что такое композитный материал в строительстве
Композиционные материалы: виды, применение в строительстве и основные преимущества
Строительная индустрия постоянно развивается, открываются новые площадки, строятся различные объекты.
Композиционные материалы стали неотъемлемой частью этой сферы, сейчас уже трудно представить масштабные строительные работы без использования композита.
Стойкий, легкий и прочный, он имеет значительные преимущества перед природными материалами, обладающими большим весом и не имеющими значительных способностей к изменению формы.
Композиционные материалы в строительстве
Существуют разные типы композиционных материалов, они различаются по своему составу и свойствам. Наиболее распространены и востребованы в строительстве, например, такие виды, как сэндвич-панели, углепластиковые панели, слоистые материалы, текстолиты, стеклопластики. Все они обладают высокими эксплуатационными характеристиками и декоративным эффектом.
Композит применяется не только при возведении жилых объектов. Трудно представить мост или плотину, где бы не использовались углепластиковые панели. Различные архитектурные элементы, такие как арки или купола, тоже зачастую создаются с применением композиционных материалов. Это выгодно для застройщиков, поскольку обеспечивает им значительную экономию на возведении конструкций, монтаже, хранении и перевозке материала, и при этом надежность, качество и прочие эксплуатационные характеристики будущего здания никак не страдают.
Дизайнеры используют композит в моделизме. Оригинальные расцветки, возможность создавать необычные причудливые формы — все это можно увидеть, если рассмотреть всевозможные композиционные материалы на www.hccomposite.com. С такими ресурсами можно создавать действительно необычные архитектурные сооружения, которые будут еще и надежными и долговечными.
Виды, характеристики и свойства
Все композиционные материалы изготавливаются по похожей структуре — у них есть армирующее вещество и матрица. Арматура — это то, что передает материалу физические и химические свойства, является его основой. А матрица придает изделию форму, фиксируя арматуру определенным образом.
Можно выделить некоторые примеры самых распространенных в строительстве композитов:
Преимущества, недостатки и применение
Поскольку композиты являются достаточно эффективными, применение в строительстве достаточно распространено благодаря ряду преимуществ этих материалов.
У композитов есть не только преимущества, но и недостатки, которые сдерживают их распространение на строительном рынке.
Композиционные материалы, как и любые другие, имеют свои достоинства и недостатки.
Насколько оправданным будет использование композитов? Зависит от конкретных целей, условий, общего бюджета. Впрочем, современные технологии позволяют изобретать новые формы и виды таких материалов, поэтому, возможно, в будущем они станут менее дорогими и более распространенными, а также обзаведутся улучшенными характеристиками.
Композиционные строительные материалы
Отличительные особенности композиционных материалов
Композиционные материалы с металлической матрицей. При создании композитов на основе металлов в качестве матрицы используют алюминий, магний, никель, медь. Наполнителем при этом служат высокопрочные волокна, тугоплавкие частицы различной дисперсности, нитевидные монокристаллы оксида алюминия, монокристаллы оксида бериллия, монокристаллы карбидов бора и кремния, монокристаллы нитридов алюминия и кремния длиной от 0,3 до 15 мм и диаметром от 1 до 30 микрон. Основными преимуществами композиционных материалов с металлической матрицей по сравнению с обычным металлом являются их повышенная прочность, жёсткость, сопротивление износу и сопротивление ползучести.
Некоторые распространённые композиты
Сегодня это самые распространённые композиционные материалы.
Композиты, в которых наполнителями служат органические, синтетические и реже, природные и искусственные волокна в виде жгутов, нитей, тканей, бумаги. В термореактивных органопластиках матрицей служат, как правило, эпоксидные, полиэфирные и фенольные смолы, а также полиимиды. Органопластики обладают низкой плотностью, они легче стекло- и углепластиков, обладают относительно высокой прочностью при растяжении, высокой стойкостью к удару и другим динамическим нагрузкам, но в то же время низкой прочностью при сжатии и изгибе. К наиболее распространённым органопластикам относятся древесные композиционные материалы. По объёмам производства органопластики сегодня превосходят сталь, алюминий и пластмассы. В зарубежной литературе в последнее время становятся популярными новые термины в этой области – биополимеры, биопластики или биокомпозиты.
Древесные композиционные материалы.
