретический вывод о соотношении между температурой тела и испускаемым им излучением. Он гласил: энергия электромагнитной волны может излучаться и поглощаться исключительно целыми порциями — квантами. Формула энергии кванта:
где e — энергия излучения, n — частота излучения, h — постоянная Планка.
Это предположение показывало, что законы классической физики неприменимы к микромиру.
Эйнштейн и фотоэлектрический эффект
В 1905 году Альберт Эйнштейн объяснил фотоэффект, опираясь на квантовую гипотезу Планка.
Фотоэлектрический эффект — явление вылета электрона из твёрдых и жидких тел под воздействием электромагнитного излучения.
Учёный предположил, что электромагнитная волна (которой считался свет) состоит из световых квантов (фотонов). Поглощение света происходит так, что фотоны квантами передают собственную энергию электронам вещества. При фотоэффекте часть электромагнитного излучения отражается от поверхности металла, а другая попадает внутрь и там поглощается. Электрон получает энергию от фотона и совершает работу выхода из вещества, приобретая начальную скорость.
где h — постоянная Планка, n — частота электромагнитного излучения, A — работа выхода, mv^2/2— кинетическая энергия вышедшего электрона.
Это уравнение объясняет все законы внешнего фотоэлектрического эффекта:
Благодаря явлению внешнего фотоэффекта мы смотрим фильмы со звуком. Фотоэлемент позволял превратить звук, запечатлённый на киноплёнке, в слышимый. Свет обычной лампы проходил через звуковую дорожку киноплёнки, преобразовывался и попадал на фотоэлемент. Чем больше света проходило через дорожку, тем громче был звук в динамике.
Не начинайте изучение квантовой физики со сложных математических формул. Улавливайте суть законов и экспериментов.
Формирование квантовой механики
Матричная механика Гейзенберга
В 1925 году Вернер Гейзенберг сформулировал теорию квантовой механики.
Квантовая механика — раздел квантовой физики, описывающий свойства и строение субатомных частиц и их систем.
Метод Гейзенберга требовал работы с матрицами (математическая таблица, представляющая набор упорядоченных чисел). Отсюда название — матричная механика. Теория объясняла, как происходят квантовые скачки.
Квантовый скачок — переход квантовой системы (в частности атома) с одного энергетического уровня на другой.
Подход Гейзенберга включал два компонента:
Замысел матричной механики заключался в том, что физические величины, характеризующие частицу, описываются матрицами, изменяющимися во времени.
Волновая механика Шрёдингера
Совершенно другой подход предложил Эрвин Шрёдингер, назвав теорию волновой механикой. Он предположил, что любая материя существует в виде волн.
Волновое уравнение, сформулированное Шрёдингером, относится к ненаблюдаемой величине. Квадрат модуля этой величины показывает распределение вероятности обнаружить частицу в различных точках пространства, то есть отдельная частица представляется как волна, распределённая по всему пространству. Из его метода описание материи стало статистическим, то есть вероятностным.
Позже Поль Дирак доказал, что теории двух учёных были разными представлениями одного и того же и равноценными. Эти два подхода сформировали квантовую механику.
Однако Гейзенберг и Шрёдингер известны другими открытиями.
Помните: в квантовой физике и её разделах всё неопределённо и вероятностно.
Основные законы квантовой механики
Принцип неопределённости Гейзенберга — где и с какой скоростью?
В 1927 году Гейзенберг сформулировал принцип неопределённости: невозможно одновременно точно измерить пространственную координату и скорость частицы. Формула:
где Δx— неопределённость координаты пространства, Δv — неопределённость скорости частицы, h — Постоянная Планка, m — масса частицы.
Принцип неопределённости также связывает иные пары характеристик, например, энергию квантовой системы и момент времени, когда квантовая система обладает ей.
Подходящей аналогией является фотографирование движущегося объекта. Объект, сфотографированный с длительной экспозицией, размывается. Это демонстрирует, как движется объект, но не где он находится. Наоборот: можно определить местоположение объекта, сфотографированного с короткой экспозицией, но не то, как он движется. Однако следует понимать, что принцип неопределённости не ориентирован на наблюдателя, а показывает природу частиц.
Кот Шрёдингера — и жив и мёртв одновременно
Шрёдингер, желая показать неполноту квантовой механики при переходе от микромира к макромиру, провёл мысленный эксперимент.
Кот Шрёдингера — и жив и мёртв одновременно
Статья дает научный ответ на вопрос, безгранична ли Вселенная и как это доказать.
