что такое компаратор в электронике простыми словами
Компараторы, как они работают.
Общие сведения.
Для согласования выхода с логическими уровнями КМОП микросхем, напряжение питания соответственно может быть 9-15 вольт.
Процессы переключения компараторов.
Если входной сигнал будет изменяться очень медленно, то при достижении уровня входного сигнала опорному, выход компаратора может многократно с большой частотой менять свое состояние под действием незначительных помех (так называемый «дребезг»).
Для устранения этого явления в схему компаратора вводят положительную обратную связь (ПОС), которая обеспечивает характеристике компаратора небольшой гистерезис, то есть небольшую разницу между входными напряжениями включения и отключения компаратора. Некоторые типы компараторов уже имеют встроенную, упомянутую выше ПОС.
Её можно так же ввести в схему компаратора при необходимости, например, как изображено на рисунке ниже.
Рисунок 3.
Схема включения в компаратор ПОС (гистерезиса).
На рисунке 3 приведена схема включения компаратора с открытым коллектором на выходе, переходная характеристика которой имеет гистерезис (рис. 3б).
Пороговые напряжения для этой схемы определяются по формулам;
Хотя гистерезис вносит небольшую задержку в переключении компаратора, но благодаря ему, существенно уменьшается или даже устраняется полностью «дребезг» выходного напряжения.
Для того, кто желает более полного и подробного знакомства с компараторами, рекомендую прочитать статью Б. Успенского в ВРЛ № 97 стр.49.
Компаратор принцип работы
Компаратор – это устройство, предназначенное для сравнения каких-либо величин (от лат. comparare – «сравнивать»).
Является операционным усилителем с большим коэффициентом умножения. Имеет входы: прямой и инверсный. При необходимости опорный сигнал может быть подключен к любому из них.
Как работает компаратор?
На один из входов подается постоянный сигнал, который называется опорным.
Он используется как образец для сравнения. Ко второму поступает испытуемый сигнал. На выходе стоит транзистор, меняющий свое состояние в зависимости от условий:
Соответственно, выходное напряжение меняется скачком от минимума до максимума, или наоборот.
Применение компаратора
Используются в схемах измерения электрических сигналов и в аналогово-цифровых преобразователях. В логических цепях работают элементы «или» и «не», также являющиеся компараторами. Соответственно, использование этого компонента не ограничивается конкретными примерами, поскольку он применяется повсеместно.
Стоит отметить, что устройство сравнения можно сделать из любого операционного усилителя, но не наоборот. Коэффициент усиления компаратора достаточно высок. Соответственно, его входы очень чувствительны к разнице напряжений между ними. Расхождение в несколько милливольт значительно изменяет напряжение выхода.
Таким образом, компаратор позволяет наблюдать минимальные колебания уровней входных напряжений.
Это делает его незаменимым элементом схем сравнения и измерительных приборов высокой точности:
Принцип действия аналогового компаратора
Аналоговый компаратор сравнивает непрерывные сигналы – входной измеряемый и входной опорный.
При медленном изменении входного сигнала, происходит многократное переключение компаратора за малый отрезок времени.
Такое явление называют «электронным дребезгом». Его наличие значительно снижает эффективность сравнения. Поскольку часто повторяющиеся смены состояния выхода, вводят оконечный транзистор в состояние насыщения.
Для уменьшения эффекта «электронного дребезга», в схему вводят ПОС – положительную обратную связь.
Она обеспечивает гистерезис – небольшую разницу между уровнем напряжения включения и отключения.
Некоторые компараторы имеют встроенную ПОС, что уменьшает количество дополнительных элементов построения конструкции.
Особенности цифрового компаратора
Цифровой компаратор – это однобитный аналогово-цифровой преобразователь.
Напряжение выхода представляет либо логический «0», либо «1».
На вход может быть подан как аналоговый, так и цифровой сигнал.
Устройство используется в качестве формирователя импульсов для сопряжения схем датчиков и устройств отображения.
Может применяться для анализа спектра звукового или светового сигнала.
Компаратор – это также логические элементы «или» и «не», используемые в вычислительной технике.
Теоретически при незначительно малых колебаниях уровня входного сигнала, может возникать состояние неопределенности выхода. На практике равенство измеряемого и опорного напряжений не наступает. Поскольку компаратор имеет ограниченный коэффициент усиления или положительную обратную связь.