Занимают второе место по распространенности среди композиционных материалов. В эту группу входят арболиты, ксилолиты, цементно-стружечные плиты, клееные деревянные конструкции, фанера и гнутоклееные детали, древесные пластики, древесностружечные и древесноволокнистые плиты и балки, древесные пресс-массы и пресс-порошки, термопластичные древесно-полимерные композиты.
Это полимерные композиционные материалы, армированные стеклянными волокнами. В качестве матрицы чаще всего применяют как термореактивные синтетические смолы (фенольные, эпоксидные, полиэфирные и т.д.), так и термопластичные полимеры (полиамиды, полиэтилен, полистирол и т.д.). Стеклопластики обладают высокой прочностью, низкой теплопроводностью, высокими электроизоляционными свойствами, кроме того, они прозрачны для радиоволн. Слоистый материал, в котором в качестве наполнителя применяется ткань, плетенная из стеклянных волокон, называется стеклотекстолитом.
Это композиционные материалы, содержащие в качестве наполнителя борные волокна и термореактивную полимерную матрицу, при этом волокна могут быть как в виде нитей, так и в виде жгутов, оплетённых вспомогательной стеклянной нитью, или лент, в которых борные нити переплетены с другими нитями. Они используются главным образом в авиационной и космической технике в деталях, подвергающихся длительным нагрузкам в условиях агрессивной среды. Применение боропластиков ограничивается высокой стоимостью производства борных волокон.
Это слоистые пластики, армированные тканями из различных волокон. Технология получения текстолитов была разработана в 30-х годах прошлого века на основе фенолформальдегидной смолы. Полотна ткани пропитывают смолой, затем прессуют при повышенной температуре, получая текстолитовые пластины или фасонные изделия. Связующими в текстолитах является широкий круг термореактивных и термопластичных полимеров, а иногда и неорганические связующие на основе силикатов и фосфатов. В качестве наполнителя используются ткани из самых разнообразных волокон – хлопковых, синтетических, стеклянных, углеродных, асбестовых, базальтовых. Соответственно и текстолиты имеют самые разнообразные свойства и применение.
Для подготовки статьи использовались материалы веб-сайтов:
Статью подготовил: Инженер-эксперт
Отдела обследования и экспертиз несущих и ограждающих конструкций
Композит объединяет в своем составе несколько различных материалов в единое целое.
Основу композитных панелей составляет пластичная матрица, армированная различными наполнителями. Внешне они представляют собой прямоугольные многослойные листы.
На строительном рынке представлены композитные материалы, различающиеся по составу наполнителей, количеству слоев, виду отделочных и защитных покрытий.
Структура и характеристики композита
Все слои листов композита соединены между собой по особой технологии, создающей прочную, надежную, устойчивую к расслаиванию конструкцию.
Лицевая поверхность может окрашиваться в разные цвета, быть однотонной или иметь различные рисунки.
Панели представляют собой прямоугольные листы с металлической или полимерной основой и теплоизоляционной прослойкой.
Внутренний слой покрывается антикоррозийным покрытием. На тыльную сторону панелей наносятся знаки в виде стрелок, указывающие направление резки при раскрое листов.
Внешний лицевой слой имеет декоративные и защитные слои из полиэстера или PVDF, защищающие материал от ультрафиолетовых лучей и неблагоприятных погодных факторов. Лицевая поверхность панелей может окрашиваться в разные цвета, иметь рисунок под древесину или кирпич, природный камень или декоративную штукатурку, быть матовой или глянцевой.
Для придания прочности, жесткости и укрепления панелей применяются алюминиевые, стальные или синтетические листы.
Основу композита составляет полимерный наполнитель, отвечающий за технические свойства материала.
Скрепляет многослойную конструкцию слой клея или смолы PVDF.
Рис.1. Структура алюминиевого композита.
Материал не подвержен коррозии, устойчив к агрессивным природным воздействиям, не поражается плесенью и микроорганизмами. Относится к слабо горючим.
Нормами пожарной безопасности материал допускается к применению в облицовке индивидуальных жилых домов и общественных зданий.
Виды композитных панелей
На строительном рынке композитные панели представлены в нескольких разновидностях, отличающихся по составу и количеству слоев, размерам и цветовой палитре:
Алюминиевые
Состоят из тонких алюминиевых пластин. Характеризуются высокой прочностью и жесткостью при небольшом весе. Алюминиевые панели не боятся ветровых нагрузок. Стоят дороже аналогов. Могут устанавливаться на фасадах высотных зданий и не стабильных несущих ограждающих, рекламных и декоративных конструкциях.