Интерпретации квантовой механики
У квантовой механики существуют две интерпретации:
Различность этих подходов демонстрирует квантовое бессмертие, которое можно считать пересказом эксперимента Шрёдингера от лица кота. Вместо кота — участник, вместо колбы с ядом — ружьё, которое стреляет, если радиоактивный распад произойдёт (вероятность по-прежнему 50/50).
Квантовая физика — FAQ
Это были основы квантовой физики, которые необходимо знать для базового понимания. Однако осталось несколько интересных вопросов:
Квант — наименьшая неделимая порция чего-либо, в частности энергии. Понятие кванта ввёл Макс Планк.
Квантовый компьютер — вычислительное устройство, использующее явления квантовой суперпозиции и квантовой запутанности для передачи и обработки информации. И он существует. Наибольший составлен из семи кубитов. Этого хватит, чтобы разложить число 14 на простые множители: 7 и 2. Пока что нет квантового компьютера для практического применения, однако его появление поможет человечеству решить медицинские проблемы, расшифровать генетический код и выйти за рамки материального мира. Поэтому многие страны финансируют десятки миллионов долларов на создание квантового компьютера.
Пока что о квантовой криптографии говорят в будущем времени. Однако первый протокол был создан в 1984 году и носил название BB84. Замысел квантового шифрования состоит в том, чтобы передавать информацию отдельными фотонами. Главным теоретическим недостатком квантового шифрования является низкая пропускная способность.
Если выбрать одну частицу из определённого количества частиц и повлиять на неё, то состояние изменится у остальных частиц, независимо от условий. Явление квантовой запутанности — основа квантовой телепортации.
Свойство некоторых металлов при охлаждении до абсолютного нуля полностью терять сопротивление электрическому току.
Свет не является ни частицей, ни волной, приобретая их свойства только в некотором приближении.
Квантовый двигатель — механизм, который выполняет работу без потерь энергии, сил трения и теплообмена с окружающей средой.
Эффект наблюдателя — теория о том, что наблюдение за объектом изменяет его свойства.
В квантовых полях процесс передачи взаимодействия происходит квантами, в качестве которых выступают элементарные частицы с фиксированными физическими характеристиками. Таким образом, взаимодействующие частицы имеют квантованные характеристики и взаимодействие между ними передаётся квантовым полем со своими квантованными характеристиками.
Квантовый камуфляж сделан из оксида самария и никеля и позволяет спрятаться от инфракрасных камер.
Книги о квантовой физике
Если вы хотите и дальше познавать квантовый мир, рекомендуем следующие книги:
Почему квантовая физика сродни магии?
Квантовая механика изучает наш мир на самом глубинном уровне, так как все, что нас окружает состоит из атомов. Даже мы с вами – это ни что иное как ансамбль из атомов, которые зародились в ядрах сверхновых звезд. Так почему же этот раздел физики так сильно похож на магию?
Что вы знаете о квантовой физике? Даже гуманитарию вроде меня понятно, что физика и квантовая физика изучают немного разные вещи. При этом физика в целом – это наука о природе, которая изучает то, как устроен мир и как все объекты и тела взаимодействуют друг с другом. Будучи разделом физики, квантовая механика изучает наш мир на самом глубинном уровне. Дело в том, что все, что нас окружает состоит из атомов. Да что там, даже мы с вами – это ни что иное как ансамбль из атомов, которые зародились в ядрах сверхновых звезд. Более того, эта область физики настолько сложная, что многие ученые признают, что плохо ее понимают. Учитывая растущее количество вопросов, на которых сегодня нет ответов и некую схожесть квантовой физики с магией, она невероятно привлекательна, но может ввести в заблуждение, как это успешно делают многие шарлатаны и лжеученые. В этой статье мы попытаемся понять что такое квантовая физика и почему она так похожа на волшебство.
Фотон – это элементарная частица, которая не имеет массы и может существовать в вакууме, передвигаясь со скоростью света. Электрический заряд фотона также равен нулю.
Почему квантовая физика такая сложная?
Все мы любим фокусы. Особенно те, во время которых фокусник может заставить шары “прыгать” между перевернутыми чашками. В квантовых системах, где свойства объекта, включая его местоположение, могут варьироваться в зависимости от того, как вы за ним наблюдаете, такие подвиги должны быть возможны без ловкости рук. Дело в том, что согласно квантовой теории, элементарная частица обретает определенное состояние лишь в момент наблюдения. В это сложно поверить, но в итоге ученым удалось экспериментально доказать, используя один-единственный фотон, что он существует в трех местах одновременно. Но как такое возможно?
Один из самых знаменитых квантовых экспериментов это двухщелевой эксперимент, который показал, что свет и материя могут вести себя как частица и волна одновременно.