Компаратор-микросхема
Промышленность выпускает компараторы в виде интегральных схем. Их использование позволяет создавать компактные приборы, с минимумом навесных элементов. Также преимущество малогабаритных деталей в незначительной длине соединительных проводников. В условиях повышенного электромагнитного излучения они являются приемными антеннами для всевозможных электрических помех.
Компаратор на операционном усилителе
У компараторов есть немалое сходство с операционными усилителями:
Пример практического применения компаратора
На принципиальной схеме представлен датчик освещенности.
Опорное напряжение задается резисторами RV1 и R2. При этом, RV1 служит регулятором чувствительности конструкции. Индикация реализована на светодиоде D1. Датчиком является элемент LDR1, который меняет омическое сопротивление в зависимости от освещенности. Собственно компаратор представлен операционным усилителем LM324. Это простое устройство демонстрирует то, как работает компаратор на практике.
Компараторы массы: понятие
Компаратор массы это устройство, предназначенное для уточнения разности значений массы гирь при контроле стандартов массы и веса, а также, для прецизионного взвешивания. Наиболее точные компараторы массы способны взвесить любой образец и сравнить его с иным, подобным ему. Происходит это на уровне атомов. Необходимость в таких устройствах возникает по причине несовершенства эталонных образцов мер веса и объема жидкости.
Типы компараторов
– компаратор для сравнения разнополярных сигналов;
– компаратор для сравнения однополярных сигналов.
Компаратор. Описание и применение. Часть 1
Эта статья содержит основную информацию о работе компараторов напряжения построенных на интегральных микросхемах и может быть использована в качестве справочного материала для построения различных схем.
В электронике, компаратор представляет собой устройство, которое сравнивает между собой два электрических сигнала и выводит цифровой сигнал, указывающий на увеличение одного входного сигнала над другим. Компаратор имеет два аналоговых входа и один цифровой выход.
Компаратор, как правило, построен на дифференциальном усилителе с высоким коэффициентом усиления. Компараторы широко используются в устройствах, которые измеряют и оцифровывают аналоговые сигналы, например, в аналого-цифровых преобразователях (АЦП)
Примеры работы компаратора приведены на основе микросхемы LM339 (счетверенный компаратора напряжений) и LM393 (сдвоенный компаратор напряжения). Эти две микросхемы по своему функционалу идентичны. Компаратор напряжения LM311 так же может быть использован в данных примерах, но он имеет ряд функциональных особенностей.
Структурная схема одного компаратора входящего в микросхему LM339 и LM393
Компаратор напряжения — выход с открытым коллектором
Как правило, выход компаратора напряжения представляет собой выход с открытым коллектором.
Выход открытый коллектор имеет отрицательную полярность. Это означает, что на этом выходе не бывает положительного сигнала и нагрузка должна подключаться между этим выходом и источника питания.
В некоторых схемах к выходу компаратора подключают нагрузочный (подтягивающий) резистор для того, чтобы обеспечить сигнал высокого уровня поступающего на вход следующего элемента схемы.
Операционные усилители (ОУ), такие как LM324, LM358 и LM741 обычно не используются в радиоэлектронных схемах в качестве компаратора напряжения из-за их биполярных выходов. Тем не менее, эти операционные усилители могут быть использованы в качестве компараторов напряжения, если к выходу ОУ подключить диод или транзистор для того чтобы создать выход с открытым коллектором.
Ниже представлена логика работы компаратора имеющий выход с открытым коллектором:
Ток будет течь через открытый коллектор, когда напряжение на входе (+) будет ниже, чем напряжение на входе (-). И соответственно ток не будет протекать через открытый коллектор, когда напряжение на входе (+) будет выше, чем напряжение на входе (-).
Схема эквивалента компаратора напряжения с однополярным источником питания
Принципиальная схема «компаратор напряжения» эквивалентна работе операционного усилителя, например, LM358 или LM324, имеющим на выходе два транзистора типа NPN (см. выше). Таким образом, можно сделать все 4 выхода ОУ (LM339) с открытым коллектором. Каждый такой выход может выдерживать ток нагрузки 15 мА и напряжение до 50 вольт.
Выход включается или выключается в зависимости от относительных напряжений на плюсовом (+) и минусовом (-) входах компаратора. Входы компаратора крайне чувствительны и разница напряжения между ними всего лишь в несколько милливольт приводит к переключению его выхода.