Минеральные
Имеют в своем составе вспененный полиэтилен и антипиреновые соединения, снижающие горючесть материала. Под действием открытого огня материал не плавится. В процессе горения выделяется незначительное количество дыма
Полимерные
Основу материала составляет поликарбонат. Отличаются небольшим весом и доступной стоимостью. Уступают по прочности, жесткости и несущей способности алюминиевым и минеральным аналогам. Применяются для внутренней отделки помещений.
В качестве декоративного и защитного покрытия используются прочные и устойчивые составы:
Палитра цветов композитных панелей составляет более 200 позиций по каталогу RAL, из них более 17 — металлических оттенков.
Рис.2. Выбор оттенков композитных панелей.
Типовые размеры
Возможны и другие размеры панелей по индивидуальному заказу.
Преимущества панелей
Композитные материалы экологичны и безопасны. Отличаются хорошими теплозащитными качествами. Не выгорают на солнце. Сочетают в себе прочность, жесткость и пластичность.
Композитные плиты обладают высокими эксплуатационными показателями:
Широкая цветовая гамма и отличная гибкость позволяет создавать уникальные конструкции фасадов и внутренние интерьеры зданий.
Вентилируемые фасады можно навешивать на любые стены без предварительной подготовки, что значительно экономит затраты на строительство или ремонт.
К отрицательным свойствам относятся низкая ремонтопригодность. При повреждении композитного листа отремонтировать его практически невозможно.
Риск появления царапин на облицовке повышает требования к монтажу, складированию и транспортировке материала.
Область применения
Одна из самых распространенных сфер использования композитных листов — устройство навесных вентилируемых фасадов.
Листы композита получили широкую популярность при строительстве и реконструкции зданий.
Рис.3. Использование композита при строительстве нестандартных объектов.
Листы из композита применяются при создании различных сооружений и конструкций:
Композитные листы широко применяются в дизайне зданий. Легко имитируют кирпичи и натуральные камни, зеркала и металл.
Рис. 4. Фасад торгового центра из композитных кассет.
Композитные кассеты не рекомендуется монтировать на детские дошкольные и образовательные учреждения и больницы.
Особенности выбора
Для самостоятельного монтажа композитных конструкций стоит приобретать материал в комплекте с кронштейнами, направляющими профилями, крепежными деталями и другими приспособлениями.
От качества панелей зависит надежность монтажа и срок эксплуатации конструкций.
При выборе композитных панелей нужно руководствоваться следующими рекомендациями:
На защитной пленке указывается направление расположения композитных листов на фасаде, чтобы избежать разнотона при монтаже.
Рис.5. Маркировка материала на защитной пленке.
Технология монтажа навесных вентилируемых фасадов
Навесные вентилируемые фасады пользуются большой популярностью при отделке не только общественных зданий, но и современных частных домов.
Они монтируются по современным технологиям и подходят для стен из кирпича и газобетона, железобетонных панелей и дерева.
Конструкция вентфасада включает в себя:
Между утеплителем и облицовочным слоем устраивается воздушный зазор.
Благодаря воздушной прослойке, работающей по принципу вытяжной трубы, конденсирующая под фасадной облицовкой влага вытягивается с восходящим воздушным потоком в атмосферу.
Кроме того, прослойка из воздуха является дополнительным теплоизолятором. Она сглаживает термические деформации, возникающие при температурных перепадах, тем самым предотвращает преждевременное разрушение несущих и ограждающих конструкций.
ия можно использовать стекло матовое или более темных тонов. В продаже имеется поликарбонат в широкой гамме цветов: опал, бронзовый, бирюзовый, голубой, оранжевый.
