что такое кодек h265
H.265/HEVC. Оптимизация под архитектуру Intel
Краткое описание H.265/HEVC
Проблемы производительности HEVC
Рисунок 1. Профиль проекта HM — параллельная работа потоков
Рисунок 2. Профиль проекта HM — ресурсоемкий код
Рисунок 3. Нагрузка на ЦП в проекте X.265
Рисунок 4. Проект X.265 с настройкой Intel® SIMD
В проекте x265 также были использованы инструкции Intel® SIMD (автогенерация компилятором), что обеспечило повышение производительности более чем на 70%. Вместе с дальнейшей оптимизацией компиляторными опциями, компилятор Intel обеспечивает удвоение производительности на платформе IA. Тем не менее, производительность кодировщика по-прежнему существенно ниже, чем требуется для кодировщика реального времени, особенно для видео высокой четкости с разрешением 1080p.
Ниже мы покажем результаты, достигнутые китайской компанией Strongene при поддержке специалистов компании Intel на пути оптимизации созданного ей кодека H.265/HEVC под различные платформы Intel.
Оптимизация HEVC под платформу Intel® Xeon™
Основную часть самых ресурсоемких функций по обработке видео и изображений составляют интенсивные вычисления блочных данных. Для их оптимизации можно использовать инструкции векторизации Intel® SIMD. В кодировщике в составе кодека Strongene, согласно данным профилирования, с помощью инструкций Intel SSE можно провести ручную векторизацию всех наиболее ресурсоемких функций, таких как кадровая интерполяция низкой сложности с компенсацией движения; целочисленное преобразование без транспозиции; преобразование Адамара; вычисление сумм абсолютных разностей (SAD)/квадратов разности (SSD) с наименьшим избыточным использованием памяти. Мы включили инструкции Intel SSE в виде интринсик-функций, как показано на рис. 5.
Рисунок 5. Пример включения инструкций Intel® SIMD/SSE в кодеке Stongene
Разработчики Strongene переписали все ресурсоемкие функции, чтобы добиться наибольшего прироста производительности кодировщика. На рис. 6 показаны наши данные профилирования в сценарии кодирования видео стандарта 1080p с помощью HEVC. Видно, что 60% ресурсоемких функций обрабатываются инструкциями Intel SIMD.
Рисунок 6. Результаты профилирования функций кодирования Strogene
Инструкции Intel AVX2 с вычислением 256-разрядных целочисленных значений обладают вдвое более высокой производительностью по сравнению с прежним кодом Intel SSE, работающим со 128-разрядными значениями. Набор инструкций Intel AVX2 поддерживается платформой
Intel Xeon (Haswell), выпуск которой начат в 2014 году. Для оценки производительности встроенных функций Intel AVX2 мы используем распространенное вычисление сумм абсолютных разностей для блока 64*64.
Таблица 1. Результаты реализации Intel® SSE и Intel® AVX2
Циклы ЦП | Исходный код | Intel® SSE | Intel® AVX2 |
---|---|---|---|
Запуск 1 | 98877 | 977 | 679 |
Запуск 2 | 98463 | 1092 | 690 |
Запуск 3 | 98152 | 978 | 679 |
Запуск 4 | 98003 | 943 | 679 |
Запуск 5 | 98118 | 954 | 678 |
Среднее | 98322,6 | 988,8 | 681 |
Ускорение | 1,00 | 99,44 | 144,38 |
Как видно из таблицы 1, применение инструкций Intel SSE и Intel AVX2 обеспечивает повышение производительности в 100 раз, при этом код Intel AVX2 дополнительно выигрывает еще 40% по сравнению с Intel SSE.
Как мы видели ранее, в большинстве существующих реализаций используются не все ядра многоядерных платформ. Опираясь на последнюю многоядерную архитектуру Intel Xeon с параллельной зависимостью между алгоритмами на основе CTB, разработчики Strongene предлагают заменить исходные методы OWF и WPP параллельной структурой IFW, а затем разработать трехуровневую схему управления потоками, чтобы гарантировать полное использование структурой IFW всех ядер ЦП для ускорения кодирования HEVC.
Рисунок 7. Параллельная работа потоков и использование ЦП в кодировщике Strongene
За счет применения новой параллельной структуры WHP и полной реализации инструкций Intel SIMD соответственно на уровне задач и уровне данных разработчикам кодировщика Strongene удалось добиться весьма значительного повышения производительности на процессорах x86 для видео с разрешением 1080p, используя вычислительные ресурсы всех ядер, как показано на рис. 8.