Необходимо отметить, что успехами квантовой механики – с помощью которой можно точно описать поведение атомов и элементарных частиц – интересовался Альберт Эйнштейн. Однако гениальный ученый выступал против этой теории и высмеивал понятие, которое лежит в ее основе – запутанность. В квантовой механике запутанность означает, что свойства одной частицы могут немедленно влиять на свойства другой, независимо от расстояния между ними.
Впоследствии, серия тщательно разработанных экспериментов показала, что Эйнштейн ошибался: запутанность реальна и никакие другие теории не могут объяснить ее странные эффекты. И все же, несмотря на способность квантовой теории объяснять результаты экспериментальным путем, многие ученые признают, что квантовая физика настолько сложная, что познать ее едва ли удастся.
Как работает квантовая физика
Согласитесь, все это как минимум странно и заставляет мозг буквально трещать по швам. Ведь получается, что присутствие наблюдателя определяет судьбу системы и заставляет ее сделать выбор в пользу одного состояния. Но разве это не вмешательство сознания в материальную реальность? А если учесть, что фотон света может одновременно быть и частицей и волной и находиться сразу в трех местах, то в каком мире мы вообще живем? Является ли это доказательством существования параллельных реальностей с одинаковыми законами физики?
И это лишь часть вопросов, на которые у современной физики нет ответов. Пока. Однако все неизвестное издревле пугало человека. Иногда люди готовы поверить во что угодно, лишь бы был хотя бы один – и уже не важно какой – ответ. По этой причине совершенно неудивительно, что всякого рода шарлатаны и лжеученые так любят квантовую физику. Если ради интереса включить РЕН ТВ, то можно наткнуться на одну из передач о потустороннем мире, в котором, в роли эксперта, выступает очередной лжеученый. В 99 случаях из 100, его ложное объяснение мироустройства будет включать в себя хотя бы одно упоминание квантовой физики. При этом любой лжеученый резво бравирует такими научными терминами как электрон, фотон и запутанность, чтобы в глазах неискушенного зрителя обрести более-менее достоверный вид.
Иногда мне даже кажется, что любой уважающий себя шарлатан просто обязан иметь в своем репертуаре спич о тайнах квантовой физики. Ведь ученым практически нечего возразить их утверждениям о том, что квантовая механика – загадка для ученых. Правда удобно? Результатом популяризации таких идей может стать ложное представление о мире для большого количества людей. Подобные идеи также способствуют склонности к альтернативной медицине и лечения опасных заболеваний наложением рук. Так, с экранов телевизоров эзотерики с пеной у рта доказывают, что мысль материальна потому что квантовая физика вот, а доморощенные биологи приплетают квантовую физику в свои необоснованные идеи о волновом геноме и.т.д. Все это способствует и росту мифов и заблуждений о мире, в котором мы живем.
Что такое квантовая физика простыми словами
Между тем, квантовая физика – это самая настоящая магия. Магия реальности. Да, мы много не понимаем и не знаем ответов на вопросы, которые порождает квантовая запутанность и результаты многочисленных экспериментов, в том числе и знаменитый мысленный эксперимент кота Шредингера. При этом реальность намного интереснее вымысла, ведь мы столького о ней не знаем: наша Вселенная на 95% состоит из таинственной темной материи, а еще есть темная энергия, которая отвественна за ускорение расширения Вселенной. Более того, на самом глубинном уровне наш мир состоит из мельчайших частиц, которые могут находиться в нескольких местах одновременно и ведут себя по-разному в зависимости от того, наблюдаем мы за ними или нет. Если это не магия реальности, то что есть реальность?.
В то же самое время наука уже дала множество ответов на важнейшие вопросы о нашем мире. Так или иначе, я думаю что нет ничего плохого в том, чтобы не знать чего-то и не понимать квантовую физику. Главное – это наша познавать Вселенную. Которая, скорее всего, тоже познает себя через нас.
Квантовая физика для чайников. Что такое квантовая физика: суть простыми словами
Здравствуйте, дорогие читатели. Если вы не хотите отставать от жизни, хотите стать по-настоящему счастливым и здоровым человеком, вы должны знать о тайнах квантовой современной физики, хоть немного представлять до каких глубин мироздания докопались сегодня ученые. Вам некогда вдаваться в глубокие научные подробности, а хотите постигнуть лишь суть, но увидеть красоту неизведанного мира, тогда эта статья: квантовая физика для обычных чайников или можно сказать для домохозяек как раз для вас. Я постараюсь объяснить, что такое квантовая физика, но простыми словами, показать наглядно.