Композитные панели | Размеры | Стоиомость листа |
ALTEC зеркало золотое (RAL 0007) al 0.21 | 1500х4000х3 | 10352 руб |
ALTEC графит металлик (RAL 0009) al 0.21 | 1500х4000х3 | 4500 руб |
ALTEC шампань металлик (RAL 0004) al 0.21 | 1500х4000х3 | 4500 руб |
ALTEC бронза металлик (RAL 0002) al 0.21 | 1500х4000х3 | 4500 руб |
ALTEC золото металлик (RAL 0003) al 0.21 | 1500х4000х3 | 4500 руб |
ALTEC зеркало золотое (RAL 0007) al 0.3 | 1220х4000х3 | 9760 руб |
ALTEC зеркало серебрянное (RAL 0007) al 0.3 | 1220х4000х3 | 9760 руб |
ALTEC графит металлик (RAL 0009) al 0.3 | 1220х4000х3 | 5002 руб |
ALTEC шампань металлик (RAL 0004) al 0.3 | 1220х4000х3 | 5002 руб |
ALTEC бронза металлик (RAL 0002) al 0.3 | 1220х4000х3 | 5002 руб |
Весь ассортимент >>>
Устройство навесных вентилируемых фасадов производится в определенной последовательности:
Для изоляции металла от стены под каждым кронштейном устанавливаются терморазрывные прокладки из изолирующего материала.
Рис. 6. Монтажный узел навесного вентилируемого фасада.
Композиционные материалы
1. Композиционные или композитные материалы – материалы будущего.
После того как современная физика металлов подробно разъяснила нам причины их пластичности, прочности и ее увеличения, началась интенсивная систематическая разработка новых материалов. Это приведет, вероятно, уже в вообразимом будущем к созданию материалов с прочностью, во много разпревышающей ее значения у обычных сегодня сплавов. При этом большое внимание будет уделяться уже известным механизмам закалки стали и старения алюминиевых сплавов, комбинациям этих известных механизмов с процессами формирования и многочисленными возможностями создания комбинированных материалов. Два перспективных пути открывают комбинированные материалы, усиленные либо волокнами, либо диспергированными твердыми частицами. Упервых в неорганическую металлическую или органическую полимерную матрицу введены тончайшие высокопрочные волокна из стекла, углерода, бора, бериллия, стали или нитевидные монокристаллы. В результате такого комбинирования максимальная прочность сочетается с высоким модулем упругости и небольшой плотностью. Именно такими материалами будущего являются композиционные материалы.
Композиционный материал – конструкционный (металлический или неметаллический) материал, в котором имеются усиливающие его элементы ввиде нитей, волокон или хлопьев более прочного материала. Примеры композиционных материалов: пластик, армированный борными, углеродными, стеклянными волокнами, жгутами или тканями на их основе; алюминий, армированный нитями стали, бериллия. Комбинируя объемное содержание компонентов, можно получать композиционные материалы с требуемымизначениями прочности, жаропрочности, модуля упругости, абразивной стойкости, а также создавать композиции с необходимыми магнитными, диэлектрическими, радиопоглощающими и другими специальными свойствами.
2. Типы композиционных материалов.
2.1. Композиционные материалы с металлической матрицей.
Композитные материалы или композиционные материалы состоят из металлической матрицы (чаще Al, Mg, Ni и их сплавы), упрочненной высокопрочными волокнами (волокнистые материалы) или тонкодисперсными тугоплавкими частицами, не растворяющимися в основном металле (дисперсно-упрочненные материалы). Металлическая матрица связывает волокна (дисперсные частицы) в единое целое. Волокно (дисперсные частицы) плюс связка (матрица), составляющие ту или иную композицию, получили название композиционные материалы.
2.2. Композиционные материалы с неметаллической матрицей.
Композиционные материалы с неметаллической матрицей нашли широкое применение. В качестве неметаллических матриц используют полимерные, углеродные и керамические материалы. Из полимерных матриц наибольшее распространение получили эпоксидная, фенолоформальдегидная и полиамидная.
Угольные матрицы коксованные или пироуглеродные получают из синтетических полимеров, подвергнутых пиролизу. Матрица связывает композицию, придавая ейформу. Упрочнителями служат волокна: стеклянные, углеродные, борные, органические, на основе нитевидных кристаллов (оксидов, карбидов, боридов,нитридов и других), а также металлические (проволоки), обладающие высокой прочностью и жесткостью.
Свойства композиционных материалов зависят от состава компонентов,их сочетания, количественного соотношения и прочности связи между ними.
Армирующие материалы могут быть в виде волокон, жгутов, нитей, лент, многослойных тканей.