Дальнейшая настройка с использованием SMT/HT
Также представляет интерес зависимость производительности кодека от включения в системе широко распространенной на всех платформах с архитектурой Intel одновременной многопоточности (SMT), также называемой технологией гипертрединга (HT).
Таблица 2. Скорость кодирования Strongene HEVC на платформе Intel® Xeon®
Как видно из таблицы (показано желтым цветом) на платформе Ivy Bridge (процессор Intel Xeon E5-2697 v2 для отключенного SMT кодирование видео HEVC с разрешением 1080p осуществляется в реальном времени!
Добившись огромнейшего увеличения производительности, мы продолжили изучение возможностей кодирования Strongene HEVC на платформе Ivy Bridge, уделяя внимание скорости потока и вопросам качества.
Таблица 3. Сравнение производительности кодеков H.264 и H.265
В таблице 3 видно, что кодек H.265/HEVC снижает объем данных на 50% при сохранении прежнего качества видеоизображения.
H.265/HEVC, по всей видимости, станет наиболее популярным стандартом видео в ближайшее десятилетие. Во множестве приложений и продуктов мультимедиа в настоящее время реализуется поддержка HEVC. В этом документе мы реализовали основанное на ЦП полнофункциональное решение HEVC реального времени на платформах Intel с новыми технологиями IA. Наше оптимизированное решение на базе процессоров Intel развернуто в компании Xunlei, занимающейся предоставлением услуг видео через Интернет, и будет способствовать повсеместному внедрению и распространению технологии H.265/HEVC.
Что творится с HEVC (h265)
В своё время разработка кодека H264 стала настоящим прорывом, потому что получилось посадить за один стол людей, занимающихся телевидением, IP камерами, конференц-связью и родить стандарт, которого в целом хватило всем.
Напоминаю, что кодек — это не конкретный алгоритм, а описание форматов упаковки видео так, что бы упихнуться в предельно сжатое количество бит. Энкодер волен выбирать способы упаковки согласно стандарта кодека.
Так вот H264 — это сочетание хорошего кодека, хороших энкодеров и массы приличных декодеров. Но что же происходит с H265?
H265 — это стандарт, который приходит на смену H264. Его прибытие стало омрачено сомнительной авантюрой гугла с их VP6, VP9, VP10 и сказками о том, что кодеки серии VP лучше любого H264 и т.п.
Главная суть H265 в том, что он продается как решение для размеров экранов выше чем FullHD. Для чего он реально годится мы поговорим ниже, но мир устроен так, что сначала надо продать. Вот для 4K он и продается.
Я хочу немного поговорить о текущем статусе поддержки H265, потому что к нам с этим обращаются и приходится проводить ликбез каждый раз.
Кодирование
На сегодняшний день H265, он же HEVC уже поддерживается на большом количестве энкодеров: софтверные, обычные аппаратные (Nvidia NVENC, Intel QSV) и железные аппаратные.
Какое-то заметное применение H265 можно встретить на спутниковом телевидении (редкие, но уже встречающиеся каналы с гигантским битрейтом), IP камеры и всякие бесчисленные коробочки для захвата и кодирования HDMI (и немножко SDI).
Здесь надо быть очень аккуратными с тем, что именно будет уметь железка или софтина. Так, например, Hisilicon достаточно давно выпустил первый чипсет с поддержкой H265 для IP-камер, а вот софт отстал чуть ли не на полтора года от них. Сегодня до сих пор продается полно камер, у которых написано H265, а они не могут его отдавать в реальном времени — только экспортировать файлы через нерабочий китайский софт. В чём тут выражается поддержка H265, продавцы ответить не могут, но упорно кивают головой: да, да, можем h265.
Аналогичная проблема и с RTMP энкодерами. Один из частейших вопросов: «а что, ваш софт не умеет H265 по RTMP?».
Это не наш софт «не умеет», а RTMP не умеет H265. В RTML используется flv-подобная упаковка кадров и H265 ни в одном, ни в другом стандарте как доступные не отмечены. Есть всякие хитрые хаки, позволяющие запихать H265 в протокол, не рассчитанный на это, но называть это RTMP уже будет перебор — это будет проприетарный, закрытый протокол. Подобные изменения существуют, делаются они китайцами, а это как правило означает просто истеричное отношение к предложениям поделиться спецификацией на протокол.