«Какая связь между счастьем, здоровьем и квантовой физикой?»- спросите вы.
Дело в том, что она помогает ответить на многие непонятные вопросы, связанные с сознанием человека, влияния сознания на тело. К сожалению, медицина, опираясь на классическую физику, не всегда нам помогает быть здоровым. А психология не может нормально сказать, как обрести счастье.
Только более глубокие познания мира помогут нам понять, как же по-настоящему справиться с болезнями и где обитает счастье. Это знание находится в глубоких слоях Вселенной. На помощь нам приходит квантовая физика. Скоро вы все узнаете.
Что изучает квантовая физика простыми словами
Да, действительно квантовую физику очень сложно понять из-за того, что она изучает законы микромира. То есть мир на более глубоких его слоях, на очень малых расстояниях, там, куда очень сложно заглянуть человеку.
А мир, оказывается, ведет себя там очень странно, загадочно и непостижимо, не так как мы привыкли.
Отсюда вся сложность и непонимание квантовой физики.
Но после прочтения этой статьи вы раздвинете горизонты своего познания и посмотрите на мир совсем по-другому.
Кратко об истории квантовой физики
Все началось в начале 20 века, когда ньютоновская физика не могла объяснить многие вещи и ученые зашли в тупик. Тогда Максом Планком было введено понятие кванта. Альберт Эйнштейн подхватил эту идею и доказал, что свет распространяется не непрерывно, а порциями – квантами (фотонами). До этого же считалось, что свет имеет волновую природу.
Но как оказалось позже любая элементарная частица, это не только квант, то есть твердая частица, а также волна. Так появился корпускулярно-волновой дуализм в квантовой физике, первый парадокс и начало открытий загадочных явлений микромира.
Самые интересные парадоксы начались, когда был проведен знаменитый эксперимент с двумя щелями, после которого загадок стало намного больше. Можно сказать, что квантовая физика началась с него. Давайте его рассмотрим.
Эксперимент с двумя щелями в квантовой физике
Представьте себе пластину с двумя щелями в виде вертикальных полос. За этой пластиной поставим экран. Если направить свет на пластину, то на экране мы увидим интерференционную картину. То есть чередующиеся темные и яркие вертикальные полосы. Интерференция это результат волнового поведения чего-либо, в нашем случае света.
Если вы пропустите волну воды через два отверстия расположенных рядом, вы поймете что такое интерференция. То есть свет получается вроде как имеет волновую природу. Но как доказала физика, вернее Эйнштейн, он распространяется частицами-фотонами. Уже парадокс. Но это ладно, корпускулярно-волновым дуализмом нас уже не удивить. Квантовая физика говорит нам, что свет ведет себя как волна, но состоит из фотонов. Но чудеса только начинаются.
Электроны ведь это частицы, значит поток электронов, проходя через две щели, должны оставлять на экране всего две полосы, два следа напротив щелей. Представили себе камушки, пролетающие сквозь две щели и ударяющие об экран?
Но что мы видим на самом деле? Всю ту же интерференционную картину. Каков вывод: электроны распространяются волнами. Значит электроны это волны. Но ведь это элементарная частица. Опять корпускулярно-волновой дуализм в физике.
Но можно предположить, что на более глубоком уровне электрон это частица, а когда эти частицы собираются вместе, они начинают вести себя как волны. Например, морская волна это волна, но ведь она состоит из капель воды, а на более мелком уровне из молекул, а затем из атомов. Хорошо, логика твердая.
Но ужас. Вместо этих двух полос получаются все те же интерференционные чередования нескольких полос. Как так? Такое может случиться, если бы электрон пролетал одновременно через две щели, а за пластиной, как волна сталкивался бы сам с собой и интерферировал. Но такое не может быть, ведь частица не может находиться в двух местах одновременно. Она или пролетает сквозь первую щель или сквозь вторую.
Вот тут начинаются поистине фантастические вещи квантовой физики.
Суперпозиция в квантовой физике
При более глубоком анализе ученые выясняют что любая элементарная квантовая частица или тот же свет(фотон) на самом деле может находиться в нескольких местах одновременно. И это не чудеса, а реальные факты микромира. Так утверждает квантовая физика. Вот поэтому, стреляя из пушки отдельной частицей, мы видим результат интерференции. За пластиной электрон сталкивается сам с собой и создает интерференционную картину.
Обычные нам объекты макромира находятся всегда в одном месте, имеют одно состояние. Например, вы сейчас сидите на стуле, весите, допустим, 50 кг, имеете частоту пульса 60 ударов в минуту. Конечно, эти показания изменятся, но изменятся они через какое-то время. Ведь вы не можете одновременно быть дома и на работе, весить 50 и 100 кг. Все это понятно, это здравый смысл.