Содержание упрочнителя в ориентированных материалах составляет 60-80 об. %, в неориентированных (с дискретными волокнами и нитевидными кристаллами) – 20-30 об. %. Чем выше прочность и модуль упругости волокон,тем выше прочность и жесткость композиционного материала. Свойства матрицы определяют прочность композиции при сдвиги и сжатии и сопротивление усталостному разрушению.
По виду упрочнителя композитные материалы классифицируют настекловолокниты, карбоволокниты с углеродными волокнами, бороволокниты иоргановолокниты.
В слоистых материалах волокна, нити, ленты, пропитанные связующим, укладываются параллельно друг другу в плоскости укладки. Плоские слоисобираются в пластины. Свойства получаются анизотропными. Для работыматериала в изделии важно учитывать направление действующих нагрузок. Можносоздать материалы как с изотропными, так и с анизотропными свойствами.
Можно укладывать волокна под разными углами, варьируя свойства композиционных материалов. От порядка укладки слоев по толщине пакета зависят изгибные и крутильные жесткости материала.
Применяется укладка упрочнителей из трех, четырех и более нитей.
Наибольшее применение имеет структура из трех взаимно перпендикулярных нитей. Упрочнители могут располагаться в осевом, радиальном и окружном направлениях.
Трехмерные материалы могут быть любой толщины в виде блоков, цилиндров. Объемные ткани увеличивают прочность на отрыв и сопротивлениесдвигу по сравнению со слоистыми. Система из четырех нитей строится путем разложения упрочнителя по диагоналям куба. Структура из четырех нитей равновесна, имеет повышенную жесткость при сдвиге в главных плоскостях.
Однако создание четырехнаправленных материалов сложнее, чем трех направленных.
3. Классификация композиционных материалов.
3.1. Волокнистые композиционные материалы.
Часто композиционный материал представляет собой слоистую структуру, в которой каждый слой армирован большим числом параллельных непрерывных волокон. Каждый слой можно армировать также непрерывными волокнами, сотканными в ткань, которая представляет собой исходную форму,по ширине и длине соответствующую конечному материалу. Нередко волокна сплетают в трехмерные структуры.
Композитые материалы отличаются от обычных сплавов более высокими значениями временного сопротивления и предела выносливости (на 50 – 10 %), модуля упругости, коэффициента жесткости и пониженной склонностью к трещинообразованию. Применение композиционных материалов повышает жесткость конструкции при одновременном снижении ее металлоемкости.
Прочность композиционных (волокнистых) материалов определяется свойствами волокон; матрица в основном должна перераспределять напряжения между армирующими элементами. Поэтому прочность и модуль упругости волокондолжны быть значительно больше, чем прочность и модуль упругости матрицы.
Жесткие армирующие волокна воспринимают напряжения, возникающие в композиции при нагружении, придают ей прочность и жесткость в направлении ориентации волокон.
Для упрочнения алюминия, магния и их сплавов применяют борные, а также волокна из тугоплавких соединений (карбидов, нитридов, боридов и оксидов), имеющих высокие прочность и модульупругости. Нередко используют в качестве волокон проволоку из высокопрочных сталей.
Для армирования титана и его сплавов применяют молибденовую проволоку, волокна сапфира, карбида кремния и борида титана.
Повышение жаропрочности никелевых сплавов достигается армированием их вольфрамовой или молибденовой проволокой. Металлические волокна используют и в тех случаях, когда требуются высокие теплопроводность и электропроводимость. Перспективными упрочнителями для высокопрочных ивысокомодульных волокнистых композиционных материалов являются нитевидные кристаллы из оксида и нитрида алюминия, карбида и нитрида кремния, карбидабора и др.
Композиционные материалы на металлической основе обладают высокойпрочностью и жаропрочностью, в то же время они малопластичны. Однако волокна в композиционных материалах уменьшают скорость распространения трещин, зарождающихся в матрице, и практически полностью исчезает внезапное хрупкое разрушение. Отличительной особенностью волокнистых одноосных композиционных материалов являются анизотропия механических свойств вдоль и поперек волокон и малая чувствительность кконцентраторам напряжения.
Анизотропия свойств волокнистых композиционных материалов учитывается при конструировании деталей для оптимизации свойств путем согласования поля сопротивления с полями напряжения.
Армирование алюминиевых, магниевых и титановых сплавов непрерывными тугоплавкими волокнами бора, карбида кремния, доборида титана и оксида алюминия значительно повышает жаропрочность. Особенностью композиционных материалов является малая скорость разупрочнения во времени с повышением температуры.