Схема эквивалента компаратора напряжения с двухполярным источником питания
Компараторы напряжения LM339, LM393 и LM311могут работать с одно- или двухполярным источником питания до 32 вольт максимум.
При работе с двухполярным питанием, режим сравнения напряжения остается таким же, за исключением того, что для большинства схем эмиттер выходного транзистора подключается к отрицательной шине питания, а не к общей цепи. Исключением из этого правила является операционный усилитель LM311, имеющий изолированный эмиттер, который можно подключить как к минусу однополярного источника питания, так или к общему проводу двухполярного.
При работе с двухполярным источником питания, входное напряжение может быть выше или ниже относительно общего провода блока питания. Кроме того, один из входов компаратора может быть подключен к общему проводу, таким образом создается детектор «пересечение нуля».
Описание работы компаратора
Следующий рисунок показывает простейшую конфигурацию для компаратора напряжения, а так же графическое изображение режима его работы. В этой схеме опорное напряжение составляет половину напряжения питания, а входное напряжение может меняться от нуля до напряжения питания. В теории опорное и входное напряжение могут иметь значение от нуля и до напряжения источника питания, но есть реальные ограничения, зависящие от конкретно используемого компаратора.
Сигнал на выходе:
Входное напряжение смещения компаратора
Компараторы не являются совершенными устройствами, и их работа может иметь недостаток от последствий такого параметра, как входное напряжение смещения. Входное напряжение смещения для многих компараторов может составлять всего несколько милливольт и в большинстве схем может быть проигнорировано.
В основном проблема, связанная с входным напряжением смещения возникает, когда входное напряжение изменяется очень медленно. Конечным результатом входного напряжения смещения является то, что выходной транзистор не полностью открывается или закрывается, когда входное напряжение находится недалеко от опорного напряжения.
Следующая диаграмма иллюстрирует эффект смещения входного напряжения возникающий в результате медленного изменения входного напряжения. Этот эффект возрастает при увеличении выходного тока транзистора. Поэтому, для уменьшения этого эффекта, необходимо обеспечить максимальное сопротивление резистора R4.
Последствия входного напряжения смещения можно уменьшить, добавив в схему гистерезис. Это приведет к тому, что опорное напряжение будет меняться, когда выход компаратора переходит на высокий или низкий уровень.
Входное напряжение смещения и гистерезис
Для большинства схем построенных на компараторах, величина гистерезиса является разностью напряжений входного сигнала, при котором выход компаратора либо полностью включен или полностью выключен. Гистерезис в компараторах, как правило, нежелателен, но он может потребоваться, когда необходимо уменьшить чувствительность к шуму или при медленном изменении входного сигнала.
Внешний гистерезис использует положительную обратную связь (ПОС) с выхода на неинвертирующий вход компаратора. В результате полученный триггер Шмитта обеспечивает дополнительную помехоустойчивость и более чистый выходной сигнал.
Эффект от использования гистерезиса в том, что при постепенном изменении входного напряжения, а опорное напряжение будет быстро изменяться в противоположном направлении. Это обеспечивает чистое переключение выхода компаратора.
Механический аналог гистерезиса может быть обнаружен в разнообразных тумблерах. Как только рукоятка тумблера перемещается мимо центральной точки, пружина в тумблере переводит контакты реле в гарантированное положение (открытое или закрытое).
Гистерезис является неотъемлемой частью большинства компараторов составляющая всего несколько милливольт и он обычно влияет только на схемы, где входное напряжение поднимается или падает очень медленно или имеет скачки напряжения, известные как «шум»…
Похожие записи:
4 комментария
Если пишете что с однополярным источником питания, то почему вводите в заблуждение и указываете неправильную маркировку? + — это двуполярное питание. Если питание однополярное то нужно писать + и значок земли.
«Конечным результатом входного напряжения смещения является то, что выходной транзистор не полностью открывается или закрывается, когда входное напряжение находится недалеко от опорного напряжения.»
Это не так. Напряжение смещения является причиной того, что при замкнутых между собой прямом и инверсном входах через плечи входного дифференциального каскада протекают разные токи, хотя в идеале должны быть одинаковые. Напряжение смещения по определению представляет собой такую разность напряжений на входах, при которой токи в этих плечах становятся равными. Даже если вам попадется экземпляр компаратора у которого чисто случайно напряжение смещения окажется равным 0, то это никак не избавит его от того «что выходной транзистор не полностью открывается» при малых дифференциальных входных напряжениях. Причиной этого является не напряжение смещения, а конечный коэффициент усиления схемы. В некоторых компараторах для борьбы с логической неопределенностью на выходе вводят внутреннюю ПОС для образования гистерезиса, но не в обсуждаемых здесь микросхемах.
А вот выдержка из datasheet от TI на LM339:
«Overdrive voltage is the differential voltage produced between the positive and negative inputs of the comparator over the offset voltage. To make an accurate comparison, the overdrive voltage (V OD ) must be higher than the input offset voltage (V IO ). Overdrive voltage can also determine the response time of the comparator, with the response time decreasing with increasing overdrive.»
Отсюда видно что для гарантированно правильного срабатывания компаратора входной импульс должен иметь перепад больше (достаточно 1 мВ превышения, поскольку типичный коэффициент усиления для этих микросхем по напряжению порядка 50 В/мВ) чем напряжение смещения (которое гарантируется справочными данными не больше 9мВ, а для версии «A» не более 4мВ) т. к. из входного импульса как-бы вычитается напряжение смещения и дальше схема усиливает именно эту разность, а значит входной импульс будет однозначно определять выходной сигнал только если он по модулю превышает смещение. И еще при этом чем больше перепад тем быстрее появится отклик на выходе. Для входных импульсов 5мВ и 100мВ разница в задержке выходного сигнала может составлять 1/0,5мкс для положительного/отрицательного фронта.
Спасибо огромнейшее! Для меня как новичка, написано более чем доступно.
Что такое компаратор напряжения и для чего он нужен
При разработке электронных схем зачастую надо сравнить уровень двух напряжений. Для этого используется такое устройство, как компаратор. Название узла восходит к латинскому comparare, или, скорее, к английскому to compare – сравнивать.
Что такое компаратор напряжения
Компаратором в общем случае называется устройство, имеющее два входа для подачи сравниваемых величин (напряжений) и выход для результата сравнения. Компаратор имеет два входа для подачи сравниваемых параметров – прямой и инверсный. На выходе устанавливается логическая единица при превышении напряжения прямого входа над инверсным и ноль – если наоборот. Если при положительной разности между инверсным и прямым входом устанавливается единица, а в противоположной ситуации – ноль, то такой компаратор называется инвертирующим.
Принцип работы компаратора
Компаратор удобно строить на операционном усилителе (ОУ). Для этого непосредственно используются его свойства:
Работу ОУ в качестве компаратора можно рассмотреть при такой схеме включения:
Пусть имеется ОУ с коэффициентом усиления 10000, напряжение питания двуполярное, + 5 В и минус 5 В. Делителем на инвертирующем входе установлен опорный уровень ровно 0 вольт, на прямом входе с движка потенциометра снимается минус 5 вольт. Операционный усилитель должен усилить разницу в 10000 раз, теоретически на выходе должно появиться напряжение минус 50000 вольт. Но такого напряжения операционнику взять негде, и он создает максимум возможного – напряжение питания, минус 5 вольт.
Если начать поднимать напряжение на прямом входе, ОУ будет стараться выставить разность напряжений между входами, умноженную на 10000. Это ему удастся, когда входное напряжение приблизится к нулю и станет равным примерно минус 0,0005 В. При дальнейшем увеличении входного напряжения на положительном входе, выходное будет подниматься до нуля и выше, и при напряжении +0,0005 вольт станет равным +5 В и дальше не поднимется – некуда. Таким образом, при прохождении входным напряжением уровня нуля (точнее, минус 0,0005 вольт — + 0,0005) произойдет скачок выходного напряжения от минус 5 вольт до +5 вольт. Иными словами, пока напряжение на прямом входе ниже, чем на инвертирующем, на выходе компаратора устанавливается ноль. Если выше – единица.
Интерес представляет участок разности уровня на входах от минус 0,0005 вольт до + 0,0005. В теории при его прохождении произойдет плавный подъём от отрицательного напряжения питания до положительного. На практике этот диапазон очень узок, и из-за наводок, помех, нестабильности напряжения питания и т.д. при примерном равенстве напряжений на входах будет происходить хаотичное срабатывание компаратора в обе стороны. Чем ниже коэффициент усиления ОУ, тем это окно нестабильности шире. Если компаратор управляет исполнительным механизмом, то это вызовет его срабатывание в такт (щелканье реле, хлопанье клапана и т.п.), что может привести к его механической поломке или перегреву.
Чтобы этого избежать, создается неглубокая положительная обратная связь включением резистора, указанного штриховой линией. Это создает небольшой гистерезис, смещая пороги переключения при прохождении напряжения вверх и вниз относительно опорного. Например, вверх компаратор будет переключаться при 0,1 вольт, а вниз – ровно при нуле (зависит от глубины обратной связи). Это исключит окно нестабильности. Номинал этого резистора может быть от нескольких сотен килоом до нескольких мегаом. Чем ниже сопротивление, тем больше разница между порогами.
Также имеются специализированные микросхемы компараторов. Например, LM393. В таких микросхемах имеется быстродействующий операционный усилитель (или несколько), может быть установлен встроенный делитель, создающий опорное напряжение. Ещё одно отличие таких компараторов от устройств, построенных на ОУ общего применения – многим из них требуются однополярный источник питания. Большинству операционников нужно двуполярное напряжение. Выбор типа микросхемы производится при разработке устройства.
Особенности цифровых компараторов
Компараторы применяются и в цифровой технике, хотя это звучит, на первый взгляд, парадоксально. Ведь здесь имеется всего два уровня напряжения – единица и ноль. И сравнивать их бессмысленно. Зато можно сравнить два двоичных числа, в которые можно преобразовать и любые аналоговые величины (включая напряжение).
Пусть имеется два двоичных слова одинаковой длины в битах:
Они считаются равными по значению, если все биты поразрядно равны:
Если же хотя бы один бит отличается, то числа неравны. Большее число определяется поразрядным сравнением начиная со старшего бита:
Сфера применения компаратора широка. На нём, например, можно построить пороговое реле. Для этого нужен датчик, преобразующий любую величину в напряжение. Такой величиной могут быть:
Потенциометром можно устанавливать уровень срабатывания компаратора. Выходной сигнал через ключ выдается на индикатор или исполнительный механизм.
Если увеличить гистерезис, то компаратор может работать в качестве триггера Шмитта. При подаче на вход медленно изменяющегося напряжения, на выходе получится дискретный сигнал с крутыми фронтами.
Два элемента могут быть соединены в двупороговый компаратор, или компаратор окна.
Здесь пороговое напряжение задается раздельно для каждого компаратора – для верхнего на прямом входе, для нижнего на инверсном. Свободные входы объединены, на них подается измеряемое напряжение. Выходы соединены по схеме «монтажное ИЛИ». При выходе напряжения за установленный верхний или нижний предел, один из компараторов выдает на выходе высокий уровень.
Из нескольких элементов собирается многоуровневый компаратор, который можно использовать, как линейный индикатор напряжения, или величину, которая преобразована в напряжение. Для четырех уровней схема будет такая:
В этой схеме на вход каждого элемента подается своё опорное напряжение. Инвертирующие входы соединены вместе, на них приходит измеряемый сигнал. При достижении уровня срабатывания загорается соответствующий светодиод. Если излучающие элементы расположить в линейку, получится световая полоса, длина которой изменяется в соответствии с уровнем поданного напряжения.
Эта же схема может применяться в качества аналого-цифрового преобразователя (АЦП). Он преобразует входное напряжение в соответствующий двоичный код. Чем больше элементов входит в АЦП, тем больше разрядность, тем точнее преобразование. На практике кодом-линейкой пользоваться неудобно, и он преобразовывается в привычный код с помощью шифратора. Шифратор можно построить на логических элементах, воспользоваться готовой микросхемой или применить ПЗУ с соответствующей прошивкой.
Сфера применения компараторов в профессиональной и любительской схемотехнике разнообразна. Грамотное применение этих элементов позволяет решать широкий круг задач.
Что такое триггер, для чего он нужен, их классификация и принцип работы
Режимы работы, описание характеристик и назначение выводов микросхемы NE555
Что такое выпрямитель напряжения и для чего нужен: типовые схемы выпрямителей
Как работает микросхема TL431, схемы включения, описание характеристик и проверка на работоспособность
Что такое датчик Холла: принцип работы, устройство и способы проверки на работоспособность
Для чего нужен диммер, что это такое, схема подключения диммера и принцип его работы