что такое корпускулярные свойства
Естествознание. 10 класс
Конспект урока
Естествознание, 10 класс
Урок 14. Корпускулярно-волновой дуализм
Перечень вопросов, рассматриваемых в теме:
Квантовая теория – совокупность представлений, согласно которым электромагнитные волны излучаются, распространяются, поглощаются отдельными порциями, которые называются «квантами». Теория послужила основой для появления квантовой механики, объясняющей движение микрообъектов. Гипотеза была предложена М. Планком, развита А. Эйнштейном.
Интерференция – сложение двух волн, вследствие которого наблюдается устойчивая во времени картина усиления или ослабления результирующих световых колебаний в различных точках пространства. Результат зависит от угла падения света на пленку, ее толщины и длины волны. Примером может служить окрашивание поверхности мыльного пузыря.
Фотоэффект – явление вырывания электронов из вещества под действием падающего на него света. Открыто в 1886 году Г. Герцем, подробно изучено А.С. Столетовым. Квантовая теория света дала возможность объяснить это явление. А. Эйнштейн был удостоен Нобелевской премии за работы по теории фотоэффекта.
Планетарная модель атома – предложена в 1906 году Э. Резерфордом. Согласно предложенной модели ядро атома имеет положительный заряд и располагается в центре, вокруг него по своим орбитам вращаются отрицательно заряженные частицы – электроны. Оказалась несостоятельной.
Энергетические уровни – определенная энергия, которой характеризуется данный электрон в атоме, соответствующая его расстоянию от ядра. Термин предложен Н.Бором.
Основная и дополнительная литература по теме урока:
Естествознание. 10 класс [Текст]: учебник для общеобразоват. организаций: базовый уровень / И.Ю. Алексашина, К.В. Галактионов, И.С. Дмитриев, А.В. Ляпцев и др. / под ред. И.Ю. Алексашиной. – 3-е изд., испр. – М.: Просвещение, 2017 : с 64-71.
Открытые электронные ресурсы по теме урока:
Кеттерле В. Когда атомы ведут себя как волны. Бозе-эйнштейновская конденсация и атомный лазер. Нобелевская лекция. 2001 г. Электронный доступ : https://ufn.ru/ru/articles/2003/12/e/
Как объяснить корпускулярно-волновой дуализм. д.ф-м.н., профессор, профессор ВолГУ А. Морозов / Электронный ресурс: https://www.youtube.com/watch?v=FWWlclQ0ozs
Корпускулярно-волновой дуализм — Эмиль Ахмедов Открытый образовательный ресурс: ассоциация специалистов в сфере образования, науки и просвещения «Издательский дом “ПостНаука”» адрес доступа: https://postnauka.ru/video/81299
Теоретический материал для самостоятельного изучения
В классической физике частицы и волны резко противопоставлялись как олицетворение дискретности (прерывности) и непрерывности соответственно. В качестве существенных различий считалось, что частицы относительно строго локализованы в пространстве и движутся по определенным траекториям. Волны же наоборот не имеют строгой локализации и обладают следующими признаками: могут огибать препятствия, могут накладываться друг на друга, существовать в одной и той же точке пространства. При движении частиц происходит перенос вещества и энергии, а при распространении волн переноса вещества не происходит. Свойственное классической физике противопоставление вещества как дискретного образования и поля, как непрерывного, соответствует принципу «или – или». Однако исследование природы света сняла это противоречие.
Волновые свойства света
Ньютон в своем трактате «Оптика, или Трактат об отражениях, преломлениях, изгибаниях и цветах света», только выдвинул предположение, что свет обладает свойствами волны, однако не стал развивать эту идею. Ученый объяснял законы оптики с позиций корпускулярной теории. Считая свет потоком частиц
Однако, в 1801 году, Томас Юнг обнаружил явление интерференции у света, что характерно для всех волн. Суть явления заключается во взаимном усилении или ослаблении когерентных волн при наложении. Напомним, что «Когерентные» можно перевести как «синхронные», «согласованные»; у когерентных волн одинаковая частота (одинаковая длина волны). Если амплитуды волн света совпадут при наложении, то мы будем наблюдать усиление яркости светового пятна. Если волны будут противоположны по значению максимумов и минимумов (гребней и впадин), то мы можем добиться такого состояния, когда световое пятно не будет видимо. Волновая характеристика света помогла Т.Юнгу объяснить явление дисперсии (разложения) света призмой.