Основным недостатком композиционных материалов с одно и двумерным армированием является низкое сопротивление межслойному сдвигу и поперечному обрыву. Этого лишены материалы с объемным армированием.
3.2. Дисперсно-упрочненные композиционные материалы.
В отличие от волокнистых композиционных материалов в дисперсно-упрочненных композиционных материалах матрица является основным элементом,несущим нагрузку, а дисперсные частицы тормозят движение в ней дислокаций.
Высокая прочность достигается при размере частиц 10-500 нм при среднем расстоянии между ними 100-500нм и равномерном распределении их в матрице.
Прочность и жаропрочность в зависимости от объемного содержания упрочняющих фаз не подчиняются закону аддитивности. Оптимальное содержание второй фазы для различных металлов неодинаково, но обычно не превышает 5-10 об. %.
Использование в качестве упрочняющих фаз стабильных тугоплавких соединений (оксиды тория, гафния, иттрия, сложные соединения оксидов иредкоземельных металлов), нерастворяющихся в матричном металле, позволяетсохранить высокую прочность материала до 0,9-0,95 Т [pic]. В связи с этимтакие материалы чаще применяют как жаропрочные. Дисперсно-упрочненныекомпозиционные материалы могут быть получены на основе большинства применяемых в технике металлов и сплавов.
Наиболее широко используют сплавы на основе алюминия – САП(спеченный алюминиевый порошок).
Плотность этих материалов равна плотности алюминия, они не уступают ему покоррозионной стойкости и даже могут заменять титан и коррозионно-стойкиестали при работе в интервале температур 250-500 °С. По длительной прочности они превосходят деформируемые алюминиевые сплавы. Длительная прочность для сплавов САП-1 и САП-2 при 500 °С составляет 45-55 МПа.
Большие перспективы у никелевых дисперсно-упрочненных материалов.
Наиболее высокую жаропрочность имеют сплавы на основе никеля с 2-3 об. % двуоксида тория или двуоксида гафния. Матрица этих сплавов обычно твердыйраствор Ni + 20 % Cr, Ni + 15 % Mo, Ni + 20 % Cr и Mo. Широкое применениеполучили сплавы ВДУ-1 (никель, упрочненный двуокисью тория), ВДУ-2 (никель,упрочненный двуокисью гафния) и ВД-3 (матрица Ni +20 % Cr, упрочненная окисью тория). Эти сплавы обладают высокой жаропрочностью. Дисперсно-упрочненные композиционные материалы, так же как волокнистые, стойки к разупрочнению с повышением температуры и длительностивыдержки при данной температуре.
Стекловолокниты – это композиция, состоящая из синтетической смолы, являющейся связующим, и стекловолокнистого наполнителя. В качественаполнителя применяют непрерывное или короткое стекловолокно. Прочность стекловолокна резко возрастает с уменьшением его диаметра (вследствиевлияния неоднородностей и трещин, возникающих в толстых сечениях). Свойства стекловолокна зависят также от содержания в его составе щелочи; лучшие показатели у бесщелочных стекол алюмоборосиликатногосостава.
Неориентированные стекловолокниты содержат в качестве наполнителя короткое волокно. Это позволяет прессовать детали сложной формы, сметаллической арматурой. Материал получается с изотопными прочностными характеристиками, намного более высокими, чем у пресс-порошков и дажеволокнитов. Представителями такого материала являются стекловолокниты АГ-4В, а также ДСВ (дозирующиеся стекловолокниты), которые применяют дляизготовления силовых электротехнических деталей, деталей машиностроения (золотники, уплотнения насосов и т. д.). При использовании в качествесвязующего непредельных полиэфиров получают премиксы ПСК (пастообразные) и препреги АП и ППМ (на основе стеклянного мата). Препреги можно применять для крупногабаритных изделий простых форм (кузова автомашин, лодки, корпусаприборов и т. п.).
Ориентированные стекловолокниты имеют наполнитель в виде длинных волокон, располагающихся ориентированно отдельными прядями и тщательносклеивающихся связующим. Это обеспечивает более высокую прочность стеклопластика.
Стекловолокниты могут работать при температурах от –60 до 200 °С, атакже в тропических условиях, выдерживать большие инерционные перегрузки.
При старении в течение двух лет коэффициент старения К = 0,5-0,7.
