что такое квантовая физика и что она изучает
Квантовая физика как наука: что изучает, основные понятия и положения
Содержание:
Многие слышали понятия: квантовый скачок благодаря одноимённому сериалу, квантовый переход, частицы, эффекты. Может кто не знает о коте Шредингера, который был и жив, и мёртв одновременно? Эти и другие не вкладывающиеся в голову обывателя явления изучает квантовая физика. Рассмотрим, что это за наука, чем занимается. Кратко рассмотрим её основные направления, историю развития.
Что за наука
Квантовая механика
Квантовая механика направлена на изучение физических явлений, протекающих на микроуровне, сравнимом с постоянной Планка. Эффекты проявляются максимум на микроскопическом уровне. Наука описывает поведение и свойства атомов, ядер, фотонов и прочих элементарных частиц. Классическая физика не справляется с этим. Для точного описания превращений одних элементарных частиц в другие используется квантовая теория поля.
К основным понятиям раздела теоретической физики относят такие: наблюдаемая система и квантовое состояние. Основополагающие уравнения: Шредингера, Гейзенберга, Паули, Ландау. Родилась наука в 1900 году благодаря трудам немецкого физика Марка Планка, разработавшего теорию, что элементарные частицы поглощают и выделяют энергию порциями – квантами.
В 1905 году Эйнштейн, воспользовавшись наработками Планка, объяснил фотоэффект – в квантовой физике это явление описывает взаимодействие электромагнитного излучения с твёрдым веществом. Фотоны света или иного ЭМИ передают энергию электронам материальных объектов.
Малоизвестный факт в физике. Явление фотоэффекта на основании опытов описал русский физик Александр Столетов в 1888-1890 годах, проведя опыт с освещением ультрафиолетовым светом цинковой пластинки.
Квантовая теория поля
Изучает системы – квантовые поля – с неограниченным количеством степеней свободы. Занимается описанием превращения и взаимодействия элементарных частиц. Является основой для физики высоких энергий, элементарных частиц. Наука выделилась в отдельный раздел и начала развиваться в 1920-х годах. В современном виде появилась лишь к средине 1970-х.
Основы направления – слабое и сильное электромагнитное взаимодействия, калибровочная информативность, симметрии, квантовая электродинамика.
Что изучает квантовая физика?
Несмотря на звучность и загадочность сегодняшней темы, мы постараемся рассказать, что изучает квантовая физика, простыми словами, какие разделы квантовой физики имеют место быть и зачем нужна квантовая физика в принципе.
Предлагаемый ниже материал доступен для понимания любому школьнику.
Прежде чем разглагольствовать о том, что изучает квантовая физика, будет уместно вспомнить, с чего же все начиналось.
К середине XIX века человечество вплотную занялось изучением проблем, решить которые посредством привлечения аппарата классической физики было невозможно.
Ряд явлений казались «странными». Отдельные вопросы вообще не находили ответа.
В 1850-е годы Уильям Гамильтон, полагая, что классическая механика не способна точно описать движение световых лучей, предлагает собственную теорию, вошедшую в историю науки под названием формализм Гамильтона-Якоби, в основе которой лежал постулат о волновой теории света.
В 1885 г., поспорив с приятелем, швейцарский математик и физик Иоганн Бальмер вывел эмпирически формулу, которая позволяла рассчитать длины волн спектральных линий водорода с очень высокой точностью.
Объяснить причины выявленных закономерностей Бальмер тогда так и не смог.
В 1895 г. Вильгельм Рентген при исследовании катодных лучей открыл излучение, названное им X-лучами (впоследствии переименованными в рентгеновские лучи), характеризовавшееся мощным проникающим характером.
Еще через год – в 1896 году – Анри Беккерель, изучая соли урана, открыл самопроизвольное излучение с аналогичными свойствами. Новое явление было названо радиоактивностью.
В 1899 году была доказана волновая природа рентгеновских лучей.
Фото 1. Родоначальники квантовой физики Макс Планк, Эрвин Шредингер, Нильс Бор
1901-ый год ознаменовался появлением первой планетарной модели атома, предложенной Жаном Перреном. Увы, ученый сам же отказался от этой теории, не найдя ей подтверждения с позиций теории электродинамики.
Спустя два года ученый из Японии Хантаро Нагаока предложил очередную планетарную модель атома, в центре которого должна была находиться положительно заряженная частица, вокруг которой по орбитам вращались бы электроны.