Если свет – это волна, то наряду с интерференцией должна наблюдаться и дифракция света. Ведь дифракция – огибание волнами краев препятствий – присуща волновому движению. В результате этого в области геометрической тени могут возникать светлые зоны. Наоборот, в области, куда в соответствии с законом прямолинейного распространения светового луча должен падать свет, может возникать темная зона.
Лишь после проведения качественных опытов, демонстрирующих интерференцию и дифракцию, волновая природа света стала признанной.
Корпускулярные свойства света
При этом количество выбитых электронов связано с частотой световых волн, но не с их интенсивностью. Другими словами, электроны будут вылетать с поверхности независимо от яркости света, но при условии, что электрон получит достаточную порцию энергии (напомним, что энергия пропорциональна частоте E=hν). Поскольку энергия кванта может быть поглощена только полностью, то не удивительно, что если энергия кванта света мала (большая длина волны), то и электрон не сможет покинуть вещество, т.е. не совершится работа выхода (Вспомните, что понимается под «работой» в физике). Квант света Эйнштейном был назван фотоном. Стоит отметить, что фотон это не абстрактная модель, это реально существующая частица, хотя и не имеющая массы покоя. Другими словами, фотон существует только в движении.
Корпускулярно-волновой дуализм света
Тем самым, электромагнитное поле проявляет одновременно и волновые, и квантовые (корпускулярные) свойства, как свойства непрерывности, так и свойства прерывности (дискретности). В одних явлениях (интерференция, дифракция) проявляются резче волновые свойства, в других (фотоэффект, фотохимические реакции) – квантовые свойства излучения. Однако ряд свойств можно объяснить в согласованности, как с волновых, так и квантовых позиций. Так, например, давление света можно объяснить в согласии с опытом как передачей фотонами (квантами света) импульса поверхности, на которую они падают, так и на основе представлений об электромагнитной волне, где электрическая составляющая возбуждает движение зарядов в проводящей поверхности, а магнитная обеспечивает действие сила Лоренца. Такого рода двоякое объяснение одного и того же явления говорит о том, что свет одновременно проявляет и те, и другие свойства, а потому одновременно обладает ими, обнаруживая единство. Это единство проявляется в основных характеристиках фотона. Он обладает, как любая частица, энергией (hν), массой(), и импульсом (
), но эти корпускулярные характеристики выражаются через сугубо волновую характеристику – частоту.
Одновременно обладая и теми и другими свойствами, свет не всегда одновременно их проявляет. В зависимости от условий резче проявляются одни или другие свойства. Такая двойственность света называется корпускулярно-волновым дуализмом.
Волновые свойства вещества
Итак, электромагнитное излучение обладает одновременно свойствами волн и свойствами частиц.
Но оказалось, что эта двойственность характерна не только для поля, что ей обладают и любые микрообъекты. Например, частица вещества – электрон.
Так, согласно современным представлениям, наряду с волнами электромагнитного поля имеются волны вещества. (Вспомним про тепловые излучения!). Эта идея, предложенная в 1924 году Луи де Бройлем, также была подтверждена опытным путем. Суть опыта состояла в том, что поток электронов определенной энергии направлялся на тонкую пластинку и после этого попадал на фотопластинку, на которой обнаруживалась типичная дифракционная картина. Электроны дифрагировали как волны.
С этих позиций изменились и современные представления о строении атома. На смену планетарной модели Эрнста Резерфорда, согласно которой электроны как планеты вращаются по своим траекториям пришла новая модель. Описанная по подобию движения планет Солнечной системы старая модель оказалась не состоятельной, поскольку не могла объяснить, почему электрон не падает на ядро, и почему спектры излучения и поглощения атомов линейчатые. Сегодня при описании атома учитывается дуальная природа электрона, существование которого связано с некоторым «стационарным» состоянием, в котором он свою энергию не теряет. Энергию электрон тоже может изменить дискретно при поглощении или испускании квантов. Таким образом существование электрона в атоме связано с энергетическими уровнями, которые, вследствие волновой природы электрона, можно представить, как области пространства вокруг ядра, где с наибольшей вероятностью мы можем его зафиксировать. Современные представления о микромире не могут быть описаны понятиями классической механики, поэтому на смену понятию орбита, приходит менее категоричное – орбиталь.