Т.е. железо может уметь H265, а софт, запущенный на нём, может отставать в развитии и просто не уметь с ним работать и такого пока ещё полно.
Вещание
Сейчас в дикой природе H265 проще всего встретить на IP-камерах: там оно уже есть и уже потихоньку распространяется, спасибо HUAWEI. Так же можно на спутниках найти 30-мегабитные каналы, сжатые в H265.
По нашему опыту постепенно делаются попытки внедрить его в различных OTT-сервисах, где есть контроль за устройством.
По поводу вещания ситуация такая: H265 в протоколе HLS поддерживается всеми уже очень давно, а эппл очень вовремя очухались и зафиксировали очевидное в стандарте. Но всем пока что плевать, потому что мало какие айфоны могут его проигрывать.
Т.е. важно запомнить: MPEG-TS давно и надежно умеет передавать H265, а значит то, что называют UDP или HTTP с большой вероятностью тоже сможет.
Так же H265 передается по RTSP: есть упаковка и в SDP, и в RTP. Остается старый нюанс с передачей bframes по RTSP, но это отдельная головная боль.
Если вы встречаете H265 и RTMP, то скорее всего это болтовня, но если оно реально работает, значит люди просто напихали байт и пользуются патченым сервером и клиентом. В стандартный RTMP H265 не влезает.
Проигрывание
Из десктопных браузеров показывать H265 сейчас фактически умеет только Microsoft Edge, остальные нет.
Есть проигрывание на телевизионных приставках, SmartTV и в программах/приложени, но браузеры пока очень сильно отстают.
Так же надо понимать, что на телефонах сейчас h265 скорее всего будет играться на процессоре, т.е. если хватит батарейки на просмотр рекламы, уже неплохо.
Конкуренция
H265 сравнивают с h264: ведь разницу в битрейте надо ещё увидеть, а поддержка h264 сейчас есть абсолютно везде
H265 сравнивают с VP10, потому что так попросил Гугл. На практике у VP10 проблемы с ещё меньшей поддержкой со стороны железа (а значит для него нужно ещё больше батареек и процессорной мощности) и плохие протоколы проигрывания.
H265 начали сравнивать с AV1, но это пока вообще можно не рассматривать — слишком новая штука. Очень интересно, подождем несколько лет.
Резюме
H265 развивается, распространяется, но на сегодняшний день скорее всего не будет ничего фатального, если вы его пока не рассматриваете.
У него уже на старте есть конкуренты, с которыми прийдется побороться, но есть и хорошая стартовая позиция в виде приличной родословной (от тех же людей, что и H264) и неплохая поддержка в транспортах и протоколах доставки видео.
Разбираемся с форматами и кодеками видео
Содержание
Содержание
Современные медийные платформы позволяют пользователям наслаждаться высокодетализированным видео и потрясающими аудиоэффектами в режиме онлайн.
Однако создание подобного контента было бы невозможно без существования кодеков и контейнеров.
Чем кодеки отличаются от контейнера — их часто путают
Для ответа на вопрос, чем кодеки отличаются от контейнеров, необходимо понять, что такое кодеки.
Смысл понятия «кодек» лежит прямо в его названии:
Фактически кодек — это цифровой инструмент компрессии и декомпрессии данных. Компрессия (сжатие данных) необходима для экономии занимаемого файлом места. Например, несжатое видео высокой четкости в raw-формате, при 60 кадрах в секунду способно достигать размеров в полтерабайта на каждый час записи.
Восьмиканальная аудиодорожка в 24-битном разрешении будет занимать 16 мегабит за одну секунду записи. Такие объемы данных не подходят ни для штатного хранения, ни для их передачи онлайн, поэтому для их сжатия применяются специальные формулы, которые и называются кодеками.
Для хранения сжатой информации создаются контейнеры-обертки в определенном формате. Современные контейнеры способны хранить информацию, обработанную разными кодеками. Такие обертки указывают устройству на то, какими кодеками была сжата информация, и по какой формуле ее восстанавливать.
Если разобрать стандартное видео со звуком на кодеки и контейнеры, в результате получится три составные части:
В случае если в видео нет звука, аудиокодек не нужен.