Эта теория, однако, не учитывала излучение, испускаемое электронами, а потому не могла, например, объяснить теорию спектральных линий.
Размышляя над строением атома, в 1904 году Джозеф Томсон впервые интерпретировал понятие валентности с физической точки зрения.
Годом рождения квантовой физики, пожалуй, можно признать 1900-ый, связывая с ним выступление Макса Планка на заседании Немецкого физического общества.
Именно Планк предложил теорию, объединившую множество доселе разрозненных физических понятий, формул и теорий, включая постоянную Больцмана, увязывающую энергию и температуру, число Авогадро, закон смещения Вина, заряд электрона, закон излучения Стефана-Больцмана.
Им же введено в обиход понятие кванта действия (вторая – после постоянной Больцмана – фундаментальная постоянная).
Дальнейшее развитие квантовой физики напрямую связано с именами Хендрика Лоренца, Альберта Эйнштейна, Эрнста Резерфорда, Арнольда Зоммерфельда, Макса Борна, Нильса Бора, Эрвина Шредингера, Луи де Бройля, Вернера Гейзенберга, Вольфганга Паули, Поля Дирака, Энрико Ферми и многих других замечательных ученых, творивших в первой половине XX века.
Ученым удалось с небывалой глубиной познать природу элементарных частиц, изучить взаимодействия частиц и полей, выявить кварковую природу материи, вывести волновую функцию, объяснить фундаментальные понятия дискретности (квантования) и корпускулярно-волнового дуализма.
Квантовая теория как никакая другая приблизила человечество к пониманию фундаментальных законов мироздания, заменила привычные понятия более точными, заставила переосмыслить огромное число физических моделей.
Что изучает квантовая физика?
Квантовая физика описывает свойства материи на уровне микроявлений, исследуя законы движения микрообъектов (квантовых объектов).
Предмет изучения квантовой физики составляют квантовые объекты, обладающие размерами 10 −8 см и меньше. Это:
Для сравнения – масса мюона равна 207 me, нейтрона – 1839 me, протона 1836 me.
Некоторые частицы вообще не имеют массы покоя (нейтрино, фотон). Их масса составляет 0 me.
Электрический заряд любого микрообъекта кратен величине заряда электрона, равного 1,6 · 10 −19 Кл. Наряду с заряженными существуют нейтральные микрообъекты, заряд которых равен нулю.
Фото 2. Квантовая физика заставила пересмотреть традиционные взгляды на понятия волны, поля и частицы
Электрический заряд сложного микрообъекта равен алгебраической сумме зарядов составляющих его частиц.
Его принято интерпретировать как не зависящий от внешних условий момент импульса квантового объекта.
Спину сложно подобрать адекватный образ в реальном мире. Его нельзя представлять вращающимся волчком из-за его квантовой природы. Классическая физика описать этот объект не способна.
Присутствие спина влияет на поведение микрообъектов.
Стабильные микрообъекты, к которым относят нейтрино, электроны, фотоны, протоны, а также атомы и молекулы, способны распадаться лишь под воздействием мощной энергии.
Квантовая физика полностью вбирает в себя классическую физику, рассматривая ее своим предельным случаем.
Фактически квантовая физика и является – в широком смысле – современной физикой.
То, что описывает квантовая физика в микромире, воспринять чувствами невозможно. Из-за этого многие положения квантовой физики трудно представимы, в отличие от объектов, описываемых классической физикой.
Несмотря на это новые теории позволили изменить наши представления о волнах и частицах, о динамическом и вероятностном описании, о непрерывном и дискретном.
Квантовая физика – это не просто новомодная теория.
Это теория, которая сумела предсказать и объяснить невероятное количество явлений – от процессов, протекающих в атомных ядрах, до макроскопических эффектов в космическом пространстве.
Квантовая физика – в отличие от физики классической – изучает материю на фундаментальном уровне, давая интерпретации явлениям окружающей действительности, которые традиционная физика дать не способна (например, почему атомы сохраняют устойчивость или действительно ли элементарные частицы являются элементарными).
Квантовая теория дает нам возможность описывать мир более точно, нежели это было принято до ее возникновения.
Значение квантовой физики
Теоретические наработки, составляющие сущность квантовой физики, применимы для исследования как невообразимо огромных космических объектов, так и исключительно малых по размерам элементарных частиц.
Квантовая электродинамика погружает нас в мир фотонов и электронов, делая акцент на изучении взаимодействий между ними.