Из вероятностного характера описания следует крах концепции детерминизма (предполагает однозначность и предопределенность будущего, это вытекает из признания жесткой причинно-следственной связи между событиями и явлениями и отрицает объективность случайности). В соответствии с квантовой теорией будущее состояние любой системы может быть предсказано лишь с некоторой вероятностью. Идея вероятностного характера процессов в микромире постепенно была распространена и на процессы в нашем макромире. Наше будущее, таким образом, не является жестко определенным.
Единство волновых и корпускулярных свойств, дискретности и непрерывности, т.е. корпускулярно-волновой дуализм, есть общая черта материальных объектов, которой обладают и поля, и все микрочастицы. И это еще одно доказательство единства материального мира.
Свет (электромагнитные волны) осуществляет распространение энергии порциями – квантами, проявляя наравне с волновыми и квантовые свойства.
Электрон в определенных условиях ведет себя как волна.
Волна, соответствующая определенной частице, определяет вероятность нахождения частицы в данной точке пространства.
Всем микрочастицам присущи как корпускулярные, так и волновые свойства. В то же время любую из микрочастиц нельзя считать ни частицей, ни волной в классическом понимании. К корпускулярному и волновому описанию следует относиться как к дополняющим друг друга точкам зрения на один и тот же круг явлений.
Примеры и разбор решения заданий тренировочного модуля.
Задание1. Выберите один ответ
Интерференцией света объясняется физическое явление:
А: красный цвет абажура настольной лампы, светящейся белым светом
Б: красный цвет мыльной пленки, освещаемой белым светом
В: проявление цветного спектра настольной лампы, светящейся белым светом
Правильный ответ: Б
Пояснение: явления под А и В связаны с дисперсией
Задание2. Вставьте пропущенные элементы в тексте по смыслу:
«Единство ___________и корпускулярных свойств, дискретности и_____________, т.е. корпускулярно-волновой дуализм, есть ________черта материальных объектов, которой обладают и поля, и все________. И это еще одно доказательство единства материального мира»
Варианты элементов для подстановки: непрерывности; общая; тела; микрочастицы; волновых; частная
Ответ: «Единство волновых и корпускулярных свойств, дискретности и непрерывности, т.е. корпускулярно-волновой дуализм, есть общая черта материальных объектов, которой обладают и поля, и все микрочастицы. И это ещё одно доказательство единства материального мира»
Корпускулярные свойства: определение понятия, отличие от волновых
Содержание:
Способность микрочастиц в небольшом объеме иметь свойства энергии и импульса определяется как корпускулярные свойства. Если подобные микрочастицы взаимодействуют друг с другом, то законы импульса и сохранения энергии соблюдаются. Корпускулярные свойства электрона заключаются в поведении электрона как частицы. Они также характерны для фотонов. Свет излучается и поглощается небольшими группами – корпускулами. Эйнштейн предполагал, что свет излучается потоками квантов. Эта идея легла в основу квантовой физики и объяснила механизм фотоэффекта.
Что такое корпускулярные свойства?
Частота волн света характеризуется числом выбитых электронов. Т.е. микрочастицы выходят с поверхности вне зависимости от яркости света, но при условии, что энергии достаточно. Это подтверждает формула:
Квант называют фотоном. Это реальная частица, которая не может находиться в состоянии покоя. Фотон не может существовать на одном месте, поэтому постоянно пребывает в движении.
Корпускулярно-волновой дуализм
Гипотеза де Бройля
Ученый де Бройль разработал гипотезу о том, что корпускулярно-волновая двойственность универсальна. С каждой микрочастицей связаны волновые (частота n и длина волны l) и корпускулярные свойства (энергия E и импульс p). Гипотеза для фотонов выражается через формулу:
Чем меньше длина волны, тем выше энергия и импульс. У таких микрочастиц волновые характеристики выражены слабо. Дуализм свойственен электромагнитному полю и имеет универсальный характер.