Ионизирующие излучения мало влияют на их механические и электрические свойства. Из них изготовляют детали высокой прочности, с арматурой и резьбой.
Карбоволокниты (углепласты) представляют собой композиции,состоящие из полимерного связующего (матрицы) и упрочнителей в видеуглеродных волокон (карбоволокон).
Высокая энергия связи С-С углеродных волокон позволяет им сохранить прочность при очень высоких температурах (в нейтральной и восстановительнойсредах до 2200 °С), а также при низких температурах. От окисления поверхности волокна предохраняют защитными покрытиями (пиролитическими). В отличие от стеклянных волокон карбоволокна плохо смачиваются связующим
(низкая поверхностная энергия), поэтому их подвергают травлению. При этом увеличивается степень активирования углеродных волокон по содержаниюкарбоксильной группы на их поверхности. Межслойная прочность при сдвиге углепластиков увеличивается в 1,6-2,5 раза. Применяется вискеризациянитевидных кристаллов TiO[pic], AlN и Si[pic]N[pic], что дает увеличениемежслойной жесткости в 2 раза и прочности в 2,8 раза. Применяются пространственно армированные структуры.
Связующими служат синтетические полимеры (полимерные карбоволокниты); синтетические полимеры, подвергнутые пиролизу (коксованные карбоволокниты); пиролитический углерод (пироуглеродные карбоволокниты).
Эпоксифенольные карбоволокниты КМУ-1л, упрочненные углероднойлентой, и КМУ-1у на жгуте, висскеризованном нитевидными кристаллами, могут длительно работать при температуре до 200 °С.
Карбоволокниты КМУ-3 и КМУ-2л получают наэпоксианилиноформальдегидном связующем, их можно эксплуатировать притемпературе до 100 °С, они наиболее технологичны. Карбоволокниты КМУ-2 и
КМУ-2л на основе полиимидного связующего можно применять при температуре до
300 °С.
Карбоволокниты отличаются высоким статистическим и динамическимсопротивлением усталости, сохраняют это свойство при нормальной и оченьнизкой температуре (высокая теплопроводность волокна предотвращаетсаморазогрев материала за счет внутреннего трения). Они водо- и химическистойкие. После воздействия на воздухе рентгеновского излучения [pic] и Епочти не изменяются.
Карбостекловолокниты содержат наряду с угольными стеклянныеволокна, что удешевляет материал.
3.5. Карбоволокниты с углеродной матриццей.
Коксованные материалы получают из обычных полимерныхкарбоволокнитов, подвергнутых пиролизу в инертной или восстановительнойатмосфере. При температуре 800-1500 °С образуются карбонизированные, при 2500-3000 °С графитированные карбоволокниты. Для получения пироуглеродныхматериалов упрочнитель выкладывается по форме изделия и помещается в печь,в которую пропускается газообразный углеводород (метан). При определенномрежиме (температуре 1100 °С и остаточном давлении 2660 Па) метанразлагается и образующийся пиролитический углерод осаждается на волокнахупрочнителя, связывая их.
Образующийся при пиролизе связующего кокс имеет высокую прочностьсцепления с углеродным волокном. В связи с этим композиционный материалобладает высокими механическими и абляционными свойствами, стойкостью ктермическому удару.
Карбоволокнит с углеродной матрицей типа КУП-ВМ по значениямпрочности и ударной вязкости в 5-10 раз превосходит специальные графиты;при нагреве в инертной атмосфере и вакууме он сохраняет прочность до 2200
°С, на воздухе окисляется при 450 °С и требует защитного покрытия.
Коэффициент трения одного карбоволокнита с углеродной матрицей по другомувысок (0,35-0,45), а износ мал (0,7-1 мкм на тормажение).
Бороволокниты представляют собой композиции из полимерногосвязующего и упрочнителя – борных волокон.
Бороволокниты отличаются высокой прочностью при сжатии, сдвиге исрезе, низкой ползучестью, высокими твердостью и модулем упругости,теплопроводностью и электропроводимостью. Ячеистая микроструктура борныхволокон обеспечивает высокую прочность при сдвиге на границе раздела сматрицей.
Помимо непрерывного борного волокна применяют комплексныеборостеклониты, в которых несколько параллельных борных волокон оплетаютсястеклонитью, предающей формоустойчивость. Применение боростеклонитейоблегчает технологический процесс изготовления материала.
В качестве матриц для получения боровлокнитов используютмодифицированные эпоксидные и полиимидные связующие. Бороволокниты КМБ-1 и
КМБ-1к предназначены для длительной работы при температуре 200 °С; КМБ-3 и КМБ-3к не требуют высокого давления при переработке и могут работать притемпературе не свыше 100 °С; КМБ-2к работоспособен при 300 °С.
Бороволокниты обладают высокими сопротивлениями усталости, онистойки к воздействию радиации, воды, органических растворителей и горючесмазочных материалов.
Органоволокниты представляют собой композиционные материалы,состоящие из полимерного связующего и упрочнителей (наполнителей) в видесинтетических волокон. Такие материалы обладают малой массой, сравнительновысокими удельной прочностью и жесткостью, стабильны при действиизнакопеременных нагрузок и резкой смене температуры. Для синтетическихволокон потери прочности при текстильной переработке небольшие; онималочувствительны к повреждениям.
К органоволокнитах значения модуля упругости и температурныхкоэффициентов линейного расширения упрочнителя и связующего близки.
Происходит диффузия компонентов связующего в волокно и химическоевзаимодействие между ними. Структура материала бездефектна. Пористось непревышает 1-3 % (в других материалах 10-20 %). Отсюда стабильностьмеханических свойств органоволокнитов при резком перепаде температур,действии ударных и циклических нагрузок. Ударная вязкость высокая (400-700кДж/мІ). Недостатком этих материалов является сравнительно низкая прочностьпри сжатии и высокая ползучесть (особенно для эластичных волокон).
Органоволокниты устойчивы в агрессивных средах и во влажномтропическом климате; диэлектрические свойства высокие, а теплопроводностьнизкая. Большинство органоволокнитов может длительно работать притемпературе 100-150 °С, а на основе полиимидного связующего иполиоксадиазольных волокон – при температуре 200-300 °С.
В комбинированных материалах наряду с синтетическими волокнамиприменяют минеральные (стеклянные, карбоволокна и бороволокна). Такиематериалы обладают большей прочностью и жесткостью.
4. Экономическая эффективность применения композиционных материалов.
Области применения композиционных материалов не ограничены. Ониприменяются в авиации для высоконагруженных деталей самолетов (обшивки,лонжеронов, нервюр, панелей и т. д.) и двигателей (лопаток компрессора итурбины и т. д.), в космической технике для узлов силовых конструкцийаппаратов, подвергающихся нагреву, для элементов жесткости, панелей, в автомобилестроении для облегчения кузовов, рессор, рам, панелей кузовов,бамперов и т. д., в горной промышленности (буровой инструмент, деталикомбайнов и т. д.), в гражданском строительстве (пролеты мостов, элементысборных конструкций высотных сооружений и т. д.) и в других областяхнародного хозяйства.
Применение композиционных материалов обеспечивает новыйкачественный скачек в увеличении мощности двигателей, энергетических итранспортных установок, уменьшении массы машин и приборов.
Технология получения полуфабрикатов и изделий из композиционныхматериалов достаточно хорошо отработана.
Композитные материалы с неметаллической матрицей, а именнополимерные карбоволокниты используют в судо- и автомобилестроении (кузовагоночных машин, шасси, гребные винты); из них изготовляют подшипники,панели отопления, спортивный инвентарь, части ЭВМ. Высокомодульныекарбоволокниты применяют для изготовления деталей авиационной техники,аппаратуры для химической промышленности, в рентгеновском оборудовании идругом.
Карбоволокниты с углеродной матрицей заменяют различные типыграфитов. Они применяются для тепловой защиты, дисков авиационных тормозов,химически стойкой аппаратуры.
Изделия из бороволокнитов применяют в авиационной и космическойтехнике (профили, панели, роторы и лопатки компрессоров, лопасти винтов итрансмиссионные валы вертолетов и т. д.).
Органоволокниты применяют в качестве изоляционного иконструкционного материала в электрорадиопромышленности, авиационнойтехнике, автостроении; из них изготовляют трубы, емкости для реактивов,покрытия корпусов судов и другое.
Объявления о покупке и продаже оборудования можно посмотреть на
Обсудить достоинства марок полимеров и их свойства можно на
Зарегистрировать свою компанию в Каталоге предприятий