Популярные и прогрессивные кодеки
Большинство создаваемого видеоконтента обрабатывается кодеками XviD, MPEG-1\2, H.264, MPEG-4, DivX, WMV, MJPEG, RealVideo, Bink Video и их вариациями. Для аудиоформатов в основном используют AAC, Opus и MP3-кодеки. Из новинок стоит отметить кодек H.266/VVC, разрабатываемый для потоковой передачи видео в 4K и 8K.
Новый кодек позволяет вдвое сократить объем файла относительно H.265 кодека за счет более сложных алгоритмов. Сложные вычисления потребляют больше ресурсов, до 1000 % от потребления H.265 при кодировании, и до 200% при декодировании.
Какие кодеки в основном поддерживаются современными ТВ и обновляются ли они с прошивкой
Современные системы поддерживают большинство существующих кодеков.
Поддержка кодеков MPEG от первого до четвертого, вариации H.264 для воспроизведения Blu-Ray, а также XviD и DivX, входят в базовый пакет любого современного телевизора.
Ведущие производители всегда следят за ошибками и актуальностью своего программного обеспечения.
Обновление кодеков в процессе прошивки регулируется разработчиками индивидуально под каждую модель SmartTV.
Если новые кодеки необходимы, поддерживаются устройством на аппаратном уровне и не вызывают ошибок отображения, ничего не мешает разработчикам добавить их в ближайших обновлениях.
Не все устройства совместимы с новыми кодеками, поэтому установка неофициальных обновлений прошивки не рекомендуется потому как может привести к ошибкам воспроизведения.
Какие кодеки используются при проигрывании онлайн-видео (современные кодеки youtube)
В настоящее время стандартом большинства видеосервисов стали кодеки H.264 и MPEG-4, значительно реже встречаются кодеки FFDshow, XviD и DivX.
Одним из самых перспективных кодеков является бесплатный AV1-кодек. Разработан сообществом AOMedia, включающим в себя таких гигантов как AMD, Google, Netflix, Mozilla, Nvidia, Intel, ARM и Cisco. Исходный код кодека открыт и свободно распространяется без каких-либо лицензионных отчислений.
Что даст конечному пользователю переход ютуба на современный AV1
Кодек AV1 разрабатывался для воспроизведения видео онлайн, в браузерах Safari, Firefox, Edge и Chrome. Степень сжатия видео кодеком AV1 превосходит кодеки VP8 и H.264 от 30% до 50%, а кодек HEVC до 30–43 % на высоких битрейтах.
Полный переход видео платформы YouTube на AV1-кодек не только ускорит загрузку всех видеороликов от 20% до 50%, но и позволит стримить в разрешении 4K.
Для минимизации потерь качества, при сохранении и конвертации файла рекомендуется использовать кодеки AV1 для видео и Opus для аудио, обернутые в MP4-контейнер.
H.265 vs H.264 сравнение форматов видео. Что такое HEVC и AVC
Опубликовано admin в 24 октября, 2019 24 октября, 2019
H.265 vs H.264 – сравнение современных форматов сжатия видео.
H.265 (HEVC), в отличии от H.264 (AVC), становится наиболее часто используемым форматом для сжатия видео и записи контента 4K / 8K UHD, не говоря уже о видео HD / SD. Увеличение количества видео 4K и 8K бросает вызов текущему стандарту сжатия H.264, поскольку ему больше не удается кодировать видео Ultra HD с удовлетворительной скоростью передачи данных, чем контент HD.
Вследствие этого, стандарт сжатия видео HEVC следующего поколения получает преимущество над AVC благодаря лучшей эффективности сжатия. Это позволяет на 50% снизить скорость передачи, но обеспечивает такое же качество видео.
Этот пост показывает различия между двумя стандартами, основанные на размере файла, использовании полосы пропускания, скорости передачи данных, качестве и совместимости.
Что такое H.265 (HEVC)?
H.265 также называется высокоэффективным кодированием видео (HEVC). Данный формат в два раза более эффективен, чем H.264 при кодировании. Он вдвое снижает скорость передачи при том же уровне качества по сравнению со своим предшественником. Предназначен для дисплеев HDTV следующего поколения и систем захвата контента, которые имеют прогрессивную частоту кадров и разрешение, а также улучшенное качество изображения с точки зрения уровня шума, цветовых пространств и динамического диапазона.
Что такое H.264 (AVC)?