В физике микромира же все по-другому.
Квантовая механика утверждает, а это уже подтверждено экспериментально, что любая элементарная частица может находиться одновременно не только в нескольких точках пространства, но также иметь в одно и то же время несколько состояний, например спин.
Все это не укладывается в голову, подрывает привычное представление о мире, старые законы физики, переворачивает мышление, можно смело сказать сводит с ума.
Так мы приходим к пониманию термина «суперпозиции» в квантовой механике.
Суперпозиция означает, что объект микромира может одновременно находиться в разных точках пространства, а также иметь несколько состояний одновременно. И это нормально для элементарных частиц. Таков закон микромира, каким бы странным и фантастическим он не казался.
Вы удивлены, но это только цветочки, самые необъяснимые чудеса, загадки и парадоксы квантовой физики еще впереди.
Коллапс волновой функции в физике простыми словами
Затем ученые решили выяснить и посмотреть более точно, реально ли электрон проходит через обе щели. Вдруг он проходит через одну щель, а затем каким-то образом разделяется и создает интерференционную картину, проходя через нее. Ну, мало ли. То есть нужно поставить какой-нибудь прибор возле щели, который бы точно зафиксировал прохождение электрона через нее. Сказано, сделано. Конечно, осуществить это сложно, нужен не прибор, а что-то другое, чтобы увидеть прохождение электрона. Но ученые сделали это.
Но в итоге результат ошеломил всех.
Как только мы начинаем смотреть, через какую щель проходит электрон, так он начинает вести себя не как волна, не как странное вещество, которое одновременно находится в разных точках пространства, а как обычная частица. То есть начинает проявлять конкретные свойства кванта: находится только в одном месте, проходит через одну щель, имеет одно значение спина. На экране появляется не интерференционная картина, а простой след напротив щели.
Но как такое возможно. Как будто электрон шутит, играет с нами. Сначала он ведет себя как волна, а затем, после того, как мы решили посмотреть прохождение его через щель, проявляет свойства твердой частицы и проходит только через одну щель. Но так оно и есть в микромире. Таковы законы квантовой физики.
Ученые увидели еще одно загадочное свойство элементарных частиц. Так появились в квантовой физике понятия неопределенность и коллапс волновой функции.
Когда электрон летит к щели, он находится в неопределенном состоянии или как мы сказали выше в суперпозиции. То есть ведет себя как волна, находится одновременно в разных точках пространства, имеет сразу два значения спина (у спина всего два значения). Если бы мы его не трогали, не пытались смотреть на него, не выясняли, где именно он находится, не измеряли бы значение его спина, он бы так и пролетел как волна одновременно через две щели, а значит, создал интерференционную картину. Его траекторию и параметры квантовая физика описывает с помощью волновой функции.
После того, как мы произвели измерение (а произвести измерение частицы микромира можно только взаимодействуя с ней, например, столкнуть с ней другую частицу), то происходит коллапс волновой функции.
То есть теперь электрон находится точно в каком-то одном месте пространства, имеет одно значение спина.
Можно сказать элементарная частица как призрак, она как бы есть, но одновременно ее нет в одном месте, и может с определенной вероятностью оказаться в любом месте в пределах описания волновой функции. Но как только мы начинаем с ней контактировать, она из призрачного объекта превращается в реальное осязаемое вещество, которое ведет себя как обычный, привычный для нас предмет классического мира.
«Вот это фантастика»- скажете вы. Конечно, но чудеса квантовой физики только начинаются. Самое невероятное еще впереди. Но давайте немного отдохнем от обилия информации и вернемся к квантовым приключениям в другой раз, в другой
статье. А пока поразмышляйте о том, что вы сегодня узнали. К чему могут привести такие чудеса? Ведь они окружают нас, это свойство нашего мира, хоть и на более глубоком уровне. А мы все еще думаем, что живем в скучном мире? Но выводы сделаем позже.
Я попытался рассказать об основах квантовой физики кратко и понятно.
Но если вы что-то не поняли, тогда посмотрите вот этот мультик про квантовую физику, про эксперимент с двумя щелями, там также все рассказывается понятным, простым языком.
Мультфильм про квантовую физику:
Или можно смотреть вот этот видео, все станет на свои места, квантовая физика ведь очень интересна.
Видео о квантовой физике:
И как вы раньше об этом не знали.
Современные открытия в квантовой физике меняют наш привычный материальный мир.