Значение корпускулярных свойств
Корпускулярные свойства микрочастиц были доказаны давно. Их можно обнаружить с помощью эксперимента в специальной камере Вильсона. Микрочастицы ионизируют в насыщенной паром камере. Ионы становятся центрами конденсации, наличие которых можно определить по штрихообразным следам. Таким образом, микрочастицы двигаются по определенной траектории и по свойствам схожи с обычными корпускулами.
Позднее было доказано, что микрочастицы обладают корпускулярно-волновыми свойствами. Перед нахождением волновых характеристик микрочастиц квантовая механика уже была достаточно развита. Свойства волны у микрочастицы на тот момент были доказаны только на теоретическом уровне. Учение о двойственности микрочастиц позволило науке шагнуть далеко вперед и раскрыть окружающий мир по-новому.
Корпускулярно-волновой дуализм
Квантовая физика — раздел физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения.
Тепловое излучение – электромагнитное излучение, возникающее за счет внутренней энергии тела и зависящее только от температуры и оптических свойств этого тела.
В случае, если излучение находится в термодинамическом равновесии с веществом, то такое излучение называется равновесным.
Спектр такого излучения эквивалентен спектру абсолютно черного тела. Однако в общем случае тепловое излучение не находится в термодинамическом равновесии с веществом, таким образом, более горячее тело остывает, а более холодное, наоборот, нагревается.
Основные характеристики теплового излучения:
Абсолютно черное тело — это физическая абстракция (модель), под которой понимают тело, полностью поглощающее все падающее на него электромагнитное излучение произвольной длины волны \( \alpha_\lambda \) = 1.
Серое тело — это такое тело, коэффициент поглощения которого не зависит от частоты, а зависит только от температуры \( \alpha_\lambda \) \( \alpha_\lambda \) = 0.
Основные законы теплового излучения
Закон Стефана–Больцмана:
мощность излучения абсолютно черного тела прямо пропорциональна четвертой степени термодинамической температуры тела:
Закон смещения Вина:
длина волны, соответствующая максимальному значению энергетической светимости абсолютно черного тела, обратно пропорциональна его термодинамической температуре:
Закон излучения Кирхгофа:
отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты и не зависит от их формы и химического состава:
Для объяснения световых явлений некоторые ученые во главе с И. Ньютоном считали, что свет – это поток частиц (корпускул). Другие ученые во главе с Гюйгенсом считали, что свет – это волна.
Луи де Бройль впервые выдвинул идею о том, что свет имеет двойственную природу.
Свет, как поток частиц (корпускул), проявляет себя при поглощении и излучении атомов, в других явлениях (интерференция, дифракция, поляризация, дисперсия) свет ведет себя как волна.
Гипотеза М. Планка о квантах
М. Планк выдвинул гипотезу о квантах:
энергия испускается телом не непрерывно, а отдельными порциями – квантами, энергия которых пропорциональна частоте колебаний.
Свет, как и любое другое электромагнитное излучение, представляет собой поток фотонов с энергией \( \varepsilon \) .
Фотоэффект
Фотоэффект был открыт в 1887 году Г. Герцем.
В опытах с электроискровыми вибраторами Герц установил, что заряженный проводник, освещенный ультрафиолетовыми лучами, быстро теряет свой заряд, а электрическая искра возникает в искровом промежутке при меньшей разности потенциалов.
Фотоэффект – это явление взаимодействия света с веществом, в результате которого энергия фотонов передается электронам вещества.
Различают внутренний и внешний фотоэффект.
Внутренний фотоэффект – изменение концентрации носителей заряда в веществе.
Внешний фотоэффект – явление вырывания электронов с поверхности вещества под действием падающего на него света.
Опыты А. Г. Столетова
В 1888 году А. Г. Столетов впервые систематически исследовал фотоэффект. Он выяснил, от чего зависит число вырванных светом с поверхности вещества электронов (фотоэлектронов) и чем определяется их скорость или кинетическая энергия. Он исследовал вещества различной природы и установил, что наиболее восприимчивы к свету металлы: никель, медь, цинк, алюминий, серебро. Для облучения электродов он использовал свет различных длин волн: красный, зеленый, синий, ультрафиолетовый.
Для исследования фотоэффекта он собрал следующую установку: в стеклянный баллон, из которого выкачан воздух, помещаются два электрода.
Внутрь баллона на один из электродов поступает свет через кварцевое «окошко», прозрачное для ультрафиолетового излучения.