H.264 или MPEG-4 AVC – это формат кодирования видео, который в настоящее время является одним из наиболее часто используемых для сжатия и доставки видеоконтента. AVC экономит битрейт на 50% и более по сравнению с его предшественником MPEG-2. Имеет более широкий спектр приложений, охватывающих все сжатое видео, начиная от потоковых приложений с низким битрейтом (YouTube, iTunes, Vimeo, Facebook, Instagram) для различных передач HDTV по наземному, кабельному и спутниковому телевидению. Он также широко используется для дисков Blu-ray, DVD, IP-сетей и приложений для цифрового кино с кодированием, практически без потерь.
Сравнение форматов сжатия видео
Эффективность сжатия
H.265 отличается от H.264 эффективностью сжатия. HEVC удваивает эффективность кодирования по сравнению со своим предшественником. Это означает, что кодек H.265 экономит около 50% битрейта при том же качестве кодирования. В частности, среднее уменьшение битов для H.265 составляет 64% при 4K UHD, 62% при 1080p, 56% при 720p и 52% при 480p. Таким образом, если загрузить фильм в H.265 и воспроизвести его на устройстве iPhone Android, то будет сохранено 50% памяти мобильного устройства. И качество фильма не пострадает!
Сравнение форматов видео и эффективность сжатия
Полоса пропускания
H.265 превосходит H.264 и в отношении использования полосы пропускания. Поскольку алгоритм HEVC использует эффективное кодирование, он обещает приблизительно 40-50% уменьшения полосы пропускания передачи, необходимой для сжатия видео (например, в формате 720p), с тем же качеством. Как правило, для потоковой передачи 4K H264 (AVC) требуется полоса пропускания 32 Мбит / с, а для передачи видео 4K HEVC – всего 15 Мбит / с. Таким образом, можно наслаждаться 4k видео без проблем даже при перегруженном сетевом соединении.
H.264 и H.265 – полоса пропускания
Качество видео
Большая разница между рассматриваемыми кодеками заключается в качестве видео при одинаковой скорости передачи данных. В AVC границы областей блока, вероятно, будут искажены, потому что каждый макроблок является фиксированным, а данные независимы друг от друга. В то время как H.265 предлагает более четкие детали на гранях и сглаживает градиентные области с меньшим количеством артефактов.
Таким образом, H.265 лучше, чем H.264, когда речь идет о сжатии видео с лучшим качеством изображения.
Размер файла
Высокая степень сжатия также тесно связана с требованием цифрового хранения видеопотоков и передачи. Уменьшенная пропускная способность приводит к уменьшению размера файла. Тесты показывает, что видео, закодированное с помощью H.264, в 1-3 раза больше, чем H.265. Это выгодно для хранения информации на жестком диске или устройствах с ограниченным пространством хранения, необходимого для размещения видеоданных. В этом отношении большое преимущество H.265 перед H.264.
H.265 vs H.264 сравнение форматов – размер файла
Совместимость форматов
Ничто не совершенно. Так же, как и HEVC. Все, сказанное выше, является преимуществом HEVC перед H264. Но есть и недостаток – плохая совместимость. В настоящее время новый формат далеко не так популярен, как H264. Современные устройства и платформы, поддерживающие кодек H264, составляют 99%. Поддержка кодека H265, может составлять около 30-40%.
Преимущества и недостатки
H.265 имеет много преимуществ перед H.264. Например, он поддерживает до 8K UHDTV (разрешением, максимум 8192 × 4320), скорость передачи данных составляет несколько ГБ / с, а размер файла вдвое меньше, и это с лучшим качеством! H.265 имеет большое влияние на увеличение спроса и продажи экранов 4К, предлагая более высокое качество видео даже в сети с ограниченной пропускной способностью.
Но есть и обратная сторона. HEVC требует больше времени для кодирования по сравнению с AVC. Во-вторых, поскольку перспективный кодек, который сейчас широко не используется, просмотр видео H.265 не так прост. Поэтому преобразование H.265 в H.264 по-прежнему очень востребовано в наши дни.
Пишите в комментариях ниже какую информацию добавить или убрать для форматов сжатия видео – H.264 (AVC) vs H.265 (HEVC). Открыт для предложений по оформлению и наполнению страницы.
Что такое HEVC и зачем он нужен?
Высокоэффективный видео кодек (High Efficiency Video Coding (HEVC)), видео кодек, известный также как кодек H 265, который сжимает сильнее в более чем в два раза, чем лучший видео кодек для Blu-ray.
Я бы назвал его просто — H 265, потому что это звучит круто, но его полное имя — High Efficiency Video Coding (HEVC). Это новый преемник Advanced Video Coding (AVC), кодек, также известный как H.264, который является одной из основных схем сжатия, используемых Blu-ray.
Идея HEVC заключается в том, чтобы предложить тот же уровень качества изображения, что и AVC, но с улучшенным сжатием, поэтому видео файл, сжатый с помощью этого кодека, будет в два раза меньше. Это важно, для вещания в формате 4K / Ultra HD (интернет и спутник), 4K Blu-ray и для других целей.
Но достаточно ли хорошо он в этом отношении, как он работает?
Сжатие (хорошее, плохое, с потерями)
Объем необработанных данных, выходящих из профессиональной HD-камеры, является огромным. Нет возможности удобно доставить его в ваш дом. Вместо этого видео сжимается, чтобы уменьшить объем данных в более управляемую форму.
Есть много способов сделать это, одним из самых простых является снижение качества. В некоторых случаях это нормально. Подумайте о видео на YouTube с низким качеством. Не очень, правда? Часто это связано с тем, что видео сильно сжато (до или во время загрузки).
Сильное сжатие при помощи различных кодеков может быть технически одинаковым, но в зависимости от кодека, изображение может казаться более мягким, шумным или иметь странные отвлекающие артефакты (как показано выше).
Но это не самая хорошая идея, если нужно сохранить намерение режиссера или показать свой новеньки 77-дюймовый телек.
Таким образом, другой вариант — использовать лучшее сжатие. В этом случае вы можете в основном думать о «лучшем» сжатии как «о более умном» сжатии. Он берет тот же оригинал (видео) и находит лучшие способы уменьшить количество данных, не жертвуя качеством. Каждые несколько лет вычислительная мощность передачи улучшилась настолько, что позволяет использовать более интенсивные алгоритмы сжатия процессора, а также сжимать данные без ухудшения качества.
Это различие между «большим» сжатием и «лучшим» сжатием важно, так как на самом деле термины не являются взаимозаменяемыми в этом контексте. Вы можете уменьшить объем данных, необходимых для сигнала, либо путем сжатия и ухудшения изображения, либо с помощью более эффективной компрессии («лучшего» сжатия).
Позвольте мне сказать это так. Скажите, что у вас есть бушель из яблок. Вам нужно поместить 100 яблок внутрь. Вы можете сделать это с большим сжатием (сокращение яблок до пюре) или с лучшим сжатием (поиск лучшего способа сделать их целыми, но при этом, уменьшить объем занимаемого места).
Большее сжатия: яблочное пюре
Лучшее сжатие: больше яблок, в одном и том же пространстве.
Как вы можете видеть из этого восхитительного примера, «более» сжатие легче сделать, в то время как «лучшее» сжатие требует более продуманных и / или лучших технологий.
Кодек H.265
Поток данных, в 4K видео, значительно сильнее чем в HD видео. В то время как большинство из нас еще только привыкало к идее преимущества кодека H.264 по сравнению с MPEG-2, Группа Motion Picture Experts Group и International Telecommunication Union’s Telecommunication Standardization Sector (ITU-T), уже начали работу над следующим поколением сжатия видео.
Не желая делать небольшие, косметические улучшения, всякий раз, когда вводится новый стандарт сжатия, это должно быть значительным изменением. При каждом переходе на новый стандарт, либо объем видео становится в два раза меньше при том же качестве, либо более высокое качество изображения про том же объеме.
Как удалось этого достичь? Во многом благодаря расширению использования AVC (и других методов сжатия).
Во-первых, новый кодек сразу просматривает несколько кадров, чтобы увидеть, что в кадре не меняется. В большинстве сцен в телешоу или фильме, подавляющее большинство кадров не сильно меняется. Подумайте о сцене с кем-то разговаривающим. В кадре в основном голова. Фон не сильно изменится для многих кадров. В этом отношении большинство пикселей, составляющих лицо, вероятно, не будут сильно меняться (кроме губ, конечно). Поэтому вместо того, чтобы кодировать каждый пиксель из каждого кадра, кодируется начальный кадр, а затем после этого кодируются (в основном) только изменения.
Затем HEVC расширяет размер области, на которую смотрят эти изменения. Большие и меньшие «блоки» существенно, что обеспечивает дополнительную эффективность. Они могут быть больше, меньше и различной формы в HEVC, чем в предыдущих кодеках. Более крупные блоки, например, оказались более эффективными.
Слева — макроблокирование по AVC / H.264. Как вы можете видеть, справа гораздо больше гибкости, не говоря уже о больших размерах, для кодировщика HEVC / H.265.
Затем были улучшены другие вещи, такие как компенсация движения, пространственное предсказание и т. Д. Все это было бы сделано в AVC или даже раньше, но это требовало большей вычислительной мощности, чем это было в то время экономически целесообразно.
На этапе разработки алгоритм сжатия объективно проверяется на эффективность его исходного видео. Также проверяется и субъективно, профессионалами видео, сравнивающими различные методы сжатия в «слепом» тесте, где они не знают, какой именно метод перед ними. Сравнение человеком, имеет решающее значение. Просто потому, что компьютер говорит, что один уровень сжатия лучше, чем другой, не означает, что он выглядит лучше другого.
Поскольку H.265 работает намного интенсивнее, не ожидайте простого обновления прошивки, чтобы заставить ваше устройство декодировать его. На самом деле, это часть проблемы. Вам нужен аппаратный декодер. Ваш телевизор или медиа проигрывателя изначально должен иметь декодер, прошивкой тут не обойтись. Может ли ПК высокого класса декодировать его с помощью программного обеспечения? Может быть.
Достаточно ли этого?
Ну, технически да, но с большой оговоркой. Как и AVC (и другие стандарты сжатия), H.265 настраивается в зависимости от требуемой пропускной способности. Хотите 4K на низкоскоростном интернете? Нет проблем; увеличьте степень сжатия (помните яблочный соус?). Хотите лучшее качество изображения? Нет проблем; уменьшите степень сжатия.
Хотя эта схема обеспечивает гибкость, это также означает, что «4K» и «UHD» не обязательно гарантируют лучшее качество изображения, чем сегодня, «1080p» или «HD». Очень сжатый сигнал 4K во многих отношениях выглядел хуже, чем менее сильно сжатый сигнал HD.
Другими словами, потоковая передача 4K может выглядеть хуже, чем текущий 1080p Blu-ray, в зависимости от того, сколько используется сжатие
И хотя скорость обработки на всех устройствах соответствует закону Мура, пропускная способность интернета ограничена.
Еще одно преимущество
В то время как большинство потенциальных преимуществ HEVC сосредоточены на 4K, его лучшее сжатие обеспечивает преимущества для HD. Более низкая пропускная способность с HD означает, что больше людей может получить HD. Люди, у которых низкая скорость интернета, с новым кодеком смогут смотреть HD видео. Если у вас тариф с оплатой за мегабайты, то более низкие скорости передачи данных также означают более дешевый просмотр HD.
Чем смотреть HEVC.
Понятно, сразу возникает вопрос, как смотреть HEVC. Есть несколько решений, в зависимости от того, что у вас есть.
HEVC Video Extension
Если у вас ПК, и стоит Windows 10, то вы можете воспользоваться приложением, которое выпустила компания Microsoft. HEVC Video Extension — приложение, позволяющее смотреть видео в формате HEVC на компьютерах. Однако, стоит заметить, что для того, чтобы это приложение работало, у вас должен быть довольно мощный компьютер, с процессорами Intel седьмого поколения. Ну и сама операционная система, должна быть Windows 10.
Если ваш ПК отвечает этим требованиям, то это расширение вы можете получить при обновлении Windows. Но если вы не стали обновлять свою ОС, но хотите смотреть фильмы в формате HEVC, то вы можете скачать приложения с официального сайта Microsoft.
HEVC Video Extension в магазине приложений Microsoft
Проигрыватель для HEVC.
Если же у вас либо другая ОС, например Windows 7, или просто ваш компьютер не столь мощный, то вы можете скачать плейер, с поддержкой HEVC, например WindowsPlayer. Данный плейер, вы можете скачать с официального сайта программы.
Проигрыватель WindowsPlayer для воспроизведения файлов HEVC
Заключение
Начните искать HEVC (или H.265) в качестве позиции на телевизорах, проигрывателях Blu-ray и других медиаплеерах в будущем. Почти все основные модели начиная с моделей 2014 года выпуска включают необходимый аппаратный декодер, хотя лучше сразу убедится, что он действительно есть, чем потом жалеть о покупке.
Было много ворчаний во время перехода на H.264 / AVC при появлении Blu-ray. Теперь тоже самое происходит и появлением HEVC. Но более низкие скорости передачи данных при сохранении качества — это хорошо для всех.