Квантовая теория конденсированных сред углубляет наши познания о сверхтекучих жидкостях, магнетиках, жидких кристаллах, аморфных телах, кристаллах и полимеров.
Фото 3. Квантовая физика дала человечеству гораздо более точное описание окружающего мира
Научные исследования последних десятилетий сосредоточены на изучении кварковой структуры элементарных частиц в рамках самостоятельной ветви квантовой физики – квантовой хромодинамики.
Нерелятивистская квантовая механика (та, что находится за рамками теории относительности Эйнштейна) изучает микроскопические объекты, движущиеся с условно невысокой скоростью (меньше, чем скорость света), свойства молекул и атомов, их строение.
Квантовая оптика занимается научной проработкой фактов, сопряженных с проявлением квантовых свойств света (фотохимических процессов, теплового и вынужденного излучений, фотоэффекта).
Квантовая теория поля является объединяющим разделом, вобравшим в себя идеи теории относительности и квантовой механики.
Научные теории, разработанные в рамках квантовой физики, придали мощный импульс развитию атомной энергетики, квантовой электроники, лазерной техники, квантовой теории твердого тела, материаловедения, квантовой химии.
Без появления и развития отмеченных отраслей знания было бы невозможно создание компьютеров, Интернета, космических кораблей, атомных ледоколов, мобильной связи и многих других полезных изобретений.
На каком языке говорит больше всего людей?
Как использовать американские деньги для измерений?
Бездепозитный бонус и ваучер от «Зен казино» (casino-promo.biz): что это такое и как получить
Как почувствовать себя карточным королем: описание игрового автомата «King of Cards»
Трудолюбивый «гиппаркос»
Квантовая физика для чайников. Что такое квантовая физика: суть простыми словами
Здравствуйте, дорогие читатели. Если вы не хотите отставать от жизни, хотите стать по-настоящему счастливым и здоровым человеком, вы должны знать о тайнах квантовой современной физики, хоть немного представлять до каких глубин мироздания докопались сегодня ученые. Вам некогда вдаваться в глубокие научные подробности, а хотите постигнуть лишь суть, но увидеть красоту неизведанного мира, тогда эта статья: квантовая физика для обычных чайников или можно сказать для домохозяек как раз для вас. Я постараюсь объяснить, что такое квантовая физика, но простыми словами, показать наглядно.
«Какая связь между счастьем, здоровьем и квантовой физикой?»- спросите вы.
Дело в том, что она помогает ответить на многие непонятные вопросы, связанные с сознанием человека, влияния сознания на тело. К сожалению, медицина, опираясь на классическую физику, не всегда нам помогает быть здоровым. А психология не может нормально сказать, как обрести счастье.
Только более глубокие познания мира помогут нам понять, как же по-настоящему справиться с болезнями и где обитает счастье. Это знание находится в глубоких слоях Вселенной. На помощь нам приходит квантовая физика. Скоро вы все узнаете.
Что изучает квантовая физика простыми словами
Да, действительно квантовую физику очень сложно понять из-за того, что она изучает законы микромира. То есть мир на более глубоких его слоях, на очень малых расстояниях, там, куда очень сложно заглянуть человеку.
А мир, оказывается, ведет себя там очень странно, загадочно и непостижимо, не так как мы привыкли.
Отсюда вся сложность и непонимание квантовой физики.
Но после прочтения этой статьи вы раздвинете горизонты своего познания и посмотрите на мир совсем по-другому.
Кратко об истории квантовой физики
Все началось в начале 20 века, когда ньютоновская физика не могла объяснить многие вещи и ученые зашли в тупик. Тогда Максом Планком было введено понятие кванта. Альберт Эйнштейн подхватил эту идею и доказал, что свет распространяется не непрерывно, а порциями – квантами (фотонами). До этого же считалось, что свет имеет волновую природу.
Но как оказалось позже любая элементарная частица, это не только квант, то есть твердая частица, а также волна. Так появился корпускулярно-волновой дуализм в квантовой физике, первый парадокс и начало открытий загадочных явлений микромира.
Самые интересные парадоксы начались, когда был проведен знаменитый эксперимент с двумя щелями, после которого загадок стало намного больше. Можно сказать, что квантовая физика началась с него. Давайте его рассмотрим.
Эксперимент с двумя щелями в квантовой физике
Представьте себе пластину с двумя щелями в виде вертикальных полос. За этой пластиной поставим экран. Если направить свет на пластину, то на экране мы увидим интерференционную картину. То есть чередующиеся темные и яркие вертикальные полосы. Интерференция это результат волнового поведения чего-либо, в нашем случае света.
Если вы пропустите волну воды через два отверстия расположенных рядом, вы поймете что такое интерференция. То есть свет получается вроде как имеет волновую природу. Но как доказала физика, вернее Эйнштейн, он распространяется частицами-фотонами. Уже парадокс. Но это ладно, корпускулярно-волновым дуализмом нас уже не удивить. Квантовая физика говорит нам, что свет ведет себя как волна, но состоит из фотонов. Но чудеса только начинаются.
Электроны ведь это частицы, значит поток электронов, проходя через две щели, должны оставлять на экране всего две полосы, два следа напротив щелей. Представили себе камушки, пролетающие сквозь две щели и ударяющие об экран?
Но что мы видим на самом деле? Всю ту же интерференционную картину. Каков вывод: электроны распространяются волнами. Значит электроны это волны. Но ведь это элементарная частица. Опять корпускулярно-волновой дуализм в физике.
Но можно предположить, что на более глубоком уровне электрон это частица, а когда эти частицы собираются вместе, они начинают вести себя как волны. Например, морская волна это волна, но ведь она состоит из капель воды, а на более мелком уровне из молекул, а затем из атомов. Хорошо, логика твердая.
Но ужас. Вместо этих двух полос получаются все те же интерференционные чередования нескольких полос. Как так? Такое может случиться, если бы электрон пролетал одновременно через две щели, а за пластиной, как волна сталкивался бы сам с собой и интерферировал. Но такое не может быть, ведь частица не может находиться в двух местах одновременно. Она или пролетает сквозь первую щель или сквозь вторую.
Вот тут начинаются поистине фантастические вещи квантовой физики.
Суперпозиция в квантовой физике
При более глубоком анализе ученые выясняют что любая элементарная квантовая частица или тот же свет(фотон) на самом деле может находиться в нескольких местах одновременно. И это не чудеса, а реальные факты микромира. Так утверждает квантовая физика. Вот поэтому, стреляя из пушки отдельной частицей, мы видим результат интерференции. За пластиной электрон сталкивается сам с собой и создает интерференционную картину.
Обычные нам объекты макромира находятся всегда в одном месте, имеют одно состояние. Например, вы сейчас сидите на стуле, весите, допустим, 50 кг, имеете частоту пульса 60 ударов в минуту. Конечно, эти показания изменятся, но изменятся они через какое-то время. Ведь вы не можете одновременно быть дома и на работе, весить 50 и 100 кг. Все это понятно, это здравый смысл.
В физике микромира же все по-другому.
Квантовая механика утверждает, а это уже подтверждено экспериментально, что любая элементарная частица может находиться одновременно не только в нескольких точках пространства, но также иметь в одно и то же время несколько состояний, например спин.
Все это не укладывается в голову, подрывает привычное представление о мире, старые законы физики, переворачивает мышление, можно смело сказать сводит с ума.
Так мы приходим к пониманию термина «суперпозиции» в квантовой механике.
Суперпозиция означает, что объект микромира может одновременно находиться в разных точках пространства, а также иметь несколько состояний одновременно. И это нормально для элементарных частиц. Таков закон микромира, каким бы странным и фантастическим он не казался.
Вы удивлены, но это только цветочки, самые необъяснимые чудеса, загадки и парадоксы квантовой физики еще впереди.
Коллапс волновой функции в физике простыми словами
Затем ученые решили выяснить и посмотреть более точно, реально ли электрон проходит через обе щели. Вдруг он проходит через одну щель, а затем каким-то образом разделяется и создает интерференционную картину, проходя через нее. Ну, мало ли. То есть нужно поставить какой-нибудь прибор возле щели, который бы точно зафиксировал прохождение электрона через нее. Сказано, сделано. Конечно, осуществить это сложно, нужен не прибор, а что-то другое, чтобы увидеть прохождение электрона. Но ученые сделали это.
Но в итоге результат ошеломил всех.
Как только мы начинаем смотреть, через какую щель проходит электрон, так он начинает вести себя не как волна, не как странное вещество, которое одновременно находится в разных точках пространства, а как обычная частица. То есть начинает проявлять конкретные свойства кванта: находится только в одном месте, проходит через одну щель, имеет одно значение спина. На экране появляется не интерференционная картина, а простой след напротив щели.
Но как такое возможно. Как будто электрон шутит, играет с нами. Сначала он ведет себя как волна, а затем, после того, как мы решили посмотреть прохождение его через щель, проявляет свойства твердой частицы и проходит только через одну щель. Но так оно и есть в микромире. Таковы законы квантовой физики.
Ученые увидели еще одно загадочное свойство элементарных частиц. Так появились в квантовой физике понятия неопределенность и коллапс волновой функции.
Когда электрон летит к щели, он находится в неопределенном состоянии или как мы сказали выше в суперпозиции. То есть ведет себя как волна, находится одновременно в разных точках пространства, имеет сразу два значения спина (у спина всего два значения). Если бы мы его не трогали, не пытались смотреть на него, не выясняли, где именно он находится, не измеряли бы значение его спина, он бы так и пролетел как волна одновременно через две щели, а значит, создал интерференционную картину. Его траекторию и параметры квантовая физика описывает с помощью волновой функции.
После того, как мы произвели измерение (а произвести измерение частицы микромира можно только взаимодействуя с ней, например, столкнуть с ней другую частицу), то происходит коллапс волновой функции.
То есть теперь электрон находится точно в каком-то одном месте пространства, имеет одно значение спина.
Можно сказать элементарная частица как призрак, она как бы есть, но одновременно ее нет в одном месте, и может с определенной вероятностью оказаться в любом месте в пределах описания волновой функции. Но как только мы начинаем с ней контактировать, она из призрачного объекта превращается в реальное осязаемое вещество, которое ведет себя как обычный, привычный для нас предмет классического мира.
«Вот это фантастика»- скажете вы. Конечно, но чудеса квантовой физики только начинаются. Самое невероятное еще впереди. Но давайте немного отдохнем от обилия информации и вернемся к квантовым приключениям в другой раз, в другой
статье. А пока поразмышляйте о том, что вы сегодня узнали. К чему могут привести такие чудеса? Ведь они окружают нас, это свойство нашего мира, хоть и на более глубоком уровне. А мы все еще думаем, что живем в скучном мире? Но выводы сделаем позже.
Я попытался рассказать об основах квантовой физики кратко и понятно.
Но если вы что-то не поняли, тогда посмотрите вот этот мультик про квантовую физику, про эксперимент с двумя щелями, там также все рассказывается понятным, простым языком.
Мультфильм про квантовую физику:
Или можно смотреть вот этот видео, все станет на свои места, квантовая физика ведь очень интересна.
Видео о квантовой физике:
И как вы раньше об этом не знали.
Современные открытия в квантовой физике меняют наш привычный материальный мир.
Почему квантовая физика сродни магии?
Квантовая механика изучает наш мир на самом глубинном уровне, так как все, что нас окружает состоит из атомов. Даже мы с вами – это ни что иное как ансамбль из атомов, которые зародились в ядрах сверхновых звезд. Так почему же этот раздел физики так сильно похож на магию?
Что вы знаете о квантовой физике? Даже гуманитарию вроде меня понятно, что физика и квантовая физика изучают немного разные вещи. При этом физика в целом – это наука о природе, которая изучает то, как устроен мир и как все объекты и тела взаимодействуют друг с другом. Будучи разделом физики, квантовая механика изучает наш мир на самом глубинном уровне. Дело в том, что все, что нас окружает состоит из атомов. Да что там, даже мы с вами – это ни что иное как ансамбль из атомов, которые зародились в ядрах сверхновых звезд. Более того, эта область физики настолько сложная, что многие ученые признают, что плохо ее понимают. Учитывая растущее количество вопросов, на которых сегодня нет ответов и некую схожесть квантовой физики с магией, она невероятно привлекательна, но может ввести в заблуждение, как это успешно делают многие шарлатаны и лжеученые. В этой статье мы попытаемся понять что такое квантовая физика и почему она так похожа на волшебство.
Фотон – это элементарная частица, которая не имеет массы и может существовать в вакууме, передвигаясь со скоростью света. Электрический заряд фотона также равен нулю.
Почему квантовая физика такая сложная?
Все мы любим фокусы. Особенно те, во время которых фокусник может заставить шары “прыгать” между перевернутыми чашками. В квантовых системах, где свойства объекта, включая его местоположение, могут варьироваться в зависимости от того, как вы за ним наблюдаете, такие подвиги должны быть возможны без ловкости рук. Дело в том, что согласно квантовой теории, элементарная частица обретает определенное состояние лишь в момент наблюдения. В это сложно поверить, но в итоге ученым удалось экспериментально доказать, используя один-единственный фотон, что он существует в трех местах одновременно. Но как такое возможно?
Один из самых знаменитых квантовых экспериментов это двухщелевой эксперимент, который показал, что свет и материя могут вести себя как частица и волна одновременно.
Необходимо отметить, что успехами квантовой механики – с помощью которой можно точно описать поведение атомов и элементарных частиц – интересовался Альберт Эйнштейн. Однако гениальный ученый выступал против этой теории и высмеивал понятие, которое лежит в ее основе – запутанность. В квантовой механике запутанность означает, что свойства одной частицы могут немедленно влиять на свойства другой, независимо от расстояния между ними.
Впоследствии, серия тщательно разработанных экспериментов показала, что Эйнштейн ошибался: запутанность реальна и никакие другие теории не могут объяснить ее странные эффекты. И все же, несмотря на способность квантовой теории объяснять результаты экспериментальным путем, многие ученые признают, что квантовая физика настолько сложная, что познать ее едва ли удастся.
Как работает квантовая физика
Согласитесь, все это как минимум странно и заставляет мозг буквально трещать по швам. Ведь получается, что присутствие наблюдателя определяет судьбу системы и заставляет ее сделать выбор в пользу одного состояния. Но разве это не вмешательство сознания в материальную реальность? А если учесть, что фотон света может одновременно быть и частицей и волной и находиться сразу в трех местах, то в каком мире мы вообще живем? Является ли это доказательством существования параллельных реальностей с одинаковыми законами физики?
И это лишь часть вопросов, на которые у современной физики нет ответов. Пока. Однако все неизвестное издревле пугало человека. Иногда люди готовы поверить во что угодно, лишь бы был хотя бы один – и уже не важно какой – ответ. По этой причине совершенно неудивительно, что всякого рода шарлатаны и лжеученые так любят квантовую физику. Если ради интереса включить РЕН ТВ, то можно наткнуться на одну из передач о потустороннем мире, в котором, в роли эксперта, выступает очередной лжеученый. В 99 случаях из 100, его ложное объяснение мироустройства будет включать в себя хотя бы одно упоминание квантовой физики. При этом любой лжеученый резво бравирует такими научными терминами как электрон, фотон и запутанность, чтобы в глазах неискушенного зрителя обрести более-менее достоверный вид.
Иногда мне даже кажется, что любой уважающий себя шарлатан просто обязан иметь в своем репертуаре спич о тайнах квантовой физики. Ведь ученым практически нечего возразить их утверждениям о том, что квантовая механика – загадка для ученых. Правда удобно? Результатом популяризации таких идей может стать ложное представление о мире для большого количества людей. Подобные идеи также способствуют склонности к альтернативной медицине и лечения опасных заболеваний наложением рук. Так, с экранов телевизоров эзотерики с пеной у рта доказывают, что мысль материальна потому что квантовая физика вот, а доморощенные биологи приплетают квантовую физику в свои необоснованные идеи о волновом геноме и.т.д. Все это способствует и росту мифов и заблуждений о мире, в котором мы живем.
Что такое квантовая физика простыми словами
Между тем, квантовая физика – это самая настоящая магия. Магия реальности. Да, мы много не понимаем и не знаем ответов на вопросы, которые порождает квантовая запутанность и результаты многочисленных экспериментов, в том числе и знаменитый мысленный эксперимент кота Шредингера. При этом реальность намного интереснее вымысла, ведь мы столького о ней не знаем: наша Вселенная на 95% состоит из таинственной темной материи, а еще есть темная энергия, которая отвественна за ускорение расширения Вселенной. Более того, на самом глубинном уровне наш мир состоит из мельчайших частиц, которые могут находиться в нескольких местах одновременно и ведут себя по-разному в зависимости от того, наблюдаем мы за ними или нет. Если это не магия реальности, то что есть реальность?.
В то же самое время наука уже дала множество ответов на важнейшие вопросы о нашем мире. Так или иначе, я думаю что нет ничего плохого в том, чтобы не знать чего-то и не понимать квантовую физику. Главное – это наша познавать Вселенную. Которая, скорее всего, тоже познает себя через нас.