На электроды подается напряжение, которое можно менять с помощью потенциометра \( R \) и измерять вольтметром \( V \) .
К освещаемому электроду (катоду \( K \) ) присоединяют отрицательный полюс батареи. Под действием света этот электрод испускает электроны, которые при движении в электрическом поле образуют электрический ток.
Облучая катод светом различных длин волн, Столетов установил закономерности (законы) фотоэффекта, не утратившие своего значения до нашего времени.
При малых напряжениях не все вырванные светом электроны достигают другого электрода (анод А). Если, не меняя интенсивности излучения, увеличивать разность потенциалов между электродами, то сила тока также увеличивается. При некотором напряжении она достигает максимального значения, после чего перестает изменяться.
Вольт-амперная характеристика (зависимость силы фототока от напряжения)
1) сила фототока отлична от нуля и при отсутствии напряжения. Это означает, что часть вырванных светом электронов достигает анода и при отсутствии напряжения, т. е. фотоэлектроны при вылете обладают кинетической энергией;
2) при некотором значении напряжения \( U_ <нас>\) между электродами сила фототока перестает зависеть от напряжения и не изменяется при увеличении напряжения. Максимальное значение силы тока \( I_ <нас>\) называется током насыщения. При фототоке насыщения все электроны, покинувшие за 1 с поверхность металла, за это же время попадают на анод. Поэтому по силе фототока насыщения можно судить о числе фотоэлектронов, вылетающих с катода в единицу времени:
где \( q_
3) если катод соединить с положительным полюсом источника тока, а анод — с отрицательным, то в электростатическом поле между электродами фотоэлектроны будут тормозиться, а сила фототока уменьшаться при увеличении значения этого отрицательного напряжения. При некотором значении отрицательного напряжения \( U_ <зап>\) (его называют запирающим или задерживающим напряжением) фототок прекращается. Это значит, что электрическое поле тормозит вырванные электроны до полной остановки, а затем возвращает их на электрод.
Согласно теореме о кинетической энергии работа задерживающего электрического поля равна изменению кинетической энергии фотоэлектронов:
Законы внешнего фотоэффекта
«Красная граница» фотоэффекта – наименьшая частота (наибольшая длина волны), при которой начинается фотоэффект:
С уменьшением частоты падающего света (увеличением длины волны) энергия падающих квантов при некоторой частоте (длине волны) может стать равной работе выхода электрона из металла.
«Красная граница» фотоэффекта зависит только от работы выхода электрона из вещества.
Уравнение Эйнштейна для фотоэффекта
Теоретическое обоснование законов фотоэффекта было дано А. Эйнштейном.
При падении на металл энергия фотона расходуется на совершение работы выхода электрона из металла и на сообщение ему кинетической энергии:
Если частота световой волны меньше «красной границы» фотоэффекта, то энергии фотона не хватит для того, чтобы вырвать электрон с поверхности металла. Фотоэффект наблюдаться не будет:
Если частота световой волны равна «красной границе» фотоэффекта, то энергии фотона хватит для того, чтобы вырвать электрон с поверхности металла, но не хватит для того, чтобы сообщить электрону кинетическую энергию. Фотоэффект наблюдаться не будет:
Фотоны
Электромагнитное излучение имеет квантовый характер, т. е. излучается и поглощается веществом в виде отдельных частиц электромагнитного поля – фотонов.
Основные свойства фотона:
Равенство нулю массы фотона означает невозможность его нахождения в покоящемся состоянии. Фотон всегда движется, причем только со скоростью света.
согласно теории относительности \( E=mc^2,E=h\nu, \)
Энергия фотона
Импульс фотона
Давление света
Максвелл на основе электромагнитной теории света предсказал, что свет должен оказывать давление на препятствия.
Под действием электрического поля волны, падающей на поверхность тела, например металла, свободный электрон движется в сторону, противоположную вектору \( \vec
На движущийся электрон действует сила Лоренца, направленная в сторону распространения волны. Суммарная сила, действующая на электроны поверхности металла, и определяет силу светового давления.
Впервые давление света измерил русский физик Петр Николаевич Лебедев в 1900 г. Прибор Лебедева состоял из очень легкого стерженька на тонкой стеклянной нити, по краям которого были приклеены легкие крылышки. Весь прибор помещался в сосуд, откуда был выкачан воздух. Свет падал на крылышки, расположенные по одну сторону от стерженька. О значении давления можно было судить по углу закручивания нити. Трудность точного измерения давления света была связана с невозможностью создать вакуум (движение молекул воздуха, вызванное неодинаковым нагревом крылышек и стенок сосуда, приводит к возникновению дополнительных вращающих моментов). На закручивание нити влияет и неодинаковый нагрев сторон крылышек (сторона, обращенная к источнику света, нагревается сильнее, чем противоположная сторона). Молекулы, отражающиеся от более нагретой стороны, передают крылышку больший импульс, чем молекулы, отражающиеся от менее нагретой стороны.
Лебедев сумел преодолеть все эти трудности, взяв очень большой сосуд и очень тонкие крылышки. Полученное значение совпало с предсказанным Максвеллом. Впоследствии после трех лет работы Лебедеву удалось осуществить еще более тонкий эксперимент: измерить давление света на газы.
Появление квантовой теории света позволило более просто объяснить причину светового давления. Фотоны, подобно частицам вещества, имеющим массу покоя, обладают импульсом. При поглощении их телом они передают ему свой импульс. Согласно закону сохранения импульса импульс тела становится равным импульсу поглощенных фотонов. Поэтому покоящееся тело приходит в движение. Изменение импульса тела означает, согласно второму закону Ньютона, что на тело действует сила.
Важно!
Опыты Лебедева можно рассматривать как экспериментальное доказательство того, что фотоны обладают импульсом.
Хотя световое давление очень мало в обычных условиях, оно является существенным в недрах звезд. При температуре в несколько десятков миллионов Кельвинов давление электромагнитного излучения достигает громадных значений и совместно с гравитационными силами обеспечивает стабильное состояние звезд.
Давление света, согласно электродинамике Максвелла, возникает из-за действия силы Лоренца на электроны среды, колеблющиеся под действием электрического поля электромагнитной волны. С точки зрения квантовой теории давление появляется в результате передачи телу импульсов фотонов при их поглощении:
где \( \rho \) – коэффициент отражения, \( N \) – количество всех фотонов, падающих на единицу поверхности в единицу времени.
Гипотеза де Бройля о волновых свойствах частиц. Корпускулярно-волновой дуализм
Согласно корпускулярной теории Ньютона светящиеся тела испускают мельчайшие частицы – корпускулы, которые летят прямолинейно по всем направлениям. Доказательством корпускулярной теории являются фотоэффект, излучение черного тела.
Согласно волновой теории Гюйгенса светящиеся тела вызывают в окружающей среде упругие колебания, которые распространяются в эфире подобно звуковым волнам в воздухе. Доказательством волновой теории Гюйгенса являются интерференция, дифракция, поляризация света.
Однако это не означает, что свет излучается как поток частиц, затем превращается в волну и распространяется волной, а при поглощении опять превращается в поток частиц – фотонов. Свет одновременно обладает и волновыми, и корпускулярными свойствами. Такое сочетание свойств обозначается термином корпускулярно-волновой дуализм.
Корпускулярными характеристиками света являются энергия и импульс, волновыми – частота или длина волны.
Уравнения, связывающие корпускулярные и волновые характеристики света:
Гипотеза де Бройля
После того как представления о двойственных свойствах света подтвердились, было высказано предположение о том, что корпускулярно-волновая двойственность свойств характерна не только для фотонов, но и для частиц вещества – электронов, протонов, нейтронов, а также атомов, молекул и атомных ядер – т. е. движение любых частиц, имеющих энергию \( \varepsilon \) и импульс \( p \) , можно рассматривать с помощью теории волн. При этом движущаяся частица представляется как волна с частотой:
Позже эти волны получили название волн де Бройля в честь французского ученого Луи де Бройля, высказавшего это предположение.
Корпускулярно-волновая двойственность света характерна для электромагнитного поля и имеет универсальный характер.
Дифракция электронов
Дифракция электронов является опытным доказательством гипотезы де Бройля о волновых свойствах частиц.
Опыт К. Дэвиссона и Л. Джермера (1927)
Общим условием дифракции является соизмеримость длины падающей волны с расстоянием между рассеивающими центрами: \( \lambda\approx